
R
David J. Scott

��� �� � � � �	�
� �� � ��� � � � �
Department of Statistics, University of Auckland

R – p.1/196

Outline

Introduction: the S language

Basic S concepts

Practicalities: help, commands, running R, ESS

Data structures
Numbers and vectors
Objects, modes and attributes
Factors
Arrays and matrices
Lists and data frames

Vectors

Matrices

Text handling in R

Importing and exporting data
R – p.2/196

Outline (continued)

Programming in S

Dates and times

Miscellanea
Scope
Customising the environment
Installing packages
Accessing source code
Mathematical expressions
Probability distributions
Optimisation

An extended example: the Weibull distribution

R – p.3/196

Outline (continued)

S graphics

Trellis graphics and

� � � � � ��

Sweave

Writing functions and packages

S4 methods

R – p.4/196

Resources

CRAN (Comprehensive R Archive Network), local mirror

�� � �� � ��� � �	
 � � ��
 �� � � �	 �
 ��
 	 � �

An Introduction to R

�� � �� � ��� � �	
 � � ��
 �� � � �	 �
 ��
 	 � � ��� � ��� � 	 � �� � �� � � 	 � � �
 � � �

A Reference Card for R from Tom Short

� � �
 � � ��
 �� � � �	 �
 ��
 	 � �� � � � � � � �� �� �� � � � � � � � � ��� � �
 � � �

The ESS Manual

�� � �� � � � � �
 � � ��
 �� � � �	 �
 ��
 	 � �� � � � � � � �� �� � � � � � �	 � ��
 � � �

A Reference Card for ESS

� � �
 � � ��
 �� � � �	 �
 ��
 	 � �� � � � � � � �� �� � � � � � � � � � � �
 � � �

The Sweave User Manual

� � �
 � � ��
 �� � � �	 �
 ��
 	 � �� � � � � � � �� �� � � � � � � � � �	 � �� � � ! !" !# !$
 � � �

R – p.5/196

http://cran.stat.auckland.ac.nz/
http://cran.stat.auckland.ac.nz/doc/manuals/R-intro.pdf
www.stat.auckland.ac.nz/~dscott/782/RrefcardShort.pdf
http://www.stat.auckland.ac.nz/~dscott/782/essmanual.pdf
www.stat.auckland.ac.nz/~dscott/782/essrefcard.pdf
www.stat.auckland.ac.nz/~dscott/782/Sweave-manual-20050103.pdf

Introduction: The S Language

R – p.6/196

The S Language

S is a language and computational environment designed
specifically for carrying out “statistical” computations.

It was designed by statisticians so that they could easily
develop and deploy new statistical methodology.

It brings good ideas on numerical methods, graphics and
language design together in a single useful package.

It represents a philosophy of turning ideas into programs
quickly and easily.

R – p.7/196

History

The S language was developed at AT&T/Lucent Bell
Laboratories by John Chambers, with the assistance of
Rick Becker, Allan Wilks and Duncan Temple Lang.

The development of the language was aided by collaboration
of the AT&T researchers with a much wide group of
academics and practitioners.

The developers of S language recognise a number of distinct
versions of S which came about during the development of the
language.

R – p.8/196

S Version 1

Released in 1980.

The first version of S released outside of Bell Labs.

Used primarily in North American universities.

It is described in the book
S : A Language and Environment For
Data Analysis and Graphics

(also known as the “brown” book).

R – p.9/196

S Version 2

Released in 1987.

Based initial experiences developing S, Chambers developed
a new environment called

�� �

.

This added the ability for users to define their own extensions
to the language. This version of S is described in the book

The NEW S Language
(also known as the “blue” book).

R – p.10/196

S Version 3

Released in 1990.

Added some basic object-oriented facilities, which were seen
as essential for providing good modelling facilities.

Included “State of the Art” modelling software.

These extensions are described in the book
Models in S

also known as the “white” book.

R – p.11/196

S Version 4

Released in 2000.

Contains a rather more sophisticated version of
object-oriented programming and a number of other
developments which support programming activities with S.

The initial versions of

��

ran very slowly, and this has tended
delay its acceptance by the S programming community.

This version of S is described in the book
Programming with Data

(also known as the “green book”).

R – p.12/196

The ACM Software Systems Award

The importance of John Chambers’ work on S was recognised
in 1998, when he was awarded the ACM award for software
systems.

The ACM award is the world’s most prestigious award for
software engineering.

Other winners of the ACM award include Thompson and
Ritchie for the UNIX operating system and Don Knuth for the
TEX typesetting system.

R – p.13/196

S Implementations

S This was the version of S used internally for re-
search purposes at Bell Labs. A small group of ex-
ternal researchers had access to this version.

S-PLUS In the late 1980s AT&T sold the rights to sell a
commercial version of S to Seattle-based Statistical
Sciences. The company has since been renamed
twice and is now known as Insightful .

R In the early 1990s Robert Gentleman and
Ross Ihaka University of Auckland developed an al-
ternative free S implementation. It is called R af-
ter its original developers: Robert Gentleman and
Ross Ihaka.

R – p.14/196

R

R is now developed by the R-Core Development Team

New releases are produced around every six months

In addition to base R there are a number of recommended
packages which comprise the basic R distribution

There are around 1000 additional packages produced by
users of R

The source code and compiled versions of R for Windows,
Macintosh and various Linux distributions (debian, redhat,
ubuntu, . . .) are available from CRAN

CRAN also has user-produced packages and documentation

R – p.15/196

Basic S Concepts

R – p.16/196

Basic S Concepts

S is a computer language which is processed by a special
program called an interpreter

The interpreter reads and evaluates S language expressions,
and prints the values determined for the expressions

The interpreter indicates that it is expecting input by printing
its prompt at the start of a line

By default the S prompt is a greater than sign �.

On UNIX or LINUX machines you can start Splus by typing
“

� � ��� �” and R by typing “
�

”

R – p.17/196

Using S as a Calculator

A user types expressions to the S interpreter

S responds by computing and printing the answers

� � � �

�� � �

� � � �

�� � 	�

�

� � � �

�� � �� �

R – p.18/196

Grouping and Evaluation

Normal arithmetic rules apply,

� � � � � �

�� � �

But evaluation can be controlled with parentheses

� � � � � � � �

�� � �

R – p.19/196

Built-in Functions

Many mathematical and statistical functions are available.

� � � � � � � �

�� � �

�� � � � �

� ��� � � �	 �

�� � �

� 	 � �� �

� �
 � �� �	 � � �

�� � �

� � � �� �

R – p.20/196

Assignment

Values are stored by assigning them a name

The resulting name-value pair is called a variable.

The statements:

� � � �

� � ��� �

store the value

� �

under the name �.

You can also write the assignment in the other direction� � � � �

R – p.21/196

Using Variables

Variables can be used in expressions in the same way as
numbers

For example,

� � ��� �

� � ��� � � � �

� �
�� � � 	

R – p.22/196

Special Values

In addition to ordinary numbers, S has special codes which
indicate infinite and undefined numerical values

� � �	

�� � � � �

� � � �	

�� � � � � �

� 	 �	

�� � ��� �

R – p.23/196

Special Values

Infinities and

� � �

s have expected properties

� �	 	 � �
 �

�� � � � �

� �	 	 � ��� �

�� � ��� �

� �	 	 � �
 �

�� � 	

� �
 � � �
 �

�� � ��� �

R – p.24/196

Practicalities

R – p.25/196

Help

Help using

��� � � or preceding with

�

��� � � � �� ��� � �

or

� �� ��� �

Other help from

��� � �
 � 	 �
 	,

� � � �
 � � �
 � �

, and � � � � � � , e.g.

��� � �
 � � �
 � � �� � � � �� �

��� � � � � � � �� � � �� ��� � �
 �� � � � � � � 	� �

� � � � � � � � � � 	 �
 	 � � �

R – p.26/196

Commands

R is case-sensitive

Names are locale dependent, alphanumeric characters
allowed, plus ’
 ’ and ’ �’

Commands are either expressions or assignments

Expressions are evaluated and printed

An assignment evaluates an expression and passes the value
to a variable: the result is not automatically printed

An assignment in brackets is printed

�

denotes the start of a comment

R – p.27/196

Commands

� ��� �	

� � � � � � � � � � � � � 	

� � �� �� �	

� � � ��� �	 � �	 �

� � � � 	 � � � � � � � � � � � � � � � � � � � 	

R – p.28/196

Running R

Can run in a terminal window: command recall and editing is
possible

Best environment is XEmacs and ESS

On Windows WinEdt plays very nicely with R

Run commands from a file with �� �
 � �

� �� �
 � � �� �� � � � �
 �� �

Put output to a file with � � � �

� � � � � �� �� � � � �
 � � 	� �

Return to console output with � � � � � �

See objects in current workspace with � � � � � 	 � � �

or

� � � �

Remove objects with

�
 � ��
�

�
�

� �� 	 �
�

	 � � �

R – p.29/196

XEmacs and ESS

To start R from within XEmacs use M-x R

Most important is to evaluate a region C-c C-r

This leaves you in the commands file

C-c M-r evaluates the region but leaves you in R

Evaluate a line with C-c C-j

To ensure XEmacs uses ESS, put the line�
 � �� �
 � � � � � � � � 	 � �

in the file
��� � ��
� � �

Note that

�� � �
� � �

is accessible in XEmacs from the Options
menu: select

� �� � � � � � � 	 � � � �

R – p.30/196

Workspace, History, Batch Mode

All objects can be saved at the end of a session

Saved in

� � � 	 � in the current directory

Objects will be reloaded if a later session is started in this
directory

To avoid confusion of objects, use different directories for
different projects

To run in batch mode, on the Unix command line:� �� � � �� � � �� �	�
� �� �
Output will be in

�� � �
 � �� �	� � �

Can be done in the background or with � � � � or �� �� �

See

� � �� � �

There are other commands like this, e.g.

� � � � � � � � �� �

R – p.31/196

Data Structures

R – p.32/196

Data Structures

Vectors: can be numeric, character, or logical

Matrices: just vectors with dimensions added and possibly row
and column names—elements are all of the same type

Factors : for categorical data

Lists: like a general form of vector
elements can be of different types
elements can be vectors or lists
used for returning results from functions

Data frames: like matrices, rectangular
columns can be of different types
common input to modeling functions

Functions

R – p.33/196

Objects

R operates on objects

Vectors are atomic—all of one type or mode

Lists are recursive structures

Functions and expressions are also recursive structures

Mode and length are intrinsic attributes of objects

Can change mode—coerce objects

Once an object exists its length can be changed

Change attributes with � 	 	
 � �� 	 � �

Finding out about objects: � 	
, � 	 	
 � �� 	 � �,

��� � �

, 	 � � �

, and
for functions �
 � �

R – p.34/196

Objects

Objects may have a class—used for object-oriented
programming

Determines the behaviour of � �� 	, � � �
 � , and printing

These are generic functions

If no class, default is used, e.g. � �� 	
 ��� � � � � 	 is used if you
try and plot the object

Remove the class using � � � � � � �
See the available methods with � 	 �� � �

See function code for non-visible functions by using

� � 	 � � � 	 �� � �� ��
� �� �
 � �� �
�

� � � � � �
� �� � �

or

� � 	 � �� � ���
 � � � �
 � � � �

� �� �

Alternatively if the namespace is known, use

� �� �� � �� � � � � �
 � � � �

 � ��

R – p.35/196

Factors

Specifies a grouping

Can be ordered or unordered

Used in modeling to do traditional analysis of variance

Use

� � � 	 �
 or �
 � �
 � �

to create factors

See examples from

� � � � 	 �

	 � � � � allows construction of tables using factors

R – p.36/196

Lists

An ordered collection of components

To create:

� � 	 � � � � � 	 � �� � �� �
 � ��
�

� � � � �� � �
 � �
�

��
 � � � � �
 � � � �
�

� � � � �

 � � � � � � � �
�

�
�

� � �

Refer to components using number in double brackets:

� � 	 � � � � �

by name using the separator

�

:

� � 	 � �� �

or by name using the quoted name in double brackets:

� � 	 � �� �� � � � �

� � 	 � � � � �

is different from
� � 	 �� �

Lists are constructed using

� � � 	

R – p.37/196

Data Frames

A list of class

�� 	 �
 �
 � �

Components are vectors, factors, numeric matrices, lists, or
other data frames

Matrices, lists, and data frames provide as many variables to
the new data frame as they have columns, elements, or
variables, respectively

Numeric vectors, logicals and factors are included as is

Character vectors are coerced to factors

Vector structures in the data frame must all have the same
length

Matrix structures must have the same row size

R – p.38/196

Data Frames

Create with

�� 	 �
 �
 � �

� � �� � � 	 � � 	 � � � �� 	 �
 �
 � � � �� � � � 	 � 	 � �
�

�� � 	 � � � �� � �
�

� �� 	 � � � �� � � �
Coerce for example matrices using � �
 �� 	 �
 �
 � �

Instead of using

�

notation, such as � � �� � � 	 � � 	 � � � 	 � 	 � �

use � 	 	 � � � � �

and

��� 	 � � � � �

� 	 � � � � � �� � �

�

�
 � � 	 � � � � � �� � � � � � � � � 	 � �� � � �� 	 � � � � �

� � 	 	 � � � � � � �� � � 	 � � 	 � �

� 	 � � � � � �� � �

�� �

� � 	 � � � � 	 � � � � � 	 � � � � � ��

� � � � � � � �

� ��� 	 � � � � � � �� � � 	 � � 	 � �

R – p.39/196

Vectors

R – p.40/196

Vectors

S works naturally with vectors of values

The simple way to combine scalar values into a vector is using
the � � �

function

� � ��� � � ��
�

�
�

�
�

�
�

� �

� �

�� � � � � � �

Vectors can be manipulated just like scalar values

� � � �

�� � � � � � �

� � � �

�� � 	�

� � 	�

� 	 �

	 	 	�

� � 	

� �

R – p.41/196

Properties of Vectors

The functions

� � � � 	 �

and � ��� return information about the
values stored in vectors

� � ��� � � ��
�

�
�

�
�

�
�

� �

� ���
 � � � � � �

�� � �

� � � �� � � �

�� � � �� �
 � ��
R – p.42/196

Simple Subsetting

Individual vector elements can be accessed with a subsetting
mechanism

� � ��� � � ��
�

�
�

�
�

�
�

� �

� � �� �

�� � �

� � � � �

�� � �

R – p.43/196

Vector Subsets

Extracting vector subsets:

� � ��� � � ��
�

�
�

�
�

�
�

� �

� � � � � ��
�

�
�

� � �

�� � � � �

� � �� � �

�� � � � � �

When subscripts are all negative, all elements except those
are extracted

R – p.44/196

Logical Subsetting

Values can be extracted using logical conditions

For example, the command � � � � � � extracts all elements from

� which are greater than 2

� � ��� � � ��
�

�
�

�
�

�
�

� �

� � � � � � �

�� � � �

Logical subsetting can be very expressive.

� � � � � � � �� � � � � � ���
 � � � � � � � � �

R – p.45/196

Modifying Subsets

It is possible to change the values in a subset of a vector by
using subsetting in conjunction with assignment

For example, the expression

� � � ��� � � ��� �	

will change the first two elements of the vector � to

� 	

.

R – p.46/196

Patterned Sequences

S has a number of ways of generating vectors containing
special sequences of values

The one that is most commonly used is the sequence operator
“ � ”

The expression ��� � ��� returns the sequence of integer values
from �� to � � .

� �� �	

�� � � � � � � � � � � � 	

� �	 � �

�� � � 	 � � � � � � � � �

R – p.47/196

Patterned Sequences Using �

The vectors created with � can be quite large, and when
printed they may span several lines.

� �� � 	

�� � � � � � � � � � � � 	 � � � �

�� � � � � � � � � � � � � � � � � � 	 � � � � � � � �

� � � � � � � � � � �� � � � 	 � � � � � � � � � � ��

� � � � � � �� � � � 	 �� � � � � � � � � �� � � ��

� � � � � � � 	

The value in brackets at the start of each line gives the index
of the first value on the line

This can make it easier to locate particular values

R – p.48/196

Patterned Sequences Using � �
More general sequences can be created by using the “ � � �”
function

The expression � � � � 	
�

�
�

� � � 	

� �

generates the sequence of
values from 0 to 5 in steps of 0.2

� �� � �	
�

�
�

��� � 	 � � �

�� � 	�

	 	�

� 	�

� 	�

� 	�

� �

	 �

� �

� �

�

�� 	 � �

� �

	 �

� �

� �

� �

� �

	 �

� ��

�

�� � � �

� �

� �

	 �

� �

� �

� �

� �

	

It is also possible to create sequences of a specified length

� �� � �	
�

�
�

� �
 � � � � �

�� � 	�

	 	

� �

	 �

� �

	 �

� ��

	 �

� �

	

R – p.49/196

Patterned Sequences Using � �
Another function which is useful for creating patterned
sequences is the function “
 � �”, which repeats its first
argument according to the value of its second

The second argument can either be a single count, giving the
number of times to repeat the first

� �� � � ��� �
�

� �

�� � � � � � � � � � � � � � � � �

Or it can be a vector of counts, indicating how many times to
repeat each element of the first argument

� �� � � ��� �
�

� � �
�

�
�

� � �

�� � � � � � � � � � � �

R – p.50/196

Arithmetic on Vectors

S has very general capabilities for vector arithmetic

Arithmetic operations are carried out on vectors according to
an element recycling rule

Under this rule, when vectors of different lengths are
combined in an arithmetic operation, the shorter vector is first
enlarged to match the length of the longer vector by recycling
its elements

Then the vectors are combined element by element

R – p.51/196

Recycling Rule Example

Consider adding the vectors

� � �

and

� � �

�
�

�
�

�
�

� �
�

�	
�	
�

�	
�	
�	
�
�

�
�

�
�

�

�
�	
�	
�

�	
�	
�	
�
�

recycle� �

�
�	
�	
�

�	
�	
�	
�
�

�
�

�
�

�
�

�
�	
�	
�

�	
�	
�	
�
�

�
�

�	
�	
�

�	
�	
�	
�
�

�
�

�
�

�

�
�	
�	
�

�	
�	
�	
�
�

add� �

�
�	
�	
�

�	
�	
�	
�
�

�
�

�

�
�

�
�	
�	
�

�	
�	
�	
�
�

This is how the result appears when computed with S

� ��� � � ��� �

�� � � � � � � �
R – p.52/196

Summary Operations on Vectors

The following functions return single-value numerical
summaries for the values in a vector or collection of vectors

� � � � �

the sum of the elements of �

�
� � � � �

the product of the elements of �

 � � � � �

the minimum of the elements of �

� � � � �

the maximum of the elements of �

The
 � � � � function computes a two value summary.

� � �
 �� � ��� �	 �

�� � � � 	
R – p.53/196

Examples

The �
� �

function can be used to compute factorials

For example

�� �

� � �� � � �� �	 �

�� � �� �� � 	 	

Beware that very large factorials can’t be represented with
finite precision arithmetic (

�� � �

is too large)

� � �� � � �� �	 	 �

�� � � � �

The following computation shows how to compute binomial
coefficients.

� � �� � � �� �	 � � � �� � � ��� �
�

�� �

�� � � � 	

R – p.54/196

Cumulative Summaries

There are also cumulative versions called � � � � , � � �
� �

,

� � � �, and � � � �

These produce a vector which consists of the summary
computed for; the first element, first two elements, the first
three elements and so on

� � � � � � � � ��� �	 �

�� � � � � � 	 � � � � �� �� � � � �

� � � � � �� � � �� �	 �

�� � � � � � �

� � � � � 	 � � 	 � 	 � 	 � 	 � � 	

� � � �� � � � 	 �� �� � 	 	

R – p.55/196

Statistical Summaries

There are a number of summaries which compute quantities
of statistical interest

The most important of these are:

� � � � � �

the mean of the elements of �,

� � � � � � � �

the median of the elements of �,

� �
 � � �

the variance of the elements of �.

In addition to these, R also has

� � � � �

the s.d. of the elements of �.

R – p.56/196

Sample Quantiles

The �� � � 	 � � � function computes summaries based on the
percentiles of the values in its argument

The simplest use of �� � � 	 � � � computes the median, upper
and lower quartiles, and extremes

� � � �
 � � � � � ��� �	 �

	 � � � � � 	 � � � � � 	 	 �

�

	 	 �

� � �

� 	 �

� � � 	�

	 	

An optional second argument to �� � � 	 � � � can be used to
specify a different set of quantiles

� � � �
 � � � � � ��� �	
�

	 � �	 � �	 �

	 � � 	 � � 	 � � 	 � � 	 � � 	 � � 	 � � 	 �

�

	 �

� �

� ��

� �

� �

� �

� �

�

� 	 � � 	 � � 	 	 �

�

� �

� � 	�

	

R – p.57/196

Character Strings

Any value in quotes is regarded by R as being a character
string.

� � �� � � �
 � �� � �� � � �
� �� � � � �

� � �� � � �
 �

�� � � ��� � ��
�

��
 � ��

This is true, even when the value appears to be numeric

�
 � � �� � ��� � � � �

�
 � � �� �

�� � � � � �

Character strings can be combined to form vectors

� � � � �� � � �
 �
�
 � � �� � �

�� � � ��� � ��
�

��
 � �� � � � �

R – p.58/196

Type Coercion

It is possible to combine numbers and character strings into a
single vector using “ �”

In this case, the numbers are first converted to strings.

� � � � �� � � �
 �
�

�	 	 �

�� � � ��� � ��
�

��
 � �� � � 	 	�

This an example of automatic type coercion

Arithmetic on a mixture of strings and numbers does not work,
however

� � � 	 	� � � 	

�

�
 � � � � 	 	� � � 	 � �� � � �� �
 � � �
 �� � � 	

	 � � � ��
 � � � �
 � 	 �

R – p.59/196

Naming Vector Elements

Individual elements of a vector can be given names

� � ��� ��� �

� �

�� � � � � � �

� � ��� � � � � �
�

� � �
�

� � �
�

� � �
�

�� � �

� �
�� � � � � � �� � �� � �� � � �

�
 � � � � � � � �� �

� �

� � � � �

� � � � �

Element names are printed above the elements, indexing
information at the start of a line is dropped

R – p.60/196

Names and Subsetting

Names are preserved during subsetting

� � � �� � �

� �
� �

It is also possible to extract subsets by using the names as
subscripts

� � � � � � � �
�

� � � � �

� �

� �

R – p.61/196

Matrices

R – p.62/196

Matrices

In addition to vectors, S has a wide range of data structures.

� � ��� � � � � � � � ��� �
�

 �� � � �
�

 �� � � � �

creates a

� � �

matrix

The value can be viewed as follows:

� �

�
�
� � �
�

� �

��
�

� � �

� �
�

� � �

� �
�

� � �

Notice that the elements are inserted into the matrix in column
major order

R – p.63/196

Row-Major Order

By default, values are inserted into matrices in column major
order

It is also possible to specify that the matrix be filled in row
major order

� � ��� � � � � � � � ��� �
�
 �� � � �
�
 �� � � �
�

� ��� �� � � �� �� �

� �

�
�
� � �
�

� �

��
�

� � �

� �
�

� � �

� �
�

� � �
R – p.64/196

Dimensioning Information

Matrix dimensions can be obtained in a number of ways

� � ��� � � � � � � � ��� �
�
 �� � � �
�
 �� � � � �

�
 �� �
� � �

�� � �

�
 �� � � � �

�� � �

� � � � � � �

�� � � �

R – p.65/196

Diagonal Matrices

The function

� � � � can be used to create diagonal matrices
and to extract the diagonals from matrices

� � ��� � � � � � ��� � �

� �

�
�
� � �
�

� � �
�

� �

��
�

� � 	 	

� �
�

� 	 � 	

� �
�

� 	 	 �

� � � � � � � �

�� � � � �
R – p.66/196

Special Matrix Forms

There is a special form of call to

� � � � which can be used to
create identity matrices

� � � � � � � �

�
�
� � �
�

� � �
�

� �

��
�

� � 	 	

� �
�

� 	 � 	

� �
�

� 	 	 �

It is also easy to construct a block matrix of ones

� � � � � � � � ��
�
 �� � � �
�
 �� � � � �

�
�
� � �
�

� � �
�

� �

��
�

� � � �

� �
�

� � � �

� �
�

� � � �

R – p.67/196

Matrix Arithmetic

The standard arithmetic operations are all defined for
matrices, and take place elementwise

� � ��� � � � � � � � ��� �
�
 �� � � �
�
 �� � � � �

� � ��� � � � � � � � ��� �
�

 �� � � �
�

 �� � � �
�

� ��� �� � � �� �� �

� � � �
�
�
� � �
�

� �

��
�

� � �

� �
�

� � �

� �
�

� � � �

Note that

� � �

is the elementwise product of

�

and

�

, not the
matrix product

R – p.68/196

Other Matrix Operations

The function 	 computes the transpose of its argument

� � � � �
�
�
� � �
�

� � �
�

� �

��
�

� � � �

� �
�

� � � �

Matrix multiplication can be performed with the

� � �

binary
operator

� � � � � � � � �

�
�
� � �
�

� �

��
�

� � � � �

� �
�

� � � � �

R – p.69/196

Solving Linear Equations

The �� ��� � function an be used to solve systems of linear
equations

For example the linear system

� �
� �

���
� �

�

�
� �

can be solved as follows

� � ��� � � � � � � � � � �
�

�
�

�
�

� �
�
 �� � � � �

� � ��� � � ��
�

� �

� �� ��� � � �
�

� �

�� � � � �

R – p.70/196

Matrix Inversion

Called with a single argument, �� ��� � computes the matrix
inverse

� �� ��� � � � �

�
�
� � �
�

� �

��
�

� � �

	 �

	

� �
�

� �

� � 	�

�

But computers only work to a finite precision—all
computations are subject to roundoff error

� � � � � �� ��� � � � �

�
�
� � �
�

� �

��
�

� � �

� � 	 � � � � � � �

� �
�

� 	 �

	 	 	 	 	 	 � � 	 	

R – p.71/196

Regression

The general linear model can be written in matrix form as

� � � � ��� �

The least-squares estimates of the parameters are given by

� � � � � � � 	�
 � � � �

and the residuals by

�� � � � � � � �

The estimated dispersion matrix of

� �

is

� � � � �
�� � ��

� � �
� � � � 	�
 �

�

R – p.72/196

Regression in S

The equations for regression analysis can be translated
directly into S statements

�
 ���
 �� �
� � �

� � ���
 �� � � � �

� �� � � � � � ��� �� ��� � � � � � � � � � ��

� � � � � � �

� � �

� � � � � � �
 � � � ��� � � � � � � �� � � � � �

� � � �� � � � � � ��� � � � �� � � � � �
 � � � � � � � �
 �

� � �

� � ��� � � �� � � � � � � �� ��� � � � � � � � � �

� � �

Warning: This is not the best way of computing the results

R – p.73/196

Matrix Decompositions

There are many S functions which support computations on
matrices

The most useful are:

� � � � � eigenvalues and eigenvectors

� � �

singular-value decomposition

�
 QR decomposition

R – p.74/196

Subsetting

It is possible to extract submatrices from matrices

� � ��� � � � � � � � ��� �
�
 �� � � � �

� �

�
�
� � �
�

� � �
�

� �

��
�

� � � �

� �
�

� � � �

� � � ��
�

� �

�� � �

� � � ��� �
�

��� � �

�
�
� � �
�

� �

��
�

� � �

� �
�

� � �

R – p.75/196

Subsetting Shorthands

An empty subscript field is equivalent to the full range of
possible subscripts

For example:

� � �
�

�� � �

�
�
� � �
�

� �

��
�

� � �

� �
�

� � �

� � � �
�

�

�� � � � �

Subscripting matrices by using logical indices and row or
column labels is also possible, but tends to be far less
common

R – p.76/196

Row and Column Indices

The two functions
� � and �� ��� � return matrices containing
the index for each row an column

� � ��� � � � � � � � ��� �
�

 �� � � � �

� �� �
� � �

�
�
� � �
�

� � �
�

� �

��
�

� � � �

� �
�

� � � �

� �� � � � �

�
�
� � �
�

� � �
�

� �

��
�

� � � �

� �
�

� � � �

R – p.77/196

Example: Zeroing A Lower Triangle

� � and �� �

can be used together with logical subscripting to
operate on upper and lower triangles of matrices

� � ��� � � � � � � � ���
�
 �� � � � �

� � � �� �
� � � � �� � � � � � ��� 	

� �

�
�
� � �
�

� � �
�

� �

��
�

� � � �

� �
�

� 	 � �

� �
�

� 	 	 �

R – p.78/196

Row and Column Labeling

Matrices can be made rather more useful by using row and
column labels

� � ��� � � � � � � � ��� �
�
 �� � � � �

� � � �
 � � � � � � � �� � � � � � � � � �� � �
�

� � � � � � �
�

� � �� � � � �� � � � �
�

� � � � � � � �
�

� � � � � � � �

The primary benefit of labeling can be seen when the matrix is
printed

� �

	 � � � 	 �� 	

� � � � �

�
� � � � �

� � � �
� � � � �

R – p.79/196

Labeling The Labels

In R, but not S, it is possible to “label the labels.”

� � ��� � � � � � � � ��� �
�
 �� � � � �

� � � �
 � � � � � � � �� � � � � �
� � � � � � � � �� � �
�

� � � � � � � �
�

� �� � � � �� � � � �
� � � � � � � � � � � � � � �
�

� � � � � � � � �

� �

� � � � �

� �� 	 	 � � � 	 �� 	

� � � � �

�
� � � � �

� � � �
� � � � �

R – p.80/196

Multiway Arrays

Multiway arrays generalise the notion of matrices.
Arrays are created with the �

 � � function and their
subsetting and labeling methods parallel those of matrices.
The only major difference is that the notion of transpose
must be generalized.
The function � � �
 provides such a generalized transpose
operation.

R – p.81/196

Multiway Arrays

� � � ��� �� � �� �	
 �� � �� �
�
�

	 � � �

� �
	

�
�

	 � �
�

� � �
�

� �

�	
�

� 	 � �

��
�

� � � 	

� �� � � � � � �

� �
	

�
�

	 � �
�

� � �
�

� �

�	
�

� 	 � �

� �
�

�
�

	 � �
�

� � �
�

� �

�	
�

� � � 	
R – p.82/196

Multiway Arrays

� �� � � � � �
� � � � �

	
�

� � �

� �
	

�
�

	 � �
�

� �

�	
�

� 	 �

��
�

� � �

� �
�

� � 	

R – p.83/196

Text Handling in R

R – p.84/196

Printing

Complete S objects can be displayed by using the �
 � � 	

function

� � � �
 � � � � � � � ��� � �

�� � � � � � 	 � � �

� � � �
 � � � � � � � � � �� �
�
 � � � � �

�
�
� � �
�

� �

��
�

� � �

� �
�

� � �

Only very basic control of formatting is possible when the

�
 � � 	 function is used

Other functions can be used when finer control is necessary

R – p.85/196

Control Of Printing

Print formating can be controlled by a number of optional
arguments

� � � � 	 � � controls the number of digits printed to the
right of the decimal point. The default is the
value of the system option
� � � � 	 �.

�� � 	 � � controls whether strings are printed with or
without quotes. The default value is

� � � �

.

��
 �
 � � 	 � the character string used to indicate

� �

values. This is printed without quotes.

R – p.86/196

Examples Using � � � �

� �� ��� 	
��
 ��� � ��� �� 	 � � � � �� �� � 	 � � � �� �� �

� ! "�# $ $�% & '# (#

� �� ��� 	
) *),+ -� . �0/ � 	21 � 3 �

� ! 54 6 6 64 7 6 64 8 8 64 9 7 64 9 6

� �� ��� 	
��
)� : �� ;� < �� � =?> � � �� 	 � > �

� ! 4 @BA C

R – p.87/196

The � � � function

�� & is a function which can be used to concatenate and then
print character strings passed to it as arguments

Objects other than character strings are automatically
converted to character strings by �� &
By default, the strings being concatenated are separated
by a space character. Can be overridden with the � # ��

argument.
Certain sequences of characters have a special
interpretation (shared with C, C++, Java and other
languages)

� A represents a newline character,

� & represents a tab
character, and

� �

a backslash character

R – p.88/196

Examples Using � � �

� � 3 ��� �> �� ��

� � = 	
 = = = � 	 	 	 ��
 � �

� � � � � �

� � = 	
 = = = � 	 	 	 ��
 � �� 1 � � � �

� � � � � �

� � = 	
 = �� 	 �� � �� . ��
 � �� 1 � � � � �

� � � � � � �

� � = 	
 � � 1 �� =� � . ��� � 3�
 � �

� � �� �� (# � 64 �� � 8

R – p.89/196

Vector Arguments to � � �

When the arguments to �� & are vectors, their elements are
treated as though they were separate arguments.

� � � 	 	 � � 1

� ! � � � � � � � � � � � � # � � C � � � � � ' � �� �

� 6 ! �� � � � � � $ � � � � � A � � % � � � � � � � � (�

� � ! � � � � & � � � � ��� � ��	 � ��
 � ��� � ��� �

� � = 	
 � � = � � � = 	 � 	+ �� � � 	 	 � � 1 �

�
 � �� 1 � � � �

� '# � $ � '� � # &�� � � � # C � '� � � $ �A % �� (� & �� 	
 � �

R – p.90/196

Rounding

There are a variety of S functions which help to format
numbers for use with � � &

The function (% �A

rounds its argument to a specified number
of decimal digits

� � � � � .
� � � � <
 - �� 3 �

� ! 64 � 64 9 � 64 8 � 64 9 7 64 7 8
The function �� �A � C

rounds its argument to a specified
number of significant digits

� 1 �0/ � � <
� � � � <
 - �� 3 �

� ! 64 6 64 64 � 8 64 � 7 64 9 �

R – p.91/196

Formatting

The R function

C % (�� & �

provides general formatting of
numeric values as strings

The function is very flexible and provides better control thanC % (�� &

C % (�� & �

has arguments which control whether scientific or
standard formatting is used

It also has control for the number of digits appearing in results

� <� � � = 	 �
) *��� <� � � = 	 � < �� . �0/ � 	 1 � � �

� ! � 64 8 8 8 8 �

� <� � � = 	 �
) *��� <� � � = 	 � � �� . �0/ � 	 1 � � �

� ! � 84 8 8 8 8 # � 6 �
It provides facilities for printing numbers in European formats
or for printing dollar amounts

R – p.92/196

The � � � � Function

�� � & # provides a very flexible way of pasting strings together

Useful in conjunction with �� &

�� � & # obeys the vector recycling rule—useful for tasks like
creating labels

� � =1 	 �
 � =� �) + � �

� ! �� � (� � � � (9 � � � � (8 � � � � (� �

� # �� and � % $ $� � � # � arguments control how strings are glued
together

They make it possible to glue all the results into a single string

� � =1 	 �
 � =� �) + �� 1 � � � � � � � � � = �1 � � + �

� ! �� � (� � � � (� 9� � � (� 8� � � (� � �

R – p.93/196

LATEX Tables

The next slide shows a very simple S function which can be
used to print tables suitable as input for LATEX

This is just a sketch of how a real

$� & #
 4 & � � $ # function could
be written

� �
�

� 8

� 9 �

� � = 	 � �> 	 = 	 � �

�

�

� � # �� A � & � � � $� (� � $ ((!

� � � � �

� � � 8 � �

� � 9 � � � �

� # A � & � � � $� (�

R – p.94/196

Source Code

� � = 	 � �> 	 = 	 � � � � <� � � 	 � � �

�

� �

� � � = 	1 � � . � �� = � � 1

�

� � �) � �

� � � = 	1 � � . � �� = � � 1

�

� � � 3 � �

� < � 	 ��� �
 � �� � � �
 � � � � � / 	 �
�� � = 	1 � � �

� � = 	

 	 � / ��� � 	 = 	� � =� � ��� < � 	�

� �
 � �� 1 � � � �

� � = 	
 �� � � = 	1 � 1 � � � � �

� � = 	

 � �

� <� �
 � ��),+ � � � �

�
� � �

� � = 	
� � = 	1 � � �� �
� �� �� 1 � � � � �

� � = 	

 � �

� �

� � = 	

 � � . � 	 = 	� � =� �
 � �

� �

R – p.95/196

Generalisations

The

$� & #
 4 & � � $ # function is very basic and can be enhanced
in a number of ways

The function fails if its argument does not have row and
column labels
The function should be changed so that the labels are
optional, or could be specified on the command line
It might be useful to be able to be able to centre or left
justify some columns
It might be useful to round or format columns differently

Packages are available for converting R output into a form
where it may be directly incorporated into a LATEX file

� ��� �� � will format tables

$� & #
 from the package

� � 	�
 � will format output from
some R modeling functions

R – p.96/196

Text Processing

There are a number of functions which allow manipulation of
character strings in R

A � '� (computes string lengths

� � � � & (extracts substrings

� � � � & (� A � extracts substrings

� & (� � $� & splits strings

& % $�% 	 # (converts to lower case

& % � � � # (converts to upper case

�� � # C % $

character case conversion

� '� (& (carries out character conversions

R – p.97/196

Substring Examples

� 1 � 	1 	 �
 = 	 � . � < �� 3� � �

� ! � � � �

� 1 � 	1 	 � ��� /
 = 	 � . � < ��) + ��) + � �

� ! � � � � � � � � � � � � # � � C �

� 1 � 	1 	 �
� � �
 = 	 � . � < � � ��) + �� �+ - �

� ! � � � � � � � � # � � � � � # �

� 1 � 	1 	 �
 = 	 � . � < ��) + �� �+ - �

� ! � � � � �

� 1 � 	1 	 � ��� /
 = 	 � . � < ��) + �� �+ - �

� ! � � � � � � � � # � � � � � # �

R – p.98/196

Substring Replacement

� � � �) 3� � - � �� �

� 1 � 	1 	 � ��� /

�� 3 � � � = = =

� �

� ! � � � � 7 � �� � �

� � � �) 3� � - � �� �

� 1 � 	1 	 � ��� /

�� 3� � � � � = = =

� �

� ! � � � � 7 � �� � �

R – p.99/196

Splitting Strings

� 1 	 � 1 � � � 	
 � � � �� 	 � � � � �� � � . �� �

� � ! !

� ! � '# $ $ % � � & '# (# � � 	 % ($ �

� 1 	 � 1 � � � 	
 � � � �� 	 � � � �
 	 �� � � . ��

� �

� � ! !

� ! � '# $ $ % � � �

� 8 ! � & '# (# � &	 % ($ �

� 1 	 � 1 � � � 	
 � � � �� 	 � � � �
 	 �� � � . ��

� � �+ 1 � = � �+ � � � �

� � ! !

� ! � '# $ $ % � � & '# (# � � 	 % ($ �

R – p.100/196

Pattern Matching

The � (# � function can be used to carry out pattern matching

� � � � = � � 	 � � � �� / � 1 � � �

� � � � � � � � 1 	
1 	 � 1 � � � 	

�� � �

� �

� ! � � $ $ � � & '# � � �� A � � � � � �# A �

� / � � �
 � �� �
�

� ! 9 �

� �
�/ � � �
 � �� �
� �

� ! � & '# � � �# A �

R – p.101/196

Pattern Substitution

� � � � � � � � �� � � < �� � � � � � ��� � 1 � � . � � � 1 � � �

� 1 � 	
 � � ��� � � � � ��� � � � �
�

� ! � � '# � % $�% � (% C �% A # � � % $�% (� �� # �� �� % A �

� / 1 � 	
 � � �� � �� � � �� � � �� �
�

� ! � � '# � % $�% � (% C �% A # � � % $�% � (� �� # �� �� % A �

� � � � = � � 	 � � � �� / � 1 � � �

� � � � � � � � 1 	
1 	 � 1 � � � 	

�� � �

� / 1 � 	

> � � �

) �

) �� �
�

� ! � � $ $ � � $ $ � � & '# � & '# �

� 8 ! � �� A � � � � �� A � � � � � �# A � �# A �

R – p.102/196

Importing and Exporting Data

R – p.103/196

Exporting Data to Text Files

Use 	 (� & #4 & � � $ #

� �� �� ��� � �	
�� 	 � �
 �

��� � �	 ��� � ��� � � � �
 � � � � �� �
 � � � � �� ! � "� � 	
 � #$ %! �

�
 � � � � �
� � � � & � � � � � � �' � � � �
 � � � � � �

� � � � � �(
 � � # $ %! � �� � � � �(
 � � #$ %! �

"(
)� � � � � �
 � � ��
 � � � �� � �
 � � �

R prefers the header line to have no entry for the row names

� � � 	 � � � (� (

* �

 � (� �	 �
 +� , - , . / -� .0 1

2 �� �
)�3 -� . + , . . 40 � 1 , .

� � �

� % $4 A � �# � � 5 6

puts an empty entry in the space for the row
names

To transfer to Excel, the usual method is to write a
comma-separated file: 	 (� & #4 � �� is a wrapper which selects
the appropriate options

R – p.104/196

Reading Data from Text Files

Use (# � 4 & � � $ #

� �� �� � �
 � �� 	 � �
 �

��� � �	 ��� � � � � �
 �)
 � �
 � � � �� ! � �
 � � � � � "� � 	
 � �� � � � �
 � � � � � �

� � � � � �(
 � � �� � � � �(
 � � �� � � � � � � 	 � � � �� � � � � � �

	 � � � � � �� � 	 � � � �� � �' � � �

�� � 2 � �� �
 � � ' � � � � � � � � � / � � � � � � . � �)
 � �� � �(
 � � #$ %! �

� � � � � � � � � �� � � �
 � � � � � � � � 	 � � � � �) �	
 � � � � ! � � � � �� � � �
 � � � � � � � # $ %! �

�� ((
 �	 � �) �� � � � � � �� � � � ! � � ��
 � � � �� ! � � � � �) � � �� ! �

� 	 � � � �� � � � � �	 � � � � �
 � �� � 	 � � 	 � � � �� � � � � �	 � � � � � �

The header commonly has entries for the columns only, not for
the row labels, so one field is shorter than the remaining lines

If the file has (possibly empty) header field for the row labels,
use

�
 � �� 	 � �
 � � � � �
�� � �	 � �)
 � �
 � � #$ %! � � � � � � �(
 � � / �

Column names (which override the header line) can be given
with � % $4 A � �# �

R – p.105/196

Reading Data from Text Files

Files exported from a spreadsheet can have trailing empty
fields and their separators omitted. Use

C� $ $ � � � ��

(# � 4 & � � $ # tries to select a suitable class for each variable in
the data frame working through

$�% �� �� $�
�

� A & # �# (� A � �# (� �

and � % � � $ #

The final choice is

C � � & % (

� % $ � $� � � # � and � �4 � � provide greater control

� �4 � � suppresses conversion of character vectors to factors

There are special functions for comma-separated files
((# � 4 � ��) and fixed width format files ((# � 4 C	 C

)

Reading files uses � �� A which reads a character at a time,
and can be used directly

See also (# � � � A # � to read whole lines
R – p.106/196

Importing Data

The package

� �� � 	 �� allows import of data written in other
formats

Functions include (# � 4 # �� � A C % � (# � 4 � & �� (# � 4
 �% (& �

(# � 4 �
� (# � 4 � � � � and (# � 4 �� � & � & for EpiInfo, Minitab

portable, SAS Transport, S-PLUS, SPSS, Stata and Systat
files

A very useful option is to read data from a relational database

Several packages support database access such as

� �	�
� �

,� � � �� �, and

� �� � �

which is quite generic

A later section of the course introduces the database ��
� �

and shows how to use it in conjunction with R

R – p.107/196

Connections

Connections replace use of filenames with a flexible interface
to file-like objects

For example �� C� $ # will read and write from �� � � files

� ($

will read from URLs of types

' & & �� � �

,
C & �� � �

, andC� $ # � � �

R – p.108/196

Excel Spreadsheets

Best approach is to export the data in tab-delimited or
comma-separated form

You can cut and paste from the display of a spreadsheet with

�
 � �� 	 � �
 � � � �
 � � � � � � � �� � � �
�)
 � �
 � � #$ %! � �
 � � � &	 � � �
 � � � � � �

You can also read the clipboard with (# � � $� � �% � (

On Windows the function % � � �% A A # � & �
 � # $

in the package� �� �

can select rows and columns from sheets in an Excel
spreadsheet file

R – p.109/196

Data

There are data sets with R in the package

� � ���
 � �

See a list with

� & � ��

Load a data set with

� & � �� A C # (&�

Find data or load data from other packages

� �	 � � � � � � � �
 � �� 3 �
 � � � � � � � � 	 � �

� �	 � � �
 � � � 	 � � � � � � � � � �
 � �� 3 �
 � � � � � � � � 	 � �
Edit data or create a data frame in a spreadsheet format with

� &

� �	 � � (�("� �(� � � � � � �
 � �� 3 �
 � � � � � � � � 	 � �

(�("� �('
� � �
 � �	 � (�("� �(�

�
� � � � � �
 � �	 � � �	 �� � � � (
 � � �
Some statisticians advise against this usage since an ad hoc
change to the data like this is not able to be done using batch
processing and is thus not reproducible

R – p.110/196

Programming in S

R – p.111/196

Programming Concepts

We write programs to solve problems, e.g. to simulate a queue

A program is an organized list of instructions that, when
executed, causes the computer to behave in a predetermined
manner

A program is like a recipe. It contains
a list of ingredients—called variables; and
a list of directions called statements or commands

Directions tell the computer what to do with the variables

Variables can represent numeric data, text, or graphical
images

R – p.112/196

Programming Concepts

A programming language is a vocabulary and a set of
grammatical rules for instructing a computer to perform
specific tasks. Examples are Matlab, R or C

A procedure is a section of a program that performs a specific
task, or a sequence of instructions for performing some action

A procedure is called an algorithm if it is finite, definite, and
effective, with some output

Computer programs should be algorithms, but there are many
procedures not related to computers—knitting patterns,
recipes, choreography

R – p.113/196

Algorithms

An algorithm if it is finite, definite, and effective, with some
output

finite means it ends after a finite number of steps
definite means each step is clearly defined—”beat until
fluffy” in a recipe doesn’t satisfy this criterion
effective means able to be carried out
output is required otherwise the result of implementing the
algorithm will remain unknown.

To solve a problem, the clearest, most reliable way is to first
develop a suitable algorithm, then to program or code the
algorithm in a suitable programming language.

R – p.114/196

Representing Algorithms

How is the algorithm to be specified, if not in a programming
language?

in natural language—English
by using a flowchart—using diagrams is often helpful
by writing pseudocode—this is recommended by computer
scientists and software developers

R – p.115/196

Pseudocode

Pseudocode is an outline of a program, written in a form that
can easily be converted into real programming statements

Enables the programmer to concentrate on the algorithms
without worrying about the syntactical details of the
programming language

Can be made progressively more detailed as the algorithm is
developed

Can be used as comments for the final program

R – p.116/196

Flow of Control

To be useful, a programming language needs to have a
sufficiently rich collection of control structures

Control structures determine the order in which
programming instructions are executed, called flow of control

Programming languages typically allow for
sequence
alternation or selection
iteration, repetition or looping
jumping
interrupting

R – p.117/196

Flow of Control

sequence—this is the default order, instructions being
executed in the order in the order in which they appear

alternation or selection—implemented as

� C 4 4 4 & '# A

4 4 4 # $ � # 4 4 4 or �� � # or �	 � & � '

iteration, repetition or looping—implemented as 	 '� $ # orC % (or (# � # � &

jumping—implemented as �% & % or
� (# � �

or � & % �

interrupting—used for mouse operations for example

R – p.118/196

Flow of Control

Important R commands, or control structures which affect
the flow of control are:

� C

together with # $ � # executes one group of R commands
if some logical expression is true, and another set if it is
not true

C % (executes a group of R commands for a particular set
of values of some index

	 '� $ # executes a group of R commands an indefinite
number of times while some expression is true.

�	 � & � '

is used to choose which of a number of different
groups of code will be executed.

R – p.119/196

Compound Expressions

Compound expressions give a way of treating a sequence of
expressions as a single expression

The general form of a compound expression is:

� � �� � �� � ��� �
	 � 4 4 4 � � � � � �� � ��� ��

�

A compound expression is evaluated by evaluating each of its
component expressions in turn and taking the value of the last
one as the value of the compound

Note that the statements here are separated by semi-colons,
but newlines will also serve as separators

R – p.120/196

� �
�

� � � �

The syntax is

� C

(� �� � �

)

� � � � �

$ �
� � � � �

Here � �� � �

must evaluate to a logical value

The other expressions may be a collection of R statements
enclosed in curly brackets

�
�

�
Indentation is used to highlight flow of control

R – p.121/196

Example of

� �
�

� � � �

� �% $� � A � � � �� (� &� � # � �� &� % A

� � � # �� C� � % # C C� �� # A & � � � �
� � � � % A � &

� # $ & � � � �� 9 � ��� � � � % A � & � & '# � � � (� �� A � A &

� C � � # $ & � � 6� �

� % $A � � � � 5 6
�

5 6�

�� & � � 5% (# � $ � % $ � &� % A � & % & '� � � �� (� &� � # � �� &� % A � A � �

� # $ � # �

� % $A � � � � � � � �� (& � � # $ & � �
� � � � �� (& � � # $ & � � � � � 9 � � �

�
� % $A

Informative names should be used

Some functions have one-letter names: � � & � �

 � � � � often used for data,

�
�

�
�

�

for counters

R – p.122/196

Example of

� �
�

� � � �

For � � �
�

� � �
� � � �

� � � � � � � � � 9 � �� A � 	 � � �

� �
 � 	 � � � �� 9 � ��� � � �� A � 	 � 	 �
 � � � � �� � � � 	

� � � � �
 � 	 � � �� �

� � � � � � � � � 5 6
�

5 6�

� � � 	 � � 5�
 � � � � � � 	� � � � 	 � 	 �� � � � � � 	� �
� � � 	� � � � � � �

� �
 � �
 �

� � � � � ��� � � � � � �� 	 � �
 � 	 ��
� � � � �� 	 � �
 � 	 �� � � �� � ��

� �
� � � � �

� � � � � � �

R – p.123/196

Example of

� �
�

� � � �

For � � �
�

� � �
� � � �

� � �� ��� � �� � � �� � � 	 �� �

� �
 � 	 � �� �� � � ��� �� �� � � 	 � 	 �
 � � � � �
	 � � � � 	

� � � � �
 � 	 � � � �

� � � � � ��� � �� ��� � � �

� � � 	 � � � �
 � � � � �
� 	 � � � � 	 � 	 � � � � � � � � 	 � �
� � � 	 � � � � � � �

� �
 � �

� � � � � ��� � � � � � �� 	 � �
 � 	 � � � � � � �� 	 � �
 � 	 � � �� �� � � �

� �

� �
 � � � � � � 	 � � � � 	 � 	 � � � � � � � � 	 � �
� � � 	 � � �

� � � � �

� � � � � � �

R – p.124/196

Example of

� �
�

� � � �

For � � ��
�

� � �
� � � � �

� � �� ��� � �� � � �� � � 	 �� � �

� �
 � 	 � �� �� � � �	� �� �� � � 	
 	 �
 � � � � �
	 � � � � 	

� � � � �
 � 	 � � � �

� � � � � ��� � �� ��� � � �

� � � 	 � � � �
 � � � � �
� 	 � � � � 	 � 	 � � � � � � � � 	 � �
� � � 	 � � � � � � �

� �
 � �

� � � � � ��� � � � � � �� 	 � �
 � 	 � � � � � � �� 	 � �
 � 	 � � �� �� � � �

� �
� � � � �

� � � �
�

� �� � � � � �
�

� � � � � �

R – p.125/196

� � � � � �

Used for elementwise change to a vector

The syntax is

� �
 � �
 (

��� � �

, � � �, ��)

Here

�� � �

is a logical vector

� � � gives the value to be returned if the test value is true

�� gives the value to be returned if the test value is false

� 	 �� � � ��
 � � �

� �� � � 	 �
 ��� � � � � � � �

�� � �
�

� �� �� � �
�

�� �� � � �
�

� � � � � � �
�

� � � � � � � �� � �� � ��

� � � � � 	 � � � � �

� �� � � � �� � � � � �
 �� � � 	 �

� �� � � � � � � � � � 	 ��� � � 	 � � � � �
 � � � � � � �

�� � �
�

� �� �� � �
�

�� �� � � �
�

� � � � � � �
�

� � � � � � � � � � � �

R – p.126/196

Relations and Operators

Relations are tests, or comparisons, which are either
’TRUE’ (= 1), or ’FALSE’ (= 0)

Relational Operator Comparison

� less than

� greater than

��� less than or equal

��� greater than or equal

� � equal

� � not equal

Note that "� � " is used in relation statements

R – p.127/196

Relations and Operators

Relation statements may be combined using logical operators

�

,

�

and

�

Relational Operator Resulting Comparison

�

logical and

�

logical or

�

logical not

For example

� � � � � � � �� � � �

, is

� �� �� � � �� �� � � �

and is
thus

�� ��

, so R will have the value 1

Use brackets to make sure the relation specified is the one
intended

R – p.128/196

� � �

The syntax is

� �� ��� �� � �
	 �� � �
� �

� �� � �

The index �� � � starts out equal to the first element of � � � � �

Each time the

� �� � loop is executed, �� � � is set equal to the
next entry in � � � � �

, etc.

R – p.129/196

Example of Use of

� � �

 � � ��� � � � � � �	 � �� � 	 � � � � � � � � � � � � �	 �	 � �

 � � � � � � � � �	 �� � � � � � � � �

� � � �	 �� � � �� 	 � 	 � � � � � � �

� � � �	 �� � � �� � ��� �

� � � � � � � � � � � � � � �	 �� � � 	 � 	 � � � � �
 � � � � � �	 �� � � �� �
� � �	 � �

� � � �	 �� � � �� � ��� �

� � � � � � � � � 	 � � � � �	 �� � � 	 � 	 � � � � �
 � � � � � �	 �� � � �� �
� � �	 � �

� � � � � �
	 ��
 � �

� � � �	 �� � � � � � �� � � � �	 �� � � � � � � � � � � � �	 �� � � � � � � �

� � � � � � � � � � � � � � � � � � �	 �� � � 	 � 	 � � � � �
 � � � � � �	 �� � � � � �
� � �	 � �

�

R – p.130/196

Example of Use of

� � �

� � � � �	 �� � � �� 	 � 	 � � � � � � �

� � � � �	 �� � � � � � �� �

� � � � � � � � � � � � � � � �	 �� � � 	 � 	 � � � � �
 � � � � � �	 �� � � � � �
� � �	 � �

� � � � � � � � � �	 �� � � 	 � 	 � � � � �
 �

� � � � �	 �� � � �� � �� �

� � � � � � � � � � 	 � � � � �	 �� � � 	 � 	 � � � � �
 � � � � � �	 �� � � �� �
� � �	 � �

� � � � 	 � � � � �	 �� � � 	 � 	 � � � � �
 �

� � �� � � � 	 ��
 � �

� � � � �	 �� � � � � � �� � � � �	 �� � � � � � � � � � � � �	 �� � � � � � � �

� � � � � � � � � � � � � � � � � � � �	 �� � � 	 � 	 � � � � �
 � � � � � �	 �� � � � � �
� � �	

� �
� � � � � � � � � �	 �� � � 	 � 	 � � � � �
 �

� � � � � � � � � �	 �� � � 	 � 	 � � � � �
 �

� � � � � � � � � �	 �� � � 	 � 	 � � � � �
 �

� � � � � � � � � �	 �� � � 	 � 	 � � � � �
 �

R – p.131/196

� � � �

The syntax is

� � � � � ��� �� � �� � �� �

� � � �

� � � � is executed while �� � �	 � 	 � � remains true

Initialisation is usually required prior to entering the loop, and
some change which will affect the logical expression within the
loop

R – p.132/196

Example of Use of � � � �

 � � � � � � � � � 	 � � � � � � � � � � � �
	 � �

� � � � ��� � � � � �
	 � � � � � 	 � � � � � �
 � � � � � 	 � � 	 � � � �	

� �� 	 � �� �

� � � � � � � � � � � � � �

� � � � ��� � � � � �
	 � � � � � 	 � � � � � �

� � � �� � � � � � � � �� 	 � � � � � � � � � � � � � � � �	 � �

� �� 	 � �� � �� 	 � � �

�
� � � �� � � � � � � � � � � � � �� 	 � � � � � � � � � � � � � � �� � � � � � � � � � � �	 � �

R – p.133/196

Example of Use of � � � �

� � � � � �� � � � � � 	 � � � � � 	 � � � � � �
 � � � � �
	 � � 	 � � � �	

� � �� 	 � �� �

� � � � � � � � � � � � � � �

� � � � � �� � � � � � 	 � � � � � 	 � � � � � �

� � � � �� � � � � � � � �� 	 � � � � � � � � � � � � � � � �	 � �

� � �� 	 � �� � �� 	 � � �

� �
� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � �� � � � � � � � � � � � � �� 	 � � � � � � � � � � � � � � �� � � � � � � � � � � �	 � �

� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � �

R – p.134/196

Functions

New functionality is added to S by defining new functions

As a very simple example, define a function which squares its
argument as follows:

� �� � �� � �	�
 � � � ��� � ��� � � � �

The expression

� � 	 � � � �	 � 	 � 	 � 	 creates a function which
is assigned as the value of the variable �� � �� �

The function has a single argument x and the value is
multiplied by itself to provide the value of the function

We can use this function in exactly the same way as any other
S function

� �� � �� � �� � �

�� � � � �

R – p.135/196

Vectorisation

Because the operation � acts element-wise on vectors, the
new square function will also

� �� � �� � �� � � � �

�� � � � � � � � � �� � � � � � �

�� � � � � �

Using this fact we can write a simple sum-of-squares function

� � � � �� ��
 � � � �� � �� � � � � � � � � �� � �� � �

� � � � �� �� � � � �

�� � � ��

R – p.136/196

General Functions

In general, an S function has the form:

� � 	 � � � �	 � � �� �	 � � � �� � �

where � �� �	 � �

is a (comma separated) list of variable names
known as the formal arguments of the function, and

�� � � is a
simple or compound expression known as the body of the
function

The general rule for evaluating a call to a function is to
temporarily create a set of variables by associating the
arguments passed to the function with the variable names in

� �� �	 � �

, and then to use these variable definitions to evaluate
the function body

R – p.137/196

Example

Consider the function defined by:

� ��� �� ��
 � � � �� � � ��� � � �

� � � � � � 	
 � � 	
 �

� �

and suppose we make a call to this function by typing:

� ��� �� �� � �

�� � �

This function call is evaluated as follows:
Temporary variables, � and

�

, are created with the values
3 and 4.
These variable definitions are used to evaluate the
expression �� � � � �� � � �� � �

to obtain the value

�

.
When the evaluation is complete the temporary definitions
of � and

�
are removed.

R – p.138/196

Optional Arguments

S has a notion of default argument values which makes it
possible for the writer of a function to specify reasonable
default values for arguments, while still providing the flexibility
users the option of overriding these defaults

As an example, consider the following sum-of-squares
function

� � � � �� ��
 � � � �� � �� � � �� � � � � �

� � � � � �� � � �� � � 	
 �

� �

The function definition provides a default definition for the

� � �� � argument

R – p.139/196

Example

When invoked with just a single argument the function returns
the sum of the squared values in that argument

� � � � �� �� � � � �

�� � � ��

When provided with a value for the � � �� � argument, the
function computes the sum of squared deviations about the
specified value

� � � � �� �� � � �� � � � � �� � � � � �

�� � � �
�

�

R – p.140/196

Argument Matching

Because it is not necessary to specify all the arguments to S
functions, it is important to be clear about which argument
corresponds to which formal parameter of the function

This can be done by providing a name for the argument
explicitly.

� � � � �� �� � � �� � �� � � � � � � �� � � � � �

�� � � �
�

�

When names are provided for arguments, they are used in
preference to position which matching up formal arguments
and arguments

For example

� � � � �� � � �� � � � � � � �� � � � �
� � � � � �

�� � � �
�

�

returns the same answer as the function call above R – p.141/196

The Argument Matching Process

The general rule for matching formal and actual arguments is
as follows.
1. Use any names provided with the actual arguments to

determine the formal arguments associated with the
named arguments. Partial matches are acceptable, unless
there is an ambiguity.

2. Match the unused actual arguments, in the order given, to
any unmatched formal arguments, in the order they
appear in the function declaration.

R – p.142/196

Argument Matching Example

If � � 	 �� is defined by

� � � � �� ��
 � � � �� � �� � � �� � � � � �

� � � � � �� � � �� � � 	
 �

� �

then all the following calls to � � 	 � � are equivalent.

� � � 	 �� � �
 � � � 	 � �	 � �
 � � � �

� � � 	 �� � �
 � � � � � �� � � 	 � �	 � �
 � � � �

� � � 	 �� � �
 � � � �� 	 � �	 � �
 � � � �

� � � 	 �� � 	� �
 � � � 	 � �	 � �
 � � � �

� � � 	 �� � 	 � �	 � �
 � � � � 	� �
 � � �

R – p.143/196

Dates and Times

R – p.144/196

Dates and Times

Dates and times are needed for time series, survival analysis
etc

Problems: time and date formats, time zones, daylight saving

Classes

��� ��� , � �	�
� ,

� � ��

(classes:

� � �� � ��� and

� � �� � �)

��� � � is only dates, no times, � ��
� is a bit old,

� � ��

classes
are comprehensive but complicated

Tasks
read dates and times in different formats: � �� � � � �,

� �� � � �� �� �, � �� � � �� � � �, � � � � � �
	 �

print dates and times in different formats:

� �� 	 � �� � � � �,

� � � � � �
	 �

operate on dates and times: normal functions such as

	 � �	 � � � � � � , plus

� � � � � �
	 �

R – p.145/196

Dates and Times

Origin��� � �� days since January 1, 1970

� ��
� � days since January 1, 1970, fractions of days give
times within days� � �� �� number of seconds since the beginning of 1970 in
the GMT timezone (includes 22 leap seconds, see the
object �

� � � �� � �� �	 � �)

��� � � has no times, � �	�
� has times and dates, no timezones,� � �� � has times, dates and timezones

Suggestion: use the simplest possible class which supports
your needs

Time zones are very tricky

R – p.146/196

Dates and Times

To read a date, use � �� � � � � � � �� � �� �	 � � �� � � �� �� �, with
optional format

Formats are provided by

� �� 	 � �, and for

� � �� � � by

� � � � � �
	 �: see

� � � � � � �
	 � for these

Check what has been read in using � 	 � � � � � and

� �� � � �� �� � � �

� � �� � is a super class containing
� � �� � � and

� � �� � �

� � �� � � is a number of seconds

� � �� � � is the number of seconds broken down into a list of 9
items: year, month, day of the month, hour, minute, second
and a daylight saving flag

R – p.147/196

Miscellanea

R – p.148/196

Scope

A major difference between S-PLUS and R

Symbols in the body of a function are:
formal parameters: occurring in the argument list, values
determined by binding actual function arguments to formal
parameters
local variables: values determined from expressions in the
function body
other variables called free variables: become local if
values are assigned to them

� � � � � � � � �	� �
�� �

� � � �� �

�� � � �
��

�� � � �
 �

�� � � �
��

�
	 is a formal parameter, � a local variable, � a free variable

R – p.149/196

Scope

In R the free variable bindings are resolved by looking in the
environment in which the function was created: called lexical
scope

Consider a function � � � �

� � ��� � � � � � � � �	� �
 � �

� � � � � � � � � �	� �
 �� �

�� � �

�

Then � � � � � � �

in R gives the answer 8.

Useful for maximum likelihood determination using � � � �
	 � �

or

	 �	 � �

(see later).

R – p.150/196

Customizing the Environment

R can be invoked with a number of options: the following
assumes that it is started with just the defaults

For details, check the manual An Introduction to R

�� � �� � ��� � �	
 � � ��
 �� � � �	 �
 ��
 	 � � ��� � ��� � 	 � �� � �� � � 	 � � �
 � � �

or use

� � � � � � � �� � � � �

Note that this area has changed recently and there may be
differences between versions of R

There are also differences between operating systems

Customisation is possible at the site level, the user level, and
the directory level

Note that R is installed as a directory tree at a particular
location in the file system which is referred to as

� � ��

and
may be pointed to by the environment variable

� � � ��

R – p.151/196

http://cran.stat.auckland.ac.nz/doc/manuals/R-intro.pdf

Customizing the Environment

The startup routine is basically as follows:
The site file is read—either as pointed to by

� � � � � � �

or
at

�
�

� �� � � � � � � � �	 � � � �	 � � � � �

The site-wide startup profile is read—either as pointed to
by

� � � � �� �

or at

�
�

� �� � � � � � � � �� � � � � �� � � � �

R searches for �
� �� � � � � � in the current directory or in the

user’s home directory (in that order) and sources it
It loads a saved image from �

� 	 � � � if there is one
It executes a �

� � � � � function if there is one. This function
can be specified in the startup profiles, or in �

� 	 � � �

R – p.152/196

Installing Packages

Details regarding installation are given in the manual R
Installation and Administration

�� � �� � ��� � �	
 � � ��
 �� � � �	 �
 ��
 	 � � ��� � ��� � 	 � �� � �� � � �� � 	
 � � �

Note that this area has changed recently and there may be
differences between versions of R

There are also differences between operating systems

Packages are installed in libraries

R comes with a single library
�

�
� �� � � � � �� �� � which contains

the standard and recommended packages

The location of the main library is given in the character string

�
� � �� �� �

� � � � ��� �� �

�� � 	
 � � �
� � � ��
� � �
�
� � ��� �� � 	

R – p.153/196

http://cran.stat.auckland.ac.nz/doc/manuals/R-admin.pdf

Installing Packages

First of all you must create a directory where packages will be
installed: suppose it is called

�� � ��

Then you must set the environment variable
� � � ��

to point to
that directory: In

�� � �

use

� 	 � �� � �
�

� � � �� � � � � �

Include this in your �
� � � �� � so that your

� � � ��

will be
automatically set when you start a shell

Now start up R. To install the package � �� � � � , use

� � � � �� � � � � � � �� � �
 	 � � � �� � 		� � � �� �
 	� � � ��
 � � � � � � � � � � � � � �� � � � � � � �� 	

Note that this will install from the Statistics Department’s local
CRAN mirror site so will not incur any costs for internet use

From 2.5.0, R can have a site-specific libraries and user
libraries

R – p.154/196

Mathematical Annotation

Pass an expression rather than a character string to � � 	 �,

� � � 	 �, � 	 � �, or � � � � �

Will give Greek and other symbols, super and subscripts

Like a poor man’s TEX

In an expression

� ��� � � ,

� � �� etc. will give the corresponding Greek letter
Superscripts obtained using ˆ
Subscripts obtained using square brackets

��

See the � � � � � � � �

function

R – p.155/196

Probability Distributions

For many distributions there are functions to calculate the
density function, cumulative distribution function, quantile
function, and to generate random observations

The function name is comprised of the abbreviated distribution
name and a prefix

The prefixes are

��
�

�
�

�
� and �

For example for the Poisson we have

� � � � �
�

� � � � �
�

� � � � �
�

and � � � � �
R – p.156/196

Optimisation

This is a common task: e.g. for maximum likelihood

Two functions � � � � � ��

and 	 � � ��

� � � � � ��

has a number of optimisation methods, can use
derivatives if available

R – p.157/196

An Extended Example:
the Weibull Distribution

R – p.158/196

Weibull example from Devore (2000)

Let

������ � � � ��� be a random sample from a Weibull pdf

� 	�
� � � � �

���
 ��� ��� � ��� � � � �
 � �

�

otherwise

Writing the likelihood and ln(likelihood), then setting both	� � �!" # 	 � �$ � �

and

	� � � �!" # 	 � �$ � �
yields the equations

 �

 �&%" # 	�
 % �

 �'%

(
" # 	�
 % �

)

� �

� �

 �&%
)

� � �

These two equations cannot be solved explicitly to give general
formulas for the mle’s

* and

*�

. Instead, for each sample
 � �� � � �
 � ,
the equations must be solved using an iterative numerical
procedure.

R – p.159/196

Weibull example in R

Regard the problem of calculating MLEs as an optimization
problem. Usually it is easier to optimize the log-likelihood
rather than the likelihood itself. The parameter values that
optimize the log-likelihood are also the MLEs.

Probability density functions (probability functions for discrete
distributions) have names starting with d — dnorm, dbinom,
dunif, dweibull.

All density functions take an optional argument log which,
when TRUE causes evaluation of the log-density.

The recipe becomes:
Regard the parameters as the variables and sum the
log density for your distribution using your data.

R – p.160/196

An R session on the Weibull example

� � � ��� �� � �� �� �� � 	

� � � � ��� �� �� � � �
 � � �� �� � �� � � � �

� � � � �� �� �� � � �
 � �� � � ��� � �� � � � � � � � �� �

� � � � � � � � � � � � � � � � � � � � � � � � �! �"

# ! � � � � � � �" � � � $% $ 	 � &� % 	 � & $ � � �

� � ' � � � �� � �! � � � � � � ��� (� � � � �� � � � � � � �)� � � * ,+ � � � ! � * � � �

� � � � � � � �� ! � �� � ! �� � � �� � � �) � � � � � � � � � � � � � � � � �

� � � � �- . � � � �! ! �� � � �� � � � # ! � � � � � � �+ �)� � � * ,+ � � � ! � * � � �+ ! � (* / '0 1

2 3 4 % � � � &5 	 	

� � 6 � � � � �87 � � � �� � �� � � � �� � � ��� � � �87 � � � � � � � � (� � �� � ! � (4 ! �9 � ! �) � �-

� ! ! � �� � : 4 � �� � � � �� ��
 ; � �� � � � � � � � � � �� � � � ��

< 4 � � � �- . � � � �! ! ��� �� �� � � � # ! � � � � � � �+ �)� � � *� 2 3
+ � � � ! � *� 2 $ 3 + ! � (* / '0 1

< =
� �! � : 4 � ! � � ! ! � �� �+ � � �)� � � * ,+ � � � ! � * � � �

+) � � � � � � * / '0 1

R – p.161/196

Results of the Weibull example

� � � � � �! �
 � � � � � � � �� � � � �) � � � � �� � �- � � ! � �

� � � � � � 5

� ��� � � � � " � � � & & �

# � � � � �� � � " � � � 2 " $ 3 $ � 	 $ % � � ��

# (� � - � �� � " � � � 2 " $ 3 4 � 	 � � 4 � 	 $ � �% � 4 �%

#) � � � � � � " � � � 2 " $+ " $ 3 � � & 	 � < � � 4 � � $ � � 4 � � 4 � � $ � � 4 � � $ � &% � 4 � 	

� �- � " ��� �

� � � � � � � �� �" ��� � $ �

� � � ! � � � �! � #) � � � � � �
 � � � � � �� � �� � � � � � � � � � � 4 � �� � � � � � � � �� � � ��

2
+ 3 2
+ $ 3

2 +
3 � � $ � 	 � 5 � $ �� � � 5 � $ $

2 $+
3 � � � � 5 � $ $ � � � �% � 	 � % � �%

We see that the maximum of the log-likelihood is (� �� �

, achieved
at

* � �� ��

and

*� � � �� �� � 	
. The approximate standard errors of

the estimates are

�� � 	 	 � �� � �� �

and

� � ��
 � � �� ��� � �

. We
can use the standard errors to determine a grid of

	 � � �

values for
contouring the log-likelihood function.

R – p.162/196

Plotting the density at the estimates

� � ! � � � � �� � � � �� ��
 - . � � � �! ! ��� + �)� � � * $ � 	+ � � � ! � * $% � � ��

+ �+ � � � �+

< � � ! * � � �- � + � ! � � * � ! � � � � � � � �)�
 � + �! � � * � - �� � � � � � +

< �� ��� * � � � � � �! ! - �� � � � � � � ��� (� � 1 � � � � � �) � ! � � � � � � � - � � � �

� � � (�� �� �� � � � # ! � � � � � � �+ � � ! * � �! � � �

0 500 1000 1500 2000 2500 3000

0
 e

+
00

2
 e

−
04

4
 e

−
04

6
 e

−
04

Weibull density using MLEs from the lifetime data

lifetime (hr)

de
ns

ity

R – p.163/196

Contouring the log-likelihood function

� (� �- : 4 �� � � �� � � � �+ � � � . * � ,+ � � � ! * �

� � �� � ! � : 4 � �� � � � 	+ � � 	+ ! �� * �
 � � � � ! � � � � � � � � � �

� �)� � ! � : 4 � �� � 	 � �+ $ 	 � �+ ! �� * �
 � �)� � � � � � � � � � � �

� � �� � � � � � �� � � ! �� (* � �� � ! �

 ;

< � �� �� ��� � �� � � ! �� (* �)� � ! �

 ;

< (� �- 2 �+ � 3 : 4 ! ! � �� � � � � � �� � ! � 2 � 3 + �)� � ! � 2� 3

< =

< =
� � �� � � �� � � �� � ! �+ �)� � ! �+ (� �- + ! �� � ! � * & &" % 	

� � � ��� � � � �! � # � � � � �� � � 2 3
+ �! � # � � � � �� � � 2 $ 3 + � �) * � < � + � �� * � 	

� � � � ! � �� ! � � * �� � � � � � � �� � � ! �)�

+ �! � � * �� � � � � � � �� � � � � �

� � 6 � � � � ! �� � ! � � � ! � �! � � �- � � � � �) � �) � 4 �� �� � � - � � � � � � � � � ��

� � �� � � �� � � �� � ! �+ �)� � ! �+ (� �- +

< ! �� � ! � * �! � # � ��� < � �) � �� � � � � � 	+ � � % + � � �+ � � � 	+ � � � �

+ $

+

< ! � � � ! � * � � � � � � � � 	 �+ % �+ � �+ � 	+ � �

+ � � � + � � � * � �

R – p.164/196

Log-likelihood contours - Weibull

0.5 1.0 1.5 2.0 2.5 3.0 3.5

50
0

10
00

15
00

20
00

25
00

+

α

β

0.5 1.0 1.5 2.0 2.5 3.0 3.5

50
0

10
00

15
00

20
00

25
00

α

β

R – p.165/196

Lessons from the Weibull example

The likelihood function is the same as the probability density
but with the parameters varying and the data fixed.

For a random sample, the log-likelihood is

� � � �- :- � � � � � � � � � :- � � � �+ � � � + � � � $+ � � � + ! � (* / '0 1

We minimize the negative of the log-likelihood

! ! � �� � : 4 � �� � � � �� ��

4 � � � �- :- � � � � � � � � � :- � � � �+ � � � * � 2 3
+ � � � + ! � (* / '0 1

�! � : 4 � ! � � ! ! � �� �+ : � � � � � ��� (� � � � �� � � � �+) � � � � � � * / '0 1

The inverse of the hessian provides an estimate of the
variance-covariance matrix.

For two-parameter models we can evaluate a grid of
log-likelihood values and get contours.

Standard errors from the inverse hessian are not always
realistic indications of the variability in the parameter
estimates. R – p.166/196

S Graphics

R – p.167/196

Ross Ihaka on Graphics

Ross has a set of slides on graphics which I will use at this point

R – p.168/196

Trellis Graphics with lattice

R – p.169/196

Trellis Graphics

A new form of graphical display used especially for grouped
data

Trellis displays are plots with one or more panel arranged on a
regular grid-like structure

Panels are the same type of graph for a subset of the data

Subsets are chosen by conditioning on continuous or discrete
variables in the data

This account draws very heavily on A Tour of Trellis Graphics
by Richard A. Becker, William S. Cleveland, and Ming-Jen
Shyu, and includes verbatim quoting from that document.

Cleveland is probably the driving force behind Trellis Graphics

In R Trellis Graphics are implemented using the package

� � � � � �� , which in turn is based on �� � �

, a new graphical engine.

R – p.170/196

Trellis Graphics Example

Example showing the latitude and longitude at different depths
for earthquakes near Fiji. See

� �� � ��� �.

long

la
t

170 175 180 185

−35

−30

−25

−20

−15

Depth Depth

170 175 180 185

Depth Depth

Depth

170 175 180 185

Depth Depth

170 175 180 185

−35

−30

−25

−20

−15

Depth

R – p.171/196

Trellis Graphics

Graphics is a strong point of R and the S language

Standard graphics consist of high-level plotting functions
(

��� � � � � ��� 	
 � �� � � � � � � �

and low-level functions to augment
existing plots

�
� � �� � � �� � � � �� ��
� � �� � � � �)

It is possible to produce multiple plots using � �� � �� � ��� � �

and

� �� � � �

A coordinated set of plots with control over aspect ratios and
axes is more difficult

Trellis provides a unifying framework for multipanel displays
based on conditioning

Also excellent for single panel displays

Executing a trellis expression produces a trellis object which is
usually displayed (unless assigned a name or used in further
calculations)

R – p.172/196

Example

A simple trellis plot can be produced as follows

� � � ! � � �� 6� � 1+ - � � � * � �)� � � !

The � � � � � � �

data set relates the production of nitrous oxide
(NOx) to the equivalence ratio (a measure of richness of the
fuel/air mixture)

First argument is a formula

A modification produces a number of similar plots conditional
on the compression ratio (

�

) which has 5 values

� � � ! � � �� 6� � 1 �� + - � � � * � �)� � � !

We can change the layout of the panels

� � � ! � � �� 6� � 1 �� + - � � � * � �)� � � ! + ! � � � � � * � � $+ �+

produces 2 columns and 3 rows on 1 page

R – p.173/196

Example

If we try and condition on a variable which takes a lot of values
we get a lot of very small uninformative graphs

We can condition instead on intervals from the range of a
variable

� �� � ��
�

� � � � � constructs shingles from the data with a
specified number of intervals, and a specified overlap between
successive intervals

1 1 : 4 �� � � ! � � � �� � � � �)� � � ! # 1+ � � � � � � * �+ �� � � ! � � * � �

We can then plot against

� �

� � � ! � � �� 6� � � � 1 1+ - � � � * � �)� � � ! + � � � � � � * $

� � � � � � allows restriction of the plots to part of the data

� � � ! � � �� 6� � � � 1 1+ - � � � * � �)� � � ! + � � � � � � *� � %

R – p.174/196

Example

� �� � � � data gives yield of barley for 6 sites for 2 years

- � � � ! � � � � � � � � � � � � � � ! - � � � � � � � � � �+

- � � � * � � � ! � �+

� ! � � * � � � � ! � � � � � ! - � � � �) � ! � � � � � �
 �

R – p.175/196

Panel Functions

For standard graphs, panel functions are provided:

� �� � ��
�

� � � � � �� � �� � �
�

�� � � � � ��� � �� � ��
�

	
 � � � �� ��
Panels can also be constructed specially, for example by
combining two panels

For example, here is a plot which has a loess smooth added

� � � ! � � �� 6� � 1 �� + - � � � * � �)� � � ! +

� � � � ! * � �� � � � �� �� + �

� � � � ! � � � � ! � � �� + �

� � � � ! � ! � � � � ��� + �

R – p.176/196

Practicalities

In a

� � � loop, printing is suppressed to avoid excessive output,
explicit ��
� � or � � � statements must be used

Likewise in a

� � � loop trellis plots are not produced unless an
explicit ��
� � command is used

The colors for trellis plots have been optimised for screen
display

If you intend to include a trellis plot in a printed document it is
recommended that other colours be used

The usual way to do this is via

� � � ! ! � � � � � � � � � � � �) � � � * � � ! � .) � � � � (�

This is an example of setting parameters for trellis plots which
differs from ordinary graphics

See

� �� � � �
 �
�

� ��
�

� � � or

� �� � � �
 �
�

� ��
�

�� �

R – p.177/196

Sweave

R – p.178/196

Sweave

Traditionally, to produce a report of a statistical analysis would
require the following steps:

Analyse the data, obtaining summaries, tables, graphs etc
Write the report in LATEX copying the numeric results into
the document, and using

�
� � � � �� �� � � 	
� � to incorporate
the graphs or figures

This process might be made easier by using � � � � � � to format
tabular output to make it suitable for LATEX

Sweave enables reports to be prepared using a single
document which contains the R code to carry out the analysis,
and the LATEX formatting to produce the report

R – p.179/196

Sweave

The source file containing the R code and LATEX formatting is
run through R first which results in all the data analysis output
being including in the resulting LATEX file

This file is then processed by LATEX or pdfLATEX in the usual
manner to produce the final formatted report

There are many advantages:
The report can be readily updated, if for example new data
is obtained
Regular reports can be easily run each month say, just by
supplying new dates and new data
Research is readily reproducible with all the material
required in a single file
The tedious and error-prone procedure of transferring
output from R into a LATEX document is avoided

R – p.180/196

Sweave

Sweave source files are noweb files with some additional
syntax to allow control over the final output

The usual extension for them is �

�� �

Nonweb is a programming tool which allows program source
code and documentation to be included in a single file

Noweb files consist of segments of code and of
documentation called chunks

Different programs are used to extract the code (“tangle”) or
typeset documentation together with the code (“weave”)

� �
� � �

� ��� at the start of a line marks the start of a code chunk

�

at the start of a line marks the start of a documentation
chunk

R – p.181/196

Sweave

In the noweb syntax shown above, options can be included in
the angled brackets to either show or not show the code, and
to show or not show the results

By default both code and results are shown

To hide the code, use � � 	� � � � � � � , to hide results, use

� � � � � � � � 	
 ��

Then both are hidden using

� � � � 	� � � � � � � � � � � � � � � � 	
 �� � �
To include an S object in the text (as opposed to in displayed
text), use

� � � �� � �

R – p.182/196

Sweave

As an alternative to the noweb sysntax described above for
chunks of code, LATEX syntax can be used

Here is an example from the article by Friedrich Leisch who is
responsible for Sweave

� � � �
 � � �� � �� � � � � 	� � � � � � � � � � � � � � � � 	
 �� �

�
 �� �� � � � � � �
� � �

�
 �� �� � � � � � � � � �

� � � � � � � � �� � �� � � �� � � � � � � � �

� � � � � �� � �� �

XEmacs provides support for �
�� � files: most importantly, to

include a code chunk, use M-n i

R – p.183/196

Processing Sweave Documents

In R use

� � ��� �� � �	�

 ���

��� � �� � �� � � � �� � � � � ��� ��� � �

Run LATEX on the resulting document

It is possible to use a Makefile also which processes the
document as a batch job submitted to R and then runs LATEX

� � � �� �� � �� �� �� ! �
� ��� �

�" #
 � � � ��� �� � �	�

 ��� %$ ��� � �� � �& � � �� �� �� ! �
� ��� � & � � '

� ((�
 (� �� � ((�
 (� � � �
 � � ((� � �� �

� �� �) � �� �� �� ! �

* � �,+ � (
 � �� �� �� ! �
� + � � �� �� �� ! �
� * � �

+ � -+ * � � �� �� �� ! �
� + � � �� �� �� ! �
� + * �

Note that the line beginning with � � 	� should not be broken
after the pipe symbol in the actual file

R – p.184/196

Writing R Functions and Packages

R – p.185/196

Package Structure

Packages provide a set of functions along with documentation
which can extend the capability of R.

Typically the functions provided form a coherent set of
procedures: for example

��� � � � � � � � � � ��� � provides a set of
functions which dealt with the hyperbolic distribution

A package consists of a subdirectory containing a file called�	 � � � �
 ��
 � �

and the sub-directories

� � � � � � � � �� � � � �

� � � � � � � �
� � � � � � �� � � � �� � � � �� � � � �� � � � � � � � �

not all
of which need be present.

The subdirectory may also contain files

�
 � 	 �� � �

� � � � � � � � � � � � � � � � �
 � � � � � � � � � � �� � � �

and

� � ��
 � � �

Files like

� � � �	 � � � � � � �� � � � and

� � 	 �� �� �� � � are ignored by
R but are possibly useful to users

R – p.186/196

Files

Files

� � � � �
 � � � � �

and

� � � � �� � � �

are Bourne shell script files
executed before and after installation on Unix

� � ��
 � � �

contains a copy of the license to the package:
should be just a reference to copies elsewhere (in

� 	 �� � � �
� � � � � � �

)

The subdirectory name should be the same as the package
name

Names may not include

� �

and� � �

The function � �� � � ��
�

� � � � � � � � can be used to create the
structure for the new package

R – p.187/196

The

� � � �

File

This file should have the form

� �" � �� �� + � � � �� �

� � � � �
 � � �� 	 (

� �� �� - � �� (�
 (�

 �� � �� ! � � � � � � "
 � � �" � �
 �
 � ��� � " � �
 � �

 � � #
 � � �
 � � � � � �
+ � � � �
 ��� � � � � �
+ � � ��
 � ��� *
 � � � � � � �� ��� � �� #

"
 � � � � �� � �
 � � � �
 � � �� � � � � �� � � �� # � � � � � � � � � �� ��

! � � � � � � � � � � �
 � � � � � �
+ � � � �
 ��� � � � � �
+ � � ��
 � ��� *
 � � � � � � �� �

� �+ � � *� � � � ���
 � �� �
� � � � �

�� � � � � � � � ! � �

� � � " � �,+ � �
 � � � #
 � � �
 � � + �� �� � �+ # * � � " � �,+ � �
 �
 � � # ��

� # � + �" � �� � *
 � � �� * � # � �� � � � � � � � � ��� ��

� � " � � � �� � �� � � � � �
 � -
 � � � � � �

� �� � #� � + � � � � � � � � (+ �
 � �" � �
 � � � #� � + � � � � � � � ��
� # � � � � � �

R – p.188/196

Package Subdirectories

The

�

subdirectory contains R code in one or more files
preferably with the extension �

�

It should be possible to read in the files using � � � � � � � �

so R
objects should be created by assignments

The � �� subdirectory should contain documentation files for
the objects in the package in R documentation (Rd) format

File names must start with a letter and have the extension �

� �

C, C++, and FORTRAN code goes in the

� �� � �

directory

Source code is compiled and linked using

� � �� when

� � �	
 � � � � � �

is run

R – p.189/196

Package Subdirectories

The

� � � � � � subdirectory is for data files which can be loaded
using

� � � � � �

Data files can be plain R code (with extension �

�
), tables (with

extension

�
�

� � � � � �
�

� � � � � or � � ��), or � �� � � �
images (with

extension

�
�

� � � � � � or

�
�

� � � �)

The

� �� � � �

subdirectory is for R scripts, and needs a� � �
 � �� � �

file with one line for each demo, giving its name
and description

Subdirectory

� � � � � � �

is for test code

R – p.190/196

Checking Packages

� � �	 � 	� � �

is the package checker. It checks such things as
missing cross references and duplicate aliases in help files
valid filenames (for all operating systems)
valid syntax in R files
correct syntax and meta data in Rd files
no missing documentation entries

Also various code is exercised
examples in documentation are run
tests are run
if a working LATEXis present, a

�
�

��
 �

version of the
package’s manual is created

R – p.191/196

Building Packages

� � �	 � �
 � �

builds a package from its sources

The package is created in gzipped tar format

Some checks and cleanups are performed

R – p.192/196

Name Spaces

This is a mechanism to prevent interference of two packages
which happen to use objects of the same name

Specifies which variables in the package are to be exported to
make them available to package users, and which are to
imported from other packages

Implemented by placing a

� � � � � � � � � � �
file in the top level

package directory

� � � � � � � � � � �

file contains name space directives

Packages with name spaces are loaded and attached to the
search path by calling

�
 �� �� � but only the exported variables
are placed in the attached frame

R – p.193/196

Name Spaces

The � � �� � � directive is of the form

� � �� � � � � � � �

where

�

and � are variables to be exported

A regular expression can be used with � � �� � � � � � � � � �

Imports are specified with

 � � � � �:
 � �� � � � � � � � � �� �

which imports all variables from packages

� � � and

� ��

 � �� � � �� � � imports from a named package:
 � �� � � �� � � � � � � � � � � �

The usual method of fully specifying a variable can also be
used, as

� � � � � �

but this is inefficient and not recommended

To use S3 method dispatch, methods should be registered:

�� � � � 	� � � ��
� �� � � � �

ensures that ��
� �
�

� � � will be used as a ��
� � method for
class

� � �

R – p.194/196

S4 Classes and Methods

R – p.195/196

S4 Classes and Methods

I will use the slides of Yong Wang for this topic

R – p.196/196

	Outline
	Outline (continued)
	Outline (continued)
	Resources
	Introduction: The S Language
	The slan {} Language
	History
	S Version 1
	S Version 2
	S Version 3
	S Version 4
	The ACM Software Systems Award
	S Implementations
	RR {}
	Basic S Concepts
	Basic slan {} Concepts
	Using slan {} as a Calculator
	Grouping and Evaluation
	Built-in Functions
	Assignment
	Using Variables
	Special Values
	Special Values
	Practicalities
	Help
	Commands
	Commands
	Running RR {}
	XEmacs and ESS
	Workspace, History, Batch Mode
	Data Structures
	Data Structures
	Objects
	Objects
	Factors
	Lists
	Data Frames
	Data Frames
	Vectors
	Vectors
	Properties of Vectors
	Simple Subsetting
	Vector Subsets
	Logical Subsetting
	Modifying Subsets
	Patterned Sequences
	Patterned Sequences Using 	exttt {:}
	Patterned Sequences Using 	exttt {seq}
	Patterned Sequences Using 	exttt {rep}
	Arithmetic on Vectors
	Recycling Rule Example
	Summary Operations on Vectors
	Examples
	Cumulative Summaries
	Statistical Summaries
	Sample Quantiles
	Character Strings
	Type Coercion
	Naming Vector Elements
	Names and Subsetting
	Matrices
	Matrices
	Row-Major Order
	Dimensioning Information
	Diagonal Matrices
	Special Matrix Forms
	Matrix Arithmetic
	Other Matrix Operations
	Solving Linear Equations
	Matrix Inversion
	Regression
	Regression in slan {}
	Matrix Decompositions
	Subsetting
	Subsetting Shorthands
	Row and Column Indices
	Example: Zeroing A Lower Triangle
	Row and Column Labeling
	Labeling The Labels
	Multiway Arrays
	Multiway Arrays
	Multiway Arrays
	Text Handling in RR {}
	Printing
	Control Of Printing
	Examples Using 	exttt {print}
	The 	exttt {cat} function
	Examples Using 	exttt {cat}
	Vector Arguments to 	exttt {cat}
	Rounding
	Formatting
	The 	exttt {paste} Function
	protect LaTeX {} Tables
	Source Code
	Generalisations
	Text Processing
	Substring Examples
	Substring Replacement
	Splitting Strings
	Pattern Matching
	Pattern Substitution
	Importing and Exporting Data
	Exporting Data to Text Files
	Reading Data from Text Files
	Reading Data from Text Files
	Importing Data
	Connections
	Excel Spreadsheets
	Data
	Programming in slan {}
	Programming Concepts
	Programming Concepts
	Algorithms
	Representing Algorithms
	Pseudocode
	Flow of Control
	Flow of Control
	Flow of Control
	Compound Expressions
		exttt {if, else}
	Example of 	exttt {if, else}
	Example of 	exttt {if, else}
	Example of 	exttt {if, else}
	Example of 	exttt {if, else}
		exttt {ifelse}
	Relations and Operators
	Relations and Operators
		exttt {for}
	Example of Use of 	exttt {for}
	Example of Use of 	exttt {for}
		exttt {while}
	Example of Use of 	exttt {while}
	Example of Use of 	exttt {while}
	Functions
	Vectorisation
	General Functions
	Example
	Optional Arguments
	Example
	Argument Matching
	The Argument Matching Process
	Argument Matching Example
	Dates and Times
	Dates and Times
	Dates and Times
	Dates and Times
	Miscellanea
	Scope
	Scope
	Customizing the Environment
	Customizing the Environment
	Installing Packages
	Installing Packages
	Mathematical Annotation
	Probability Distributions
	Optimisation
	An Extended Example:\ the Weibull Distribution
	Weibull example from Devore (2000)
	Weibull example in R
	An R session on the Weibull example
	Results of the Weibull example
	Plotting the density at the estimates
	Contouring the log-likelihood function
	Log-likelihood contours - Weibull
	Lessons from the Weibull example
	slan {} Graphics
	Ross Ihaka on Graphics
	Trellis Graphics with lattice
	Trellis Graphics
	Trellis Graphics Example
	Trellis Graphics
	Example
	Example
	Example
	Panel Functions
	Practicalities
	Sweave
	Sweave
	Sweave
	Sweave
	Sweave
	Sweave
	Processing Sweave Documents
	Writing R Functions and Packages
	Package Structure
	Files
	The 	exttt {DESCRIPTION} File
	Package Subdirectories
	Package Subdirectories
	Checking Packages
	Building Packages
	Name Spaces
	Name Spaces
	S4 Classes and Methods
	S4 Classes and Methods

