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ABSTRACT 
 
Results of analysis of responses to a first-year undergraduate engineering activity are 
presented. Teams of students were asked to develop a procedure for quantifying the 
roughness of a surface at the nanoscale, which is typical of problems in Materials 
Engineering where qualities of a material need to be quantified. Thirty-five teams 
were selected from a large engineering course for analysis of their responses. The 
results indicate that engagement in the task naturally led teams to design a sampling 
plan, use or design measures of center and variability, and integrate those measures 
into a model to solve the stated problem. Team responses revealed misunderstandings 
that students have about measures of center and variability. Implications for 
instruction and future research are discussed. 
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1. INTRODUCTION 
 
Within statistics education, there is a growing interest in understanding students’ 

interpretations of variability and sampling given the relative lack of research in either 
area (Shaughnessy, 2007). The task examined in this paper elicited students’ knowledge 
of these concepts within a small-group problem solving task completed by teams of first-
year engineering students. In the Nanoroughness Task, teams of students designed a 
procedure for quantifying the roughness of a material surface using digital images 
generated by atomic force microscopy. The procedure required students to apply 
statistical methods in order to aggregate the data. The focus of this article is the 
subsequent analysis of the student responses to the task and the questions raised by that 
analysis.  

The Nanoroughness Task is interesting as a statistical modeling task for two reasons. 
First, the students needed to use statistical measures to develop a measure that would 
describe a qualitative characteristic (roughness) without any prompting as to what 
statistical procedures were relevant. There are different ways to conceptualize roughness 
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of a surface. Sandpaper’s roughness depends on the grain size of the sand. A road may be 
rough if it has randomly occurring large holes but smoother if the bumps are evenly 
distributed. The challenge in developing quantitative measures to define qualitative 
characteristics is that different quantitative analyses emphasize different variables and the 
students needed to both analyze and apply statistical procedures relevant to the context. 
For instance, determining which member of a set is the “most rough” or the “least rough” 
will depend on what measurements were selected, and how those measures were 
analyzed. The second relevant characteristic of the task is that the students also needed to 
define a sampling procedure for an image that would facilitate quantifying the variability 
in the surface portrayed in the digital image. Usually when students need to take 
measurements of a population, the population is a discrete set of objects. In this case, the 
data set was a continuous surface. From the data set, the students need to determine the 
relevant population (e.g., every point on the surface, every peak on the surface, all peaks 
and valleys). Such continuous populations are not unique to engineering and the sciences 
and occur in a variety of contexts where characteristics need to be measured and 
operationally defined.  

The task was implemented in a first-year engineering course that served as an 
introduction to basic tools of engineering with an emphasis on MatLab® and Excel® as 
technological tools. The Nanoroughness Task was used in the course to introduce 
students to the real work of engineers who must not only calculate statistics but also 
analyze and interpret the results. Our research asked a two-part question. First, what is the 
quality of student responses to the Nanoroughness Task? To answer this we looked at the 
viability of the model they had created and how well they had explained their procedure 
for comparing the roughness of images. Second, what statistical models were elicited by 
the task? We specifically looked at the sampling methods students used and then how the 
students analyzed the data set they had created. In this paper, we describe the quantitative 
and qualitative analyses we completed of a sample of student responses. 

 
2. LITERATURE REVIEW 

 
2.1.  MEASURES OF VARIANCE AND DATA SAMPLING 

 
The relevant literature related to students’ understanding of data analysis falls into 

two broad categories: measures of variance or distribution and data sampling. Watson, 
Kelly, Callingham, and Shaughnessy (2003) defined variation as “the underlying change 
from expectation that occurs when measurements are made or events occur” (p. 1). 
“Roughness,” almost by definition, is physical variation in a surface. For measures of 
central tendency and distribution, students need to calculate numerical values to describe 
characteristics of a population or sample. In this case, the population is an image 
representing a surface. Students need to determine which numerical summaries to select 
in order to describe characteristics of the surface and compare different surfaces to each 
other.  

Some studies have looked at how students use the mean as a statistical measure. 
Pollatsek and colleagues (Konold, Pollatsek, Well, & Gagnon, 1997; Pollatsek, Lima, & 
Well, 1981; Well, Pollatsek, & Boyce, 1990) have examined students’ understanding of 
the mean as a measure of central tendency. Their studies confirm that undergraduate 
students can compute the mean, but they don’t necessarily know how to interpret what it 
indicates about a data set. In a study of pre-service elementary teachers’ understanding of 
the mean, median, and mode, Groth (2005) found the students often had algorithmic 
conceptions of the terms and limited understanding about when to apply the statistical 
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measures (i.e., how to select appropriate measures of central tendency). In the case of 
Nanoroughness, the mean was one option among many from which students could choose 
to describe the data set, and other measures of central tendency (e.g., median, mode) 
could be computed with different results. The students also could incorporate a measure 
of variability into their procedure (e.g., standard deviation, range) as a measure of 
roughness. 

Often statistics tasks presented to students require them to analyze numerical data sets 
where the values are given or where they can take physical measurements. In this case, 
the students needed to determine what to measure given an image that represented the 
universe of the data set. Konold and Pollatsek (2002) have described this as a process of 
separating signal from noise where students need to determine what to attend to in a data 
set and then determine critical variables. In another study of students completing similar 
modeling tasks, the sample set was clearly defined and students needed only to determine 
whether extreme values needed to be eliminated (Hjalmarson, 2007). In order to define a 
sample set in the case of a continuous surface, students need to determine what and where 
to measure.  

Very little research had been conducted on students’ understanding of variability 
prior to 1999 (Reading & Shaughnessy, 2004; Shaughnessy, 1997), despite the central 
role the concept plays in statistics (Hoerl & Snee, 2001; Moore, 1990; Snee, 1990) and an 
apparent conceptual gap in students’ understanding of variability (Reading & 
Shaughnessy; Shaughnessy). A few investigations have been conducted into students’ 
understanding of sampling variability and instructional approaches that affect this 
understanding. Reading and Shaughnessy presented evidence of different levels of 
sophistication in elementary and secondary students’ reasoning about sample variation. 
Meletiou-Mavrotheris and Lee (2002) found that an instructional design that emphasized 
statistical variation and statistical process produced a better understanding of the standard 
deviation, among other concepts, in a group of undergraduates. Students in the study saw 
the standard deviation as a measure of spread that represented a type of average deviation 
from the mean. In comparison to findings from earlier studies (e.g., Shaughnessy, 
Watson, Moritz, & Reading, 1999), they were also better at taking both center and spread 
into account when reasoning about sampling variation. 

Shaughnessy (1997; Reading & Shaughnessy, 2004) noted that the standard deviation 
is both computationally complex and difficult to motivate as a measure of variability. Part 
of this difficulty may stem from a lack of accessible models and metaphors for students’ 
conceptions of the standard deviation (Reading & Shaughnessy). Often, instruction on the 
standard deviation tends to emphasize teaching a formula, practice with performing 
calculations, and tying the standard deviation to the empirical rule of the normal 
distribution. This emphasis on calculations and procedures does not necessarily promote 
a conceptual understanding of standard deviation. Part of the difficulty may also stem 
from students’ misunderstanding of how variability can be represented graphically. For 
example, when presented with a histogram, some students judged the variability of the 
distribution on the basis of variation in the heights of bars, or the perceived “bumpiness” 
of the graph, rather than the relative density of the data around the mean (Garfield, 
delMas, & Chance, 1999). DelMas and Liu (2005) provided evidence that experience 
with a computer environment designed to promote students’ ability to coordinate 
characteristics of variation of values about the mean moved students from simple, one-
dimensional understandings of the standard deviation toward more mean-centered 
conceptualizations that coordinated the effects of frequency (density) and deviation from 
the mean.  
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Shaughnessy (2007) identified three types of reasoning about variability that can be 
addressed by statistics instruction: variability within data, variability between samples, 
and variability within sampling distributions. The current study highlights a problem 
context where students need to consider variability within data to produce a solution. A 
factor that may impede students’ understanding of variability in data is the lack of 
problems that naturally motivate the need to measure variability. Some examples are 
provided in the literature (e.g., Ballman, 1997; Konold & Kazak, 2008; Lehrer & 
Schauble, 2003), but these are few. Many studies have focused on students’ 
understanding of sampling variability and sampling distributions (e.g., Chance, delMas, 
& Garfield, 2004; delMas, Garfield, & Chance, 1999; Kelly & Watson, 2002; Reading & 
Shaughnessy, 2004; Rubin, Bruce, & Tenney, 1991; Shaughnessy et al., 1999; Torok & 
Watson, 2000) but not on variability within data, per se, and the contexts often do not 
depict real world problems. The study reported here illustrates a situation that naturally 
elicits the use of measures of variability within data and the design of a sampling method 
to solve a real world problem in an undergraduate engineering course.  
 
2.2. MODEL-ELICITING ACTIVITIES INCLUDING STATISTICAL ANALYSIS 

 
The Nanoroughness Task is an example of a model-eliciting activity (MEA). Such 

tasks are related to assessments such as those designed by the Balanced Assessment 
project (http://balancedassessment.concord.org/) which require students to develop 
procedures and elicit student thinking about complex constructs often by generating their 
own quantitative methods for describing qualitative characteristics (e.g., The Betweeness 
Tasks or the Curvy-ness Task). The design process used for the task has been described 
elsewhere (Hjalmarson, Diefes-Dux, & Moore, 2008; Moore & Diefes-Dux, 2004). For 
the purposes of this paper, we focus on the types of statistical models revealed in the 
students’ work. Model-eliciting activities require students to develop models or 
procedures in addition to producing answers (Lesh, Hoover, Hole, Kelly, & Post, 2000; 
Zawojewski, Hjalmarson, Bowman, & Lesh, 2008). For instance, in Nanoroughness, the 
students needed to define a procedure for defining roughness of a surface and then select 
the roughest sample by implementing the procedure. The central product for the task is 
the procedure and not just the computed values and subsequent ranking of samples by 
roughness. Requiring students to describe their procedure as the product of their problem 
solving process naturally elicits students’ thinking about the statistical concepts and 
makes misconceptions more evident. Hjalmarson (2007) and Doerr and English (2003) 
have described students’ thinking in other model-eliciting activities requiring data 
analysis. Moore (2008) examined teachers’ solutions to the Nanoroughness Task. A 
common feature of all of these tasks is that the task statement does not specifically ask 
students to use statistical analyses. However, common types of statistical measures are 
elicited by each task (e.g., students often select the mean to analyze a table of data).  

Assessment of students’ responses to model-eliciting activities has often first focused 
on describing the characteristics of students’ models (Carmona-Dominguez, 2004; 
Hjalmarson, 2007). As the models are a procedure including multiple considerations, the 
assessment of these models typically includes finding patterns or common themes in the 
models that can be sorted into types or categories (e.g., there are common methods 
students used for finding a sample from the image). In addition, students’ models emerge 
at different degrees of quality, typically because a model is incomplete. For instance, 
students may leave out critical information necessary for someone else to successfully 
implement their model. In the Nanoroughness Task, for example, students may have 
described the need for generating a sample data set, but not described how to generate a 
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sample (e.g., by finding random points on the surface, drawing random lines). The quality 
assurance guide described by Lesh and Clarke (2000) is one example of an assessment 
tool used to categorize students’ models by how well they meet the needs of the client 
and how well the procedure can be generalized to similar situations.  

 
3. METHOD AND MATERIALS 

 
3.1.  COURSE INFORMATION 

 
The student work analyzed for this study was drawn from a first-year engineering 

course in Fall 2003. A total of 1478 students were enrolled in a freshman engineering 
problem-solving and computer tools course at a large, public midwestern university. The 
students included 1203 males and 275 females. They were divided into laboratory 
sections of approximately 25 students per section in order to complete the Nanoroughness 
model-eliciting activity in class. The activity was their fourth and final model-eliciting 
activity during the semester. Within the laboratory sections, the students were divided by 
the graduate teaching assistant into long-term teams of three to four. We selected 
responses from 35 teams from 19 randomly selected sections of the course for this 
analysis. Responses were scored for quality by the research team after they were selected 
(the results of the scoring are in the data analysis section). This represents approximately 
10% of all available responses. Responses were not selected purposively (i.e., with no 
previous knowledge of their composition) except to have no more than 3 teams randomly 
selected from any one section of the course so that the responses would be independent of 
any particular teaching assistant or other instructor.  

 Students in the course were typically freshmen who were either enrolled in a first-
semester calculus course or had taken calculus in high school. Beyond the basic 
introduction to Excel (including how to calculate the mean and standard deviation), the 
students were not likely to have taken any statistics courses or have experience in 
statistics beyond what might be included in a typical middle and high school curriculum 
(e.g., an introduction to measures of center, graphing, standard deviation). Because the 
students were in an engineering program, we believe it was more likely they enrolled in 
Advanced Placement Calculus than Advanced Placement Statistics. As we will describe 
in more detail, the teams analyzed in our sample did not use formal measures or tools 
beyond what we would have expected (e.g., mean, standard deviation, histograms) given 
a typical high-school background in statistics. Hence, if they had been exposed to more 
complex measures of variation, they did not employ them in their responses here.  
 
3.2. NANOROUGHNESS LABORATORY ACTIVITY 

 
The Nanoroughness Laboratory Activity is broken into two distinct parts: an 

individual task and a team modeling task. The individual task consisted of the students 
reading a short description of the company that supposedly hired the team, and then 
answering questions designed to elicit their initial interpretations of roughness (Figure 1).  

 
How do you define roughness? 
What procedure might you use to measure the roughness of the pavement on a road? 
Give an example of something for which the degree of roughness matters. 
For your example, why does the degree of roughness matter? 
How might you measure the roughness (or lack of roughness) of this object? 

 
Figure 1. Individual thinking questions on concepts of roughness 
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Students posted in class their individual responses using an online format generated 
by the department. Once they had submitted the individual responses, the teaching 
assistant released the responses to the rest of the team members. The team then worked to 
compare and contrast the individual responses in order to negotiate team definitions for 
roughness. Once they came to common definitions, the teaching assistant provided the 
teams with the modeling task. Prior to working on the modeling task, the students were 
provided with a description of Atomic Force Microscopes (AFM) and procedures for 
taking digital images of materials at the molecular level and a sample of images 
generated with an AFM. The teams had about 1.5 hours to develop their procedure and 
write the memo to the client. As this was the students’ first draft of a procedure in the 
context, we expected some level of incompleteness in their procedure descriptions and 
that there would be aspects of the situation they might miss. However, the task did elicit 
students’ initial thinking about sampling and the application of statistical measures.  

The second part of the activity required student teams to create a procedure for 
measuring roughness at the nanoscale level given AFM images of gold. Here, the AFM 
images were like topographical maps with a height bar that represents the third 
dimension. Sample A (see Figure 2) represents one of the three different samples of gold 
with different scales that were provided to the teams to create their procedure for 
measuring roughness. The teams were asked to respond to the client in a memo that 
would allow the client to measure the roughness of any surface using an AFM image. The 
questions the teams responded to in their memos are in Figure 2. See Moore (2008) or 
Moore and Diefes-Dux (2004) for more information on the Nanoroughness Task. The 
sampling context used in this task is unusual in the sense that students are not generally  

 
Please reply in a memo with your answers to the following:  
The series of steps that can be used to measure roughness of the nanoscale material using the AFM 
images.  
A description of how the procedure would work by applying it to gold samples A, B, and C that 
are attached to this memo.  
A description of what information your team would need in order to improve your procedure to 
quantify the roughness of the gold. 

 
 

Figure 2. Nanoroughness task problem statement with example AFM image of gold 
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asked to generate a sampling method before defining measures to compute based on the 
sample. Additionally, the “individuals” in statistics tasks are often obviously discrete 
objects (e.g., people, trials) rather than continuous surfaces. 

 
4. DATA ANALYSIS AND RESULTS 

 
Data analysis focused on the students’ responses to the task shown in Figure 2. The 

team responses were coded in two stages: the assessment of team responses and the 
description of typical response characteristics. The coding for the assessment of team 
responses used the Quality Assurance Guide (Lesh & Clarke, 2000) described in the next 
subsection to assign a numeric score to each response. The Quality Assurance Guide has 
also been used in other studies including the analysis of student work (Carmona-
Dominguez, 2004; Chamberlin, 2002; Moore, 2006). In order to describe the 
characteristics of different solutions, a qualitative analysis was used to first develop 
descriptors based on the coders’ readings of the student work and then assign those 
descriptors to student work. This qualitative analysis resulted in descriptions of the types 
of student responses in terms of the types of statistical measures the students used and 
how those measures were implemented in the Nanoroughness Task.  

A team of three researchers assessed and categorized the student responses to the 
model-eliciting task. All three had worked with designing modeling tasks for this course. 
One was an interdisciplinary mathematics/engineering educator who had been the 
principal designer for the Nanoroughness sequence. One was a mathematics educator 
who led the task design group of engineering and education graduate students and 
faculty. She also had experience scoring tasks using the Quality Assurance Guide. The 
third was a materials engineering graduate student who had worked with the task design 
team. The research team intentionally combined a blend of experience from engineering, 
engineering education, and mathematics education in order to provide a variety of 
perspectives on the student responses. 

 
4.1. QUANTITATIVE ANALYSIS WITH THE QUALITY ASSURANCE GUIDE  

 
The Quality Assurance Guide (see Table 1) described in Lesh and Clarke (2000) was 

selected to quantitatively assess the responses. The levels are designed to categorize how 
well the students’ procedure fulfilled the needs of the client and how well they explained 
their procedure in a generalizable fashion. The range of responses goes from level 5, 
where the response met the needs of the client for the present situation and for other 
similar situations as well, to level 1, where the response was going in the wrong direction 
and the team would need to rethink the procedure completely. The levels in between 
include varying levels of detail and description. The number of responses in each level is 
shown in Table 1. Few of the responses were expected to receive a score of 5 on the 
Quality Assurance Guide due to the fact that it was the first iteration of the teams’ 
solutions and was turned in after students worked on the problem for 1.5 hours in a 
laboratory setting. However, the teams continued to work on this problem through 
follow-up activities that led to a project. The research team coded the responses by first 
individually reading and scoring a team’s procedure and then coming to consensus on a 
final rating. A student team sample (Figure 3) is provided to illustrate the use of the 
Quality Assurance Guide. 
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Table 1. Number of responses in the questionnaire 
 

Score  Performance level  How useful is the product?  
Number of 
responses 

1  Requires redirection  

The product is on the wrong track. 
Working longer or harder won’t work. The 
students may require some additional 
feedback from the teacher  

6 

2  
Requires major extensions or 
revisions  

The product is a good start toward meeting 
the client’s needs, but a lot more work is 
needed to respond to all of the issues.  

16 

3  Requires editing and revisions  
The product is on a good track to be used. 
It still needs modifications, additions or 
refinements.  

9 

4  

Useful for this specific data 
given, but not shareable and 
reusable OR  
Almost shareable and reusable 
but requires minor revisions  

No changes will be needed to meet the 
immediate needs of the client for this set of 
data, but not generalized OR Small 
changes needed to meet the generalized 
needs of the client.  

2 

5  Sharable and reusable  

The tool not only works for the immediate 
situation, but it also would be easy for 
others to modify and use it in similar 
situations.  

2 

 
To determine the roughness of each sample, we would first draw a number of lines across the 
sample. Obviously, the more lines drawn would result in a more accurate approximation, but also 
take more time. The lines should be in a ratio to the scale of each sample. For example, if we draw 
a 1 micrometer line on a 2 micrometer by 2 micrometer sample, we would then draw lines of 3 
micrometers on a 6 micrometer by 6 micrometer sample. After we had drawn a number of random 
lines, we would take 10 evenly spaced readings of the height from each. From this recorded data, 
we could then calculate the mean height across the line. Having taken the measurements for 
several different lines, we could assume that to be the mean height of the entire sample. Once we 
calculated the mean, we could then figure the standard deviation using the data points we had 
recorded. The smoother substance would have a lower standard deviation. Furthermore, if the 
peaks and valleys that the lines intercept are graphed using straight lines to connect the peaks and 
valleys, we could then calculate the area. This allows for correction of samples that have fewer 
peaks but the peaks cover a larger area thereby making the sample rougher. To apply this to the 
samples we are given, we suggest that five lines be drawn across each sample. In sample A, we 
would draw lines of 3 micrometers. In sample B, we would draw lines of .5 micrometers, and 
finally in sample C, we would draw lines of 1 micrometer. We would then take approximate 
height measurements at 10 evenly spaced points on each line, and record the data. We would then 
calculate the mean height of each sample, and then the standard deviation using the data we 
recorded. The data could then be plotted using the distance along the line as the x-axis and the 
height as the y-axis. If the points are connected, we could then calculate the area under the graph. 
By comparing these two values we could come up with the smoother substance. To better obtain 
the values, samples with the same scale would have been more useful, along with a more scientific 
way to determine the height than judging against a color scale. 

 
Figure 3. Sample student response to the Nanoroughness Task 

 
On the Quality Assurance Guide, the sample response shown in Figure 3 received a 

score of four indicating that the solution was almost shareable and reusable but required 
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minor revisions. It was considered a high-quality response because the sampling method 
was clear and accounted for the different scale of the images (however, the team needs to 
ensure the lines are drawn to scale). For selecting points to measure, they employed a 
random method consistent with engineering methods for collecting data sets from images, 
a method used by some other teams as well. The team’s description of graphing the peaks 
and valleys was not clear to the reader. It was not clear how the data would be plotted on 
a graph. (For example, is each line plotted on a different graph or are all the data plotted 
on one graph?) They also didn’t explain how they would aggregate the information from 
the graphs. Depending on the values, the area under the curve for a plot with more 
difference between peaks and valleys could have the same area as a curve with fewer, 
more uniform peaks. It is not clear how the standard deviation would be used to 
differentiate these two scenarios. The sample team in Figure 3 used typical statistical 
measures (mean and standard deviation) as will be described in the qualitative analysis 
section which follows. 
 
4.2. QUALITATIVE ANALYSIS  

 
The qualitative analysis focused on describing the students’ models for measuring 

roughness. Model-eliciting activities such as the Nanoroughness Task ask students to 
develop a model for quantifying a qualitative characteristic. A model includes objects, 
operations on the objects, and relationships between the operations (Lesh & Clarke, 
2000). From a statistical perspective, the objects are the data points and the operations are 
measures such as the mean and standard deviation. In the present task, the students 
needed to carry out two statistical processes: developing a method for sampling and 
quantifying variability. As discussed previously, variability in and of itself is a way of 
describing roughness in a surface. The challenge was to create a data set and measures 
that could be used to compare the variability of different surfaces.  

In order to develop codes for the teams’ sampling methods, several questions were 
considered: How do students think about random samples in this context? How do they 
go about generating a random sample from the population as they have defined it? 
Additional questions were considered for variability coding: What measures do students 
calculate to quantify variability? What do they see as the relationships between those 
measures? (For example, what do students infer from the mean or the standard 
deviation?) Descriptors for the two groups of codes (sampling method and statistical 
measures of variability) were generated after the responses had been assigned scores and 
then the descriptors were categorized by type. The following sections will discuss each 
group of qualitative codes and present results. 

 
Sampling As in any statistics problem, how the sample is generated can impact the 

resulting analysis. Because the data for this problem are images with infinitely many 
quantifiable points, the teams needed to design a method for generating a data sample. 
The sampling method codes describe the teams’ methods for selecting data from the 
images (i.e., selecting points to include in their data set or subsets of the data). The teams 
were given just the images without numerical information about individual pixels. They 
had a scale that showed the height in relation to the pixel color, but they did not receive 
data about individual pixels and had to estimate the shade of each pixel from the color 
bar. The images intentionally were provided with different scales so that the teams would 
have to quantify the information in order to determine a ranking of the images by 
roughness rather than just selecting an image visually. Not all of the teams noted or 
accounted for the difference in scale of the images in their sampling method. The 



24 

differences in sampling method are also important because they reflect differences in how 
the teams defined the sample set (e.g., the whole image or the peaks in the image) they 
needed to measure. 

Table 2 provides an overview and description of the codes used to describe the teams’ 
sampling methods, as well as the number of teams whose response to the task received 
each code. Teams could receive more than one code in the category (e.g., a team may 
have adjusted the scale and selected random lines or points on the image, or a team may 
have drawn a grid and then selected random points within each cell of the grid). Most 
teams recognized the need for randomness in the sample in order to avoid biased data. 
However, there are multiple methods for randomly generating a sample. Many teams 
used randomly selected points or lines to generate a structure on the image.  

 
Table 2. Sampling codes describing students’ method for sampling data and number of 

teams (n = 35) whose response to the task received each code. 
 

Code  Description  
Number of 
responses 

Adjust the 
scale  

Making an adjustment in the data set (e.g., by only 
using a portion of the image) for the difference in scale 
between images or convert the scale.  

12 

Note the scale  Noting that the scale is different, but no adjustments 
within the procedure to account for the difference  

4 

Random points  Selecting some number of points on the image 
randomly as data points  

10 

Drawing a grid 
over the image  

Draw a grid on the image either to create subsets of 
data within the cells or along the gridlines  

8 

Random lines  Drawing random line(s) on the image  7 
Eyeball method  Just “looking” at the picture (e.g., finding the peaks 

that look the biggest) to pick data points  
7 

Whole picture  Using every point of data on the image  4 
Cross-section  Taking a slice of the image and using height data only 

from the particular slice  
3 

Random area  Drawing a random area  1 
Note: Responses can be coded in more than one category. 

 
Adjust the scale represented the teams’ recognition that the images provided were not 

the same size, and therefore, represented different size populations. Twelve teams 
accounted for the differences in scale in their procedure; however four teams noted the 
difference but made no attempt in their procedure to compensate for the differences (Note 
the scale). Students tended to deal with this in one of two ways: taking subsets of the data 
in equivalent pieces (e.g., Team B below) or asking the company to only give them 
samples taken on the same scale. For the method of taking subsets, many teams did not 
give explicit directions on how to do this, only stating that it needed to be done, whereas 
others told the company how to do it (e.g., Team A below). Relevant excerpts from team 
responses are as follows:  

 
Team A:  Since the different graphs are in different units, we must convert the scales to the 

same units before commencing calculations…In order to improve the procedure, we 
need all of the pictures to have the same scale so we can get rid of the conversion 
process. 
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Team B:  Put the heights of a certain area into data points. This area should be one that could 
be universally used. For the sake of simplicity, we are using the area of 1 [square] 
micrometer. 

 
Teams that received the Random points code indicated the need for randomly 

selecting points from the image (e.g., teams C and D below), but either did not indicate 
any procedure explaining how to select the points or only indicated that a computer 
would select the points. Other teams (discussed in subsequent codes) described a method 
of selecting random points with more specificity (e.g., by drawing lines or a grid on the 
image). 

 
Team C:  Use a computer imaging program and the AFM images to determine the height of 

the surface using a randomly selected statistical sampling of no fewer than 100 data 
points. 
 

Team D:  We would approximate the height of 30 different random points on each graph. 
 
Eight teams chose to Draw a grid over the image as a method to either sample data 

points at the intersections of the grid lines or to subdivide the images into cells. If a team 
used the grid lines to divide the image into cells, they often employed another method of 
sampling within each cell. As will be discussed in the statistical measures section, teams 
often aggregated results from individual cells. 

 
Team E:  You would start by breaking the AFM image into a grid. Then find the height at each 

of the grid intersection points and store them in a data file. 
 

Team F:  The first step is to divide each of the samples into tiny, individual sections that 
measure 0.25 micrometers by 0.25 micrometers.  
[Note – this team went on to perform calculations on a sample of points inside each 
square of the grid.] 
 

The Random lines code was given to the seven teams who chose to lay lines on the 
image as a method to collect a sample. Several teams indicated that this was a way to 
account for different size images. It is also a method used by engineers when calculating 
similar kinds of measures. As with the Random points code, the students attended to the 
need for randomness in a sample but did not specify the method of random selection. 

 
Team G:  To determine the roughness of a sample, we would first draw a number of lines 

across the sample. Obviously, the more lines drawn would result in a more accurate 
approximation, but also take more time. The lines should be drawn in a ratio to the 
scale for each sample. For example, if we draw 1 micrometer lines on a 2 
micrometer by 2 micrometer sample, we would then draw lines of 3 micrometers on 
a 6 micrometer by 6 micrometer sample. 
 

Team H:  Randomly drawn lines of random lengths are placed on the sample. The length of 
each line is measured. An interval for how often a measurement of height [is taken] 
is determined by the scale of the axis divided by 10. 

 
The Eyeball method was a code assigned to procedures that required “looking at the 

image” to determine how to proceed. This was an ineffective method because it was not 
clear what to look at on the graph and there was no quantifiable procedure to provide a 
clear method for differentiation between samples (i.e., teams who employed it scored a 1 
or a 2 on the Quality Assurance Guide). For instance, Team I used the idea of consistent 
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colors in the image but did not provide a definition of consistency that could be used 
repeatedly by different users. 

 
Team I:  Our team looked at the contrast and consistency of the color in each image. The 

roughness of the gold was found by using the contrast of each sample. The higher 
colors were whiter and the darker colors were lower. We decided to use this method 
because if the colors were consistent in the image then the sample was generally 
smooth. If there were drastic color differences in the sample, it showed that the 
sample is rough. 

 
There are three other codes for sampling that emerged from our data, but were not as 

common as the codes listed above. The code Whole picture was given when a team 
provided a method for using what they perceived as all of the data in the image. Some 
teams indicated that they would use the grayscale pixel information (even though they 
were not told that this was an option) as the data points for the image. This was an 
effective strategy. Others just noted that it was necessary to collect all of the heights. This 
was significantly less effective. Cross-section was a code given to teams whose 
procedure took a “slice” of the image and used the height data just from that particular 
slice. The code Random area represented a procedure that found a random area of a 
specified size within the image and then used the data within that area to continue with 
their measure of roughness. 

 
Measuring roughness After creating a sample set of data points (or lines) to use, the 

students then needed to determine what statistics to use to analyze the variability in the 
data in order to quantify the roughness of the surface. As with other model-eliciting 
activities, the task did not indicate what measures the students needed to compute and any 
measures students found were elicited by the task requirements and context. The statistics 
were divided in two categories: measures of central tendency and measures of variability. 
In Table 3, responses can fall in more than one category.  

 
Table 3. Measures computed as part of the procedure for data analysis and the number of 

teams (n = 35) whose response to the task received each code 
 
Code Number of Responses 
Mean 22 
Standard deviation 23 
Maximum/minimum/range 9 
Histograms (Drawing a histogram and “looking at it”) 6 
Median  3 
Informal measures for spread (e.g., modified standard deviation) 2 
Mode 2 
Note: Responses can be coded in more than one category 

 
In defining roughness, the teams tended to provide a single numerical representation 

of the height of their samples of gold by aggregating or ranking the samples using 
statistical measures. Because the teams were seeking to represent the typical height of the 
surface and explain how the typical height related to the roughness of the surface, the 
teams tended to use measures of central tendency. As noted in Table 3 a large majority 
(63%) of teams computed the mean. Three teams used only the mean to describe the data. 
Thirteen teams used only the mean and one other descriptive statistic (in twelve cases, the 
second statistic was the standard deviation).  
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That students were drawn to the mean is not surprising. Interpreting the mean value 
usually meant they looked for low values of the mean of the heights in their sample. The 
same phenomenon occurred in other statistical model-eliciting tasks in engineering 
(Hjalmarson, 2007). This is also consistent with the literature indicating students do know 
how to compute the mean (e.g., Pollatsek, Lima, & Well, 1981), even if they don’t 
understand the meaning or, in this case, haven’t defined roughness in a way that 
calculating the mean would make sense.  

Computing the mean for this task is a complex endeavor that starts with asking: The 
mean of what (e.g., peaks, valleys)? Students may also compute means of multiple 
subsets of the data and then need to aggregate the values in some fashion. They would 
then need to decide whether having a large or small mean is an indicator of greater 
roughness. This, of course, depends on the answer to the first question. The teams’ 
responses in Table 4 show a variety of ways that teams employed the mean in their 
procedures, starting with effective solutions and moving toward ineffective solutions as 
measured by the Quality Assurance Guide (QAG). 

 
Table 4. Examples of teams’ sampling methods and how they employed the mean 
 

Team Sampling Method Use of the Mean 
Team H 
(QAG Score = 5) 

This team laid random lines and 
devised a method for how often to 
measure height along each line 

“The average (mean) height of the 
[sampled] points for each line is 
determined and the average height of the 
lines for each sample is determined.” 

Team G 
(QAG Score = 4) 

This team laid random lines and 
devised a method for how often to 
measure height along each line. 

“From this recorded data, we could then 
calculate the mean height across the line. 
Having taken the measures for several 
different lines, we could assume that to 
be the mean height of the entire 
sample.” 

Team J 
(QAG Score = 3) 
 

This team laid a grid and 
collected their sample data from 
the intersections of the grid lines. 

“Calculate the mean of the samples.” 
 

Team K 
(QAG Score = 2) 
 

This team laid a grid and then 
used the eyeball method within 
each grid to measure “bumps.” 

“Then [we] estimated the average height 
of the bumps on the surface per square 
nanometer, by using the height scale 
provided. Then we used our data to 
figure out the average height of 
the bumps on the picture.” 

 
It is worth stating that use of the mean in and of itself did not indicate whether or not 

a procedure for measuring roughness was effective or not. The manner in which the 
teams sampled and how they interpreted the mean were better indicators of the quality of 
their solution. In order to generate a measure of roughness, the students needed to move 
beyond central tendency (because in isolation the results are ambiguous) and toward 
other measures. All but two of the teams that used the mean also had some measure of 
variability. The two teams that did not use a traditional measure of variability in their 
solutions were Team H (QAG Score: 5) and Team K (QAG Score: 2). 

The second class of statistics the students used were measures of variability. Table 3 
also includes the measures of variability. “Roughness” is, in and of itself, variation in a 
surface. Shaughnessy (2007) distinguishes between variability (likelihood of change) and 
variation (measurement of change). For instance, students could be analyzing variability 
between samples or the variation in a data set. Most of the groups (approximately 66%) 
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calculated a standard deviation as part of their data analysis. However, finding maximum 
and minimum values was another method students used to describe the variation in the 
surface. For example, one student team wrote, “Know the maximum and minimum 
heights of each image. Measure the height of each peak and valley of each line and find 
the average of those heights” (Team L). What is important to note is that the task elicited 
these constructs from the students. Nowhere in the problem statement was it prescribed 
that students calculate any particular measure of variability. 

Most groups moved beyond measures of central tendency to measures of variability 
in the surface and incorporate some combination of the two. Eighteen of the groups 
computed both the standard deviation and the mean (thirteen of these groups computed 
only these two, five groups computed an additional statistic). Their use of the statistics 
varied. It was not necessarily the case that a team created a sample, computed the mean 
for the values in the sample, and then computed the standard deviation (though many 
groups did). As discussed previously, they had different methods for determining the 
sample data to use, and there were subtle but important distinctions in how the groups 
first determined a sample and then calculated statistics. Their ways of thinking about how 
to quantify variability interacted with their sampling methods. For example, some groups 
used a local-global approach to the data. They first found the standard deviation for a 
subset of the image and then aggregated across subsets to determine a value that 
represented the whole image. This may have been accomplished with an area model (i.e., 
subdividing the image into regions) or with a line model (i.e., drawing random lines on 
the image) in order to find subsets of the data as discussed previously. For example, one 
group wrote, “The standard deviation of the height of the material of each line would then 
be determined. Using these standard deviations of heights, the average of all the standard 
deviations of heights could be used to determine a total average standard deviation of the 
whole surface given” It was not always clear whether the students understood what the 
standard deviation indicated about a data set or whether they were calculating it because 
it was a natural choice after the mean was computed. However, knowing that the standard 
deviation should be larger for rougher samples is one indication that the students 
understood that the standard deviation measures the spread of the data set relative to the 
mean. A higher mean would indicate taller bumps in the surface. A higher standard 
deviation would indicate greater variation in the bumps.  
 

5. DISCUSSION 
 

Without prompting, the task elicited students’ conceptions of sampling and variability 
within a context where these two concepts were naturally intertwined. Students needed to 
consider how to measure variability by first considering what population was varying, 
how to generate a sample of that population, and then how to quantify the variability. The 
students generated different statistics (e.g., mean, standard deviation) and then created 
procedures for aggregating and interpreting the outcomes. “Variability of what?” was a 
foundational question. The students had to both generate a procedure and interpret the 
results of their model. The two components of the procedure were sampling and 
quantifying the variability in the surface. Both of these tasks are unusual in that Statistics 
typically emphasizes discrete populations (e.g., people, objects) rather than measuring the 
characteristics or properties of a material (a fairly common engineering task). We have 
divided our discussion of these results into implications for teaching and research, to 
describe how the task could be used in the classroom and areas for further investigation 
into students’ understanding of sampling and variability. 
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5.1. IMPLICATIONS FOR TEACHING 
 
Part of the Guidelines for Assessment and Instruction in Statistics Education 

(GAISE) project, funded by the American Statistical Association (ASA), was the 
pronouncement of six recommendations for the teaching of introductory college statistics 
courses (see Franklin & Garfield, 2006). The six GAISE recommendations are: (1) 
Emphasize statistical literacy and develop statistical thinking; (2) Use real data; (3) Stress 
conceptual understanding rather than mere knowledge of procedures; (4) Foster active 
learning in the classroom; (5) Use technology for developing conceptual understanding 
and analyzing data; and (6) Integrate assessments that are aligned with course goals to 
improve as well as evaluate student learning. The Nanoroughness Task provides statistics 
instructors with an activity that meets all of these guidelines. Students are engaged in a 
task that is similar to problems confronted by professional statisticians (Wild & 
Pfannkuch, 1999). Another instructional feature of the Nanoroughness Task is that it 
naturally elicits the use of statistical measures and the need for taking a sample. The 
samples of gold do not differ with respect to the average height of the points on the 
surface (represented by pixels). Yet, the three samples can be distinguished visually. This 
requires students to come up with a measure to estimate roughness, and a measure of 
variability appears to be a natural choice. The Nanoroughness Task could follow 
instructional sessions on the standard deviation, providing a natural extension of the 
concept and measure to a natural setting.  

The results indicate that this activity can be used to identify misunderstandings that 
students have about measures of center and variability. About half of the teams did not 
appropriately implement at least one of the following: units of analysis, measures of 
center, or measures of variability. In addition, interpretation of what the standard 
deviation represents and how it related to the concept of smoothness was not well-
reasoned in some cases. These students’ methods could provide starting points for 
helping them to develop a better understanding through activities that require them to 
operationalize their methods and to test whether their methods actually identify the 
smoothness of each sample in a reasonable way. For example, one team proposed 
calculating the deviation of each point in the sample from the mean, and summing the 
deviations as a measure or roughness. The sample with the lowest sum would be the 
smoothest. However, the sum of deviations is always zero, so this measure would not 
distinguish the three samples. Testing the method could provide a springboard for 
exploring what a deviation represents and guided discussion could be used to develop a 
deeper understanding of the mean and the standard deviation. 

The task also provides students with an opportunity to apply sampling schemes if 
they are covered prior to the task. The teams came up with different methods for 
sampling from the populations. An extension to the activity would be to have students 
discuss and compare the different sampling methods. This can be used to develop 
students’ understanding of bias in sampling, the issue of representativeness, and how 
large a sample needs to be to provide an accurate assessment of a model. Students could 
analyze the results from different sampling methods under the same operational definition 
of nanoroughness. Questions that could be addressed are: Do the different sampling 
methods produce similar results? Are some sampling methods better than others (and 
under what criteria)? If so, what makes them better? Addressing these questions could 
lead to discussions of randomness, when a method uses randomness and when it does not, 
and whether random sampling produces a more representative sample than other 
methods. Issues of sample size could also be explored (e.g., How many points do you 
need to provide an accurate estimate of the nanoroughness for a piece of material? Is 
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there a minimum size? Is there a sample size above which accuracy does not improve 
appreciably?). 

When considering variability in the Nanoroughness context, it is important to ask 
“variability of what?” There are at least two interpretations of variability in this context. 
The first looks at how tall the peaks are or how low the valleys are and attempts to 
quantify the spread between them. The second interpretation examines variation in peak 
height. One requires quantifying a range from maximum and minimum values. The other 
requires quantifying the consistency in peak height. For example, one group wrote: 

… look at how many ‘bumps’ there are and their size. We can compare the colors of 
the pictures obtained with the color bars, if the images have surfaces that are of 
mostly similar colors, then we can conclude that they are mostly of similar heights 
(since similar colors represents similar heights) and when all of the particles are of 
similar heights, they should make up a nice even surface.  

Hence, extension activities could ask students to compare different interpretations of 
variability.  

Another set of activities that can follow naturally after the Nanoroughness Task are 
sessions that explore sampling distributions, or distributions of measures of 
nanoroughness from different samples. These follow-up activities could be designed to 
help students explore whether different samples from the same population produce the 
same or similar estimates of nanoroughness and whether sample size is related to the 
variability in estimates of nanoroughness from different samples. In the same spirit as an 
MEA, students could be asked to design methods for answering these questions and to 
evaluate the effectiveness of the various methods. These tasks would provide additional 
practice with applying concepts such as sampling, random selection, and the distribution 
of a variable, extending these concepts from a single sample to multiple samples.  

 
5.2. IMPLICATIONS FOR RESEARCH 

 
This study provides evidence that the Nanoroughness Task naturally elicits 

application of concepts such as measures of center, variability, and sampling to a 
modeling task. The evidence indicates that students take several different approaches in 
applying these statistical concepts, and that the task produces artifacts that provide a 
window into students’ conceptual understanding. These findings raise several questions 
that should be addressed in future research.  

Most teams used some type of measure of variability, and many used the standard 
deviation. The activity asks teams to evaluate their own models and the models of other 
teams. This could lead to a better understanding and appreciation of variability in data. 
What we do not know is the nature of students’ understanding of variability, and more 
specifically of the standard deviation, both before and after completing the 
Nanoroughness Task. Similarly, students who participate in the Nanoroughness Task can 
be expected to develop a better understanding and appreciation for sampling and 
sampling methods as a result of critiquing the sampling methods used by different teams. 
Items and tasks from research studies on students’ understanding of variability and the 
standard deviation (e.g., Chance et al., 2004; delMas & Liu, 2005; Reading & 
Shaughnessy, 2004; Shaughnessy et al., 1999) and of sampling methods (Watson & 
Kelly, 2005, 2006) could be administered prior to and after students participate in the 
MEA to determine whether changes in their understanding and thinking do occur.  

It would also be informative to conduct a comparative study where all students 
receive the same initial instruction on measures of center or variability, but are then 
randomly assigned to either receive additional instruction on these topics or to participate 
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in the Nanoroughness Task. The additional instruction could cover the same number of 
class sessions as the MEA, and engage the students conceptually (e.g., applications of the 
concepts in a variety of contexts to promote a deeper understanding and transfer). 
Comparison of assessment results would address the question of whether or not the MEA 
is more effective in developing students’ conceptual understanding of these topics.  

The design principles used to develop an MEA imply that participation in an MEA 
should increase the likelihood of transfer. MEAs include many of the conditions that have 
been shown to increase retention and transfer of knowledge and problem solving to new 
contexts: solve carefully designed problems, develop familiarity with each context, 
confront students’ misconceptions and intuitions, help students see similarities and 
differences, guide students to find the general principle behind the example, emphasize 
deep (relational or structural) features over surface features, and promote the 
development of mental frameworks for connecting information (Schwartz, 2004; 
Schwartz, Varma, & Martin, 2008). Questions of whether or not students who participate 
in the Nanoroughness Task have better retention and are more likely to develop effective 
solutions to analogous problems need to be addressed. 
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