42

REASONING ABOUT VARIABILITY
IN COMPARING DISTRIBUTIONS

DANI BEN-ZVI
University of Haifa, Faculty of Education
dbenzvi@univ.haifa.ac.il

SUMMARY

Variability stands in the heart of statistics theory and practice. Concepts and judgments involved
in comparing groups have been found to be a productive vehicle for motivating learners to reason
statistically and are critical for building the intuitive foundation for inferential reasoning. The
focus in this paper is on the emergence of beginners’ reasoning about variation in a comparing
distributions situation during their extended encounters with an Exploratory Data Analysis (EDA)
curriculum in a technological environment. The current case study is offered as a contribution to
understanding the process of constructing meanings and appreciation for variability within a
distribution and between distributions and the mechanisms involved therein. It concentrates on
the detailed qualitative analysis of the ways by which two seventh grade students started to
develop views (and tools to support them) of variability in comparing groups using various
statistical representations. Learning statistics is conceived as cognitive development and
socialization processes into the culture and values of “doing statistics” (enculturation). In the
light of the analysis, a description of what it may mean to begin reasoning about variability in
comparing distributions of equal size is proposed, and implications are drawn.

Keywords: Variability; Comparing distributions; Statistical reasoning; Exploratory data analysis;
Enculturation; Appropriation

1. SCIENTIFIC BACKGROUND

1.1. ENCULTURATION

Research on mathematical cognition in recent decades seems to converge on some important
findings about learning, understanding, and becoming competent in mathematics. Stated in general
terms, research indicates that becoming competent in a complex subject matter domain, such as
mathematics or statistics, “may be as much a matter of acquiring the habits and dispositions of
interpretation and sense making as of acquiring any particular set of skills, strategies, or knowledge”
(Resnick, 1988, p. 58). This involves both cognitive growth and socialization processes into the
culture and values of “doing mathematics or statistics”. Many researchers have been working on the
design of learning environments and teaching in order to “bring the practice of knowing mathematics
in school closer to what it means to know mathematics within the discipline” (Lampert, 1990, p. 29).
This study is intended as a contribution to the understanding of these processes in the area of
Exploratory Data Analysis (EDA), focusing on reasoning about variability in comparing distributions.

One of the ideas used in this study is that of a process of enculturation, which is included in
several recent learning theories in mathematics education (cf., Resnick, 1988; Schoenfeld, 1992).
Briefly stated, this process refers to entering a community (or a practice) and picking up the
community’s points of view. The beginning student learns to participate in a certain cognitive and
cultural practice, where the teacher has the important role of a mentor and mediator, or the
enculturator. This is especially the case with regard to statistical thinking, with its own values and
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belief systems and its habits of questioning, representing, concluding, and communicating. Thus, for
statistical enculturation to occur, specific thinking tools are to be developed alongside collaborative
and communicative processes taking place in the classroom.

1.2. RESEARCH ON VARIATION

Bringing the practice of knowing statistics at school closer to what it means to know statistics
within the discipline requires a description of the latter. Based on in-depth interviews with practicing
statisticians and statistics students, Wild and Pfannkuch (1999) provide a comprehensive description
of the processes involved in statistical thinking, from problem formulation to conclusions. They
suggest that statisticians operate, sometimes simultaneously, along four dimensions: investigative
cycles, types of thinking, interrogative cycles, and dispositions. They position variation at the heart of
their model of statistical thinking as one of the five types of fundamental statistical thinking.

Pfannkuch and Wild (2004) further explain the centrality of reasoning about variation in data
inquiry problems:

Adequate data collection and the making of sound judgments from data require an understanding of how
variation arises and is transmitted through data, and the uncertainty caused by unexplained variation. It is a
type of thinking that starts from noticing variation in a real situation, and then influences the strategies we
adopt in the design and data management stages when, for example, we attempt to eliminate or reduce
known sources of variability. It further continues in the analysis and conclusion stages through determining
how we act in the presence of variation, which may be to either ignore, plan for, or control variation.
Applied statistics is about making predictions, seeking explanations, finding causes, and learning in the
context sphere. Therefore we will be looking for and characterizing patterns in the variation, and trying to
understand these in terms of the context in an attempt to solve the problem. Consideration of the effects of
variation influences all thinking through every stage of the [statistical] investigative cycle. (Pfannkuch &
Wild, 2004, pp. 18-19)

According to Wild and Pfannkuch (1999), there are four aspects of variation to consider: noticing
and acknowledging, measuring and modeling (for the purposes of prediction, explanation or control),
explaining and dealing with, and developing investigative strategies in relation to variation. Reading
and Shaughnessy (2004) suggest two additional aspects of variation that need to be considered;
describing and representing. They claim that these six aspects of variation form an important
foundation for statistical thinking.

Studies of reasoning about variation include investigations into the role of variation in graphical
representation (Meletiou & Lee, 2002), comparison of data sets (Watson & Moritz, 1999; Watson,
2001; Makar & Confrey, 2004), probability sample spaces (Shaughnessy & Ciancetta, 2002), chance,
data and graphs in sampling situations (Watson & Kelly, 2002), and variability in repeated samples
(Reading & Shaughnessy, 2004). Hierarchies to describe various aspects of variation and its
understanding have been developed by Watson, Kelly, Callingham, and Shaughnessy (2003) and by
Reading and Shaughnessy (2004) in the context of repeated samples.

Noticing and understanding variability encompass a broad range of ideas. The basic form of
variability in data is the variation of values within one distribution. Comparing distributions creates
the impetus to consider other types of variability that exist between groups. Makar & Confrey (2004)
discuss three different ways that teachers consider issues of variability when reasoning about
comparing two distributions. They analyzed (1) how teachers interpreted variation within a group -
the variability of data; (2) how teachers interpreted variation between groups - the variability of
measures; and (3) how teachers distinguished between these two types of variation.

1.3. RESEARCH ON COMPARING DISTRIBUTIONS

Comparing groups provides the motivation and context for students to consider data as a
distribution and take into account and integrate measures of variation and center (Konold & Higgins,
2003). At an advanced level, comparing distributions can stimulate learners to consider not only
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measures of dispersion within each group, but comparisons of measures between groups, and hence to
consider variation within the measures themselves (Makar & Confrey, 2004). Watson and Moritz
(1999) suggest that comparing two groups provides the groundwork to the more sophisticated
comparing of populations or two treatments in statistical inference. Without first building an intuitive
foundation, inferential reasoning can become recipe-like, encouraging black-and-white deterministic
rather than probabilistic reasoning.

There is some evidence however that the group comparison problem is one that students do not
initially know how to approach and the challenge may remain even after extended periods of
instruction. Students’ difficulties may stem from the multifaceted knowledge necessary for comparing
groups, such as understanding distributions (Bakker & Gravemeijer, 2004), representativeness
(Mokros & Russel, 1995), and variability in data (e.g., Meletiou, 2002). Students also have difficulties
in adopting statistical dispositions, such as tolerance towards variation in data, and integration of local
and global views of data and data representations (Ben-Zvi & Arcavi, 2001; Ben-Zvi, 2002; Ben-Zvi,
2004).

Watson and Moritz (1999) observed two response levels in group comparison tasks completed by
students during school years. In the first cycle, responses compared data sets of equal sizes, with or
without success depending on the specific context. They did not recognize and/or did not resolve the
issue of unequal sample size. In the second cycle, the issue of unequal sample size was resolved with
some proportional strategy employed for handling different sizes.

There are a number of studies in which students who appeared to use averages to describe a single
group or knew how to compute means did not use them to compare two groups (Bright & Friel, 1998;
Gal, Rothschild & Wagner, 1990; Hancock, Kaput & Goldsmith, 1992; Konold, Pollatsek, Well, &
Gagnon, 1997; Watson & Moritz, 1999). Konold et al. (1997) argue that students’ reluctance to use
averages to compare two groups suggests that they have not developed a sense of average as a
measure of a group characteristic, which can be used to represent the group. Cobb (1999) proposes
that the idea of middle clumps (“hills”’) can be appropriated by students for the purpose of comparing
groups.

1.4. THE RESEARCH QUESTION

Based on these perspectives and studies, the following research question is used to structure the
current study and the analysis of data collected: How do junior high school students begin to reason
about variability as part of an open-ended group-comparison task given in a rich and supportive
classroom context? Such a context involves a computerized environment, peer collaboration and
classroom discussions, guidance of a teacher and curriculum-based tasks. The current study is
different from some of the studies described above: It follows closely the dynamic behavior and
discourse of two novice seventh grade students engaged with an EDA task. The students are observed
within their classroom during an extended period of engagement with curriculum-based data
investigation. A qualitative detailed analysis of the protocols is used, taking into account all kinds of
actions, discussions and gestures within the situations in which they occurred. The goal is to trace the
emergence of beginners’ reasoning about variation in a comparing distributions situation, including
the development of cognitive structures and the sociocultural processes of understanding and learning.

2. METHOD

Descriptions of the research setting, the statistics curriculum and the specific activity are followed
by a profile of the students, technology used, and methods of data collection and analysis.

2.1. THE SETTING

This study took place in a progressive experimental school in Tel-Aviv, Israel. Skillful and
experienced teachers, who were aware of the spirit and goals of the Statistics Curriculum (SC), taught
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three classes. The SC was developed in Israel to introduce junior high school students (grade 7, age
13) to statistical reasoning and the “art and culture” of EDA (described in more detail in Ben-Zvi &
Friedlander, 1997b; Ben-Zvi & Arcavi, 1998). The curriculum is characterized by the teaching and
learning of mathematics using open-ended problem situations to be investigated by peer collaboration
and classroom discussions using computerized environments (Hershkowitz et al., 2002). The design
of the curriculum was based on the creation of small scenarios through which students can experience
on their own, with limited teachers’ guidance, some of the processes involved in the experts’ practice
of data-based enquiry. The SC was implemented in schools and teacher courses and subsequently
revised in several curriculum development cycles.

The SC emphasizes student’s active participation in organization, description, interpretation,
representation, and analysis of data situations on topics close to the students’ world, with a
considerable use of visual displays as analytical tools (in the spirit of Garfield, 1995, and
Shaughnessy, Garfield, & Greer, 1996). It incorporates technological tools for simple use of various
data representations and transformations of them (as described in Biehler, 1993, 1997; Ben-Zvi,
2000). The scope of the curriculum is 30 periods spread over two to three months, and includes a
student book (Ben-Zvi & Friedlander, 1997a) and a teacher guide (Ben-Zvi & Ozruso, 2001).

2.2. THE SURNAMES ACTIVITY

The Surnames activity, which is the focus of the current study, is the second full data
investigation of the SC. It comes after an investigation involving the analysis of a time-series dataset
with tabular data about Olympic 100 meters running times and a time plot of these data. The students
are asked to compare the length of a set of surnames collected in their own class (35 Hebrew names)
with a set of surnames from an American class that were given to them (35 English names). Equal
sized data sets are used to simplify some aspects of the complex situation of comparing groups found
in other studies (e.g., Gal, Rothschild & Wagner, 1990; Konold, Pollatsek, Well, & Gagnon, 1997),
primarily students’ difficulties with proportional reasoning. It was expected that the Surnames activity
will support the development of beginners’ reasoning about variability from the intuitive and simple
to the more sophisticated and expert-like reasoning. The Surname data were given in a table (a part of
it is presented in Figure 1).

Israeli Class (Hebrew names) American Class (English names)

Student’s First Surname Surname’s  Student’s First Surname Surname’s
Number Name Length Number Name Length

1 i o' 4 1 Kenneth Auchincloss 11

2 Y HM | 5 2 Melinda Beck 4

3 il npon 7 3 Edward Behr 4

4 T Wl 3 4 Patricia Bradbury 8

5 nm nmuY |a 8 5 William Burger 6

6 ann " 4 6 Mathilde ~ Camacho 7

7 71N ["771 5 7 Lincoln Caplan 6

Figure 1. The upper part of the spreadsheet table displaying the raw data
(There were 35 students in each class.)

In order to understand the analytic and interpretive challenge faced by the students, the two
distributions are presented graphically in Figure 2. As a background, it is important to note that the
variability between the two groups of names is in part due to differences in the structure of English
and Hebrew. In modern Hebrew, as in Arabic and some other Semitic languages, words are often
written without some vowels, making Hebrew words shorter than English words. Vowels are usually
optional and if needed are written as diacritical marks under, within or above the letters, using dots
and dashes which signify different types of vowels. These diacritical marks are not displayed in the
second and third columns of Figure 1. There are additional cultural and historical factors that
contribute to the variability in name length within and between the two language groups.
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Surname Length for the Israeli and the US Class

2

10
g @ ~
g Olsrael
3 B —
g mUs
[18

23 4 5 B 7 B 8 10 11
Surname length (Numb er of letters)

Figure 2. Double bar chart of the two surname groups

The whole Surnames activity took place during approximately three 90-minute lessons. Most of
the time was spent on students’ work in pairs in the computer lab, led by the student textbook. The
teacher’s interactions with the students were short and mostly occurred in reaction to their request for
help. A session started with 5-10 minutes whole class introductory discussion and usually ended with
a summary led by the teacher. In a preparatory lesson, students were asked: “What is the favorite shoe
color and shoe size in your class? Compare the results to other seventh-grade classes”. Students
collected, organized, displayed and interpreted the data, compared the groups, and composed a
summary report for a shoe company. Several statistical concepts and tools were informally
introduced, or revisited, such as, statistical question and hypothesis, sample, categorical and
quantitative variables, absolute and relative frequency, bar charts and frequency table.

In the following lessons, which are the focus of this report, three methods were offered by the
curriculum-based materials to compare distributions: (a) absolute and relative frequency distributions
presented in tables; (b) basic measures of variation and center, such as range, mode, mean, and
median; and (c) graphical representations, such as a double bar chart. These statistical methods and
tools were introduced to help students in describing and interpreting the surnames data and the
variability in it, searching for trends and drawing conclusions on comparing the two groups. The
purpose of the activity was to set the stage for students to consider data as a distribution and provide
many opportunities to notice, acknowledge, intuitively deal with, and describe the variability within
and between distributions.

2.3. PARTICIPANTS

This study focuses on two students, 4 and D, who were above-average ability students (grade 7,
age 13), very verbal, experienced in working collaboratively in computer-assisted environments, and
willing to share their thoughts, attitudes, doubts, and difficulties. They agreed to participate in this
study, which took place mostly within their regular classroom periods and included being videotaped
and interviewed (after class) as well as furnishing their notebooks for analysis. While not necessarily
representing their classmates, verbal and able students provide a better opportunity for collecting
valuable and detailed data on their actions, thoughts and considerations.

When they started to learn this curriculum, 4 and D had limited in-school statistical experience.
However, they had some informal ideas and positive dispositions toward statistics, mostly through
exposure to statistics jargon in the media. In primary school, they had learned only about the mean
and the uses of some basic diagrams, such as bar and pie charts. Prior to, and in parallel with, the
learning of the SC they studied beginning algebra based on the use of spreadsheets to generalize
numerical linear patterns (Resnick & Tabach, 1999).
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The students appeared to engage seriously with the curriculum, trying to understand and reach
agreement on each task. They were quite independent in their work, and called the teacher only when
technical or conceptual issues impeded their progress. The fact that they were videotaped did not
intimidate them. On the contrary, they were pleased to speak out loud, address the camera explaining
their actions, intentions, and misunderstandings and share what they believed were their successes.

2.4. TECHNOLOGY

During the experimental implementation of the curriculum a spreadsheet package (Excel) was
used. Although Excel is not the ideal tool for data analysis (Ben-Zvi, 2000), there are several reasons
for choosing this software. Spreadsheets provide direct access that allows students to view and
explore data in different forms, investigate different models that may fit the data by, for example,
manipulating a line to fit a scatter plot. Spreadsheets are flexible and dynamic, allowing students to
experiment with and alter displays of data. For instance, they may change, delete or add data entries in
a table and consider the graphical effect of the change or manipulate data points directly on the graph
and observe the effects on a line of fit. Spreadsheets are adaptable by providing control over the
content and style of the output. Finally, spreadsheets are common, familiar, and recognized as a
fundamental part of computer literacy (Hunt, 1995). They are used in many areas of everyday life, as
well as in other domains of the mathematics curricula, and are available in many school computer
labs. Hence, learning statistics with a spreadsheet helps to reinforce the idea that this is something
connected to the real world.

2.5. DATA COLLECTION AND ANALYSIS

A diverse body of data was collected to study the effects of the new curriculum. The behavior and
reasoning of the two students on which the present study focused was analyzed using lengthy video
recordings of whole class sessions, classroom observations, interviews, and students’ notebooks and
research projects. In addition, observational data and summative assessment data were also collected
for the whole class to support other research objectives, but are beyond the scope of this paper.

The analysis of the videotapes was based on interpretive microanalysis (see, for example, Meira,
1991): a qualitative detailed analysis of the protocols, taking into account verbal, gestural and
symbolic actions within the situations in which they occurred. The goal of such an analysis is to infer
and trace the development of cognitive structures and the sociocultural processes of understanding
and learning.

Two stages were used to validate the analysis, one within the SC researchers’ team and one with
four researchers in science education, who had no involvement with the data or the SC (triangulation
in the sense of Schoenfeld, 1994). In both stages the researchers discussed, presented, and advanced
and/or rejected hypotheses, interpretations, and inferences about the students’ cognitive structures.
Advancing or rejecting an interpretation required: (a) providing as many pieces of evidence as
possible (including past and/or future episodes, and all sources of data as described earlier) and (b)
attempting to produce equally strong alternative interpretations based on the available evidence. In
most cases the two analyses were in full agreement, and points of doubt or rejection were refuted or
resolved by iterative analysis of the data. In the presentation of transcripts, comments in block
parentheses are clarifications suggested by the author, and were verified by a triangulation process.

3. RESULTS: STUDENTS’ DEVELOPMENT OF REASONING ABOUT VARIABILITY

This paper describes how A’s and D’s novice views slowly changed and evolved towards an
expert perspective while comparing two data sets of the same size. The focus is on how they began to
notice and acknowledge variability in the data and make use of special local information in different
ways as stepping-stones towards the development of global points of view of describing and
explaining the variability between the groups. The study identifies seven developmental stages of
their reasoning about variability (Figure 3).
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Stage 1 On what to focus: Beginning from irrelevant and local information.

Stage 2~ How to describe variability informally in raw data.

Stage 3 ~ How to formulate a statistical hypothesis that accounts for variability.

Stage4  How to account for variability when comparing groups using frequency tables.
Stage 5  How to use center and spread measures to compare groups.

Stage 6  How to model variability informally through handling outlying values.

Stage 7  How to notice and distinguish the variability within and between the distributions in a
graph.

Figure 3. The seven suggested stages through which the two students progress

Stage 1. On What to Focus: Beginning from Irrelevant and Local Information

When the teacher introduced the whole class to the Surnames problem situation, she asked the
students to hypothesize about interesting phenomena regarding names in general, without first
providing them with any data. After a brief discussion about students’ intuitive hypotheses, the
teacher focused the discussion on name length in various cultures and countries, and presented the
main task: Compare the surname length of the Israeli and the American groups. The teacher
considered some sample quick responses (e.g., “American surnames are longer than Israeli
surnames”, “They are about the same’) as an indication that the students had enough familiarity with
the context of the task in order to engage meaningfully with the data. When the introduction was over,
A and D moved to the school computer lab to work on the Surnames activity. Their work was guided
by a list of questions that appeared in the Student Workbook which was part of the SC.

After A and D added the names of their classmates to the Excel table (a part of it presented in
Figure 1), they started working on the first question in their Workbook, “Look at the table and suggest
a research question about length of surnames.” The raw data, i.e., names, were displayed in a table on
the computer screen. After a short discussion they agreed on posing the question, “Which of the two
countries has longer names?” This initial focus on finding the “winning” group resembles the type of
questions suggested in the introductory whole class discussion and was typical of students’ questions
in the experimental classes. This formulation, deterministic in nature and ignoring the complexity
involved in comparing groups, is not surprising at this beginning stage of working on a complex data-
analysis task.

In the second question, students were asked to formulate a hypothesis regarding interesting
phenomena in the data. The question, which was proposed to ‘push’ students to look at the data and
consider patterns and variability, provoked the following exchange between 4 and D. (The row
numbers in the transcripts are provided to assist later in referring to specific sentences.)

A We have to phrase now a hypothesis regarding interesting phenomena in the data.
2 D Interesting phenomena, interesting phenomena. O.K., we should find interesting phenomena.
We’ll find interesting phenomena. [Reads the question again] “Formulate a hypothesis about
interesting phenomena in the length of surnames”. I didn’t understand what it exactly means.

3 A 0.K., lets skip this [question], since we don’t have anything interesting at hand. We may
shortly find something.
4 D I don’t think we should skip this, we’ll simply ask what the precise intention is. I didn’t

really understand: Shall we hypothesize about ‘Mc’s’? [There are three surnames in the
American class, beginning with the letters Mc, such as McDaniel.] No! I don’t understand.
[Laughing] This isn’t funny. I'll ask Michal [their teacher] to come and help us.

Their remarks indicate that questions like “phrase a hypothesis regarding interesting phenomena
in the data” may encounter an initial inability to focus attention on relevant (even informal) aspects of
the data. 4 and D seemed to be unable to make full sense of the intention of the question and its
formulation. Their focus on irrelevant features of the data, or their inability to focus on anything at all
[row 3], is similar to their reaction at the beginning of the first problem situation in the SC—Olympic
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Records (analyzed in detail in Ben-Zvi & Arcavi, 2001). In both activities, they were aware that their
observations, such as names beginning with Mc, might not be relevant. They somehow recognized
what not to focus on, but were uncertain about what may qualify as ‘interesting phenomena’ in this
context, or how to reply to such questions, and finally requested the teacher’s assistance to help them
overcome this difficulty.

In the above brief discourse the students did not notice global features of the data and the
variability within it. Their initial local focus on what they saw as outstanding regularity in the data
(the three “Mc” surnames) seems to restrict them from observing the distributions as a whole.
Interestingly, this phenomenon was already observed when these students worked on their first
activity of the SC (see section 2.2). There, they were similarly attentive to the prominence of “local
deviations” in data and this appeared to keep them from creating more global interpretations of data.
Only after the following teacher intervention were they able to start focusing on relevant information,
taking into account the variability in the data.

Stage 2. How to informally describe the variability in raw data
When A4 and D requested the teacher’s help in answering the hypothesis task, the following dialog
took place.

5 A [Asking the teacher] What does it mean?

6 D What does it mean to “phrase a hypothesis about interesting phenomena”?

7 A That there are many names beginning with ‘Mc’?

8 T About the length of surnames. OK?

9 A What is ‘interesting phenomena’?

10 T Are there no interesting phenomena in the data?

11 A [Cynically] It’s very interesting that there is a Michael...

12 T You are asked about length!

13 D About length ... An interesting phenomenon is that there is a [counting letters in the Hebrew
name Levkowitz] 1, 2, 3, 4, 5, ... [7] letter name here and a 4 there [Cose in the American
class].

14 T OK. You suggest that there are very short names and very long ones.

15 A Do we have to compare?

16 D So what’s the hypothesis?

17 T I don’t know [what the hypothesis is]. First, it’s a phenomenon. What do you think? Are
there many long or many short [surnames]?

18 A There will be a lot more of the long in USA.

19 D More long than short.

20 T OK. You have a hypothesis: In the USA...

21 A But what is long, and what is short?

22 T That’s a different question.

23 A What should we write?

24 D Perhaps longer than this? Or...

25 A What name is considered long?

26 T OK. Longer than this — that’s a comparison. When you compare these groups, you say — I

expect that there will be so and so here... That’s comparing two groups. That’s all right.

The students were uncertain about the intention of the question (“phrase a hypothesis”) as well as
the meaning of the phrase “interesting phenomena”. The fact that a particular research question
(comparing the two groups in terms of surname length) had been introduced at the beginning of the
activity did not help them to focus and they seemed to be overwhelmed by the complexity of the data.
Their initial observations are irrelevant and local (Mc’s, Michael). It seems that there are three factors
interacting to produce the students’ inability to proceed: (a) the lack of understanding of the intent of
the question, (b) the lack of understanding of the phrase “interesting phenomenon”, and (c) the
complexity of the data. These factors played a role in causing confusion in other parts of the
transcripts of these students (cf. Ben-Zvi & Arcavi, 2001).
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The teacher’s initial help consisted of calling their attention twice to the investigated variable,
namely, the length of a surname. Only her second trial [row /2 in the transcript above] pushed D to
compare the surname length of two students (one from each class) [/3]. Thus, he began focusing on
the correct variable and noticing one aspect of the variability in the data, but in a very local way. The
teacher accepted his answer as being in the right direction, and suggested a generalization of his local
observation [/4]. This intervention represents a generalization ‘jump’ by the teacher not reflected in
the students’ previous comments. She then nudged them to quantify the variability in the data in a
simple way [/7].

In response to the teacher’s direct question, the students suggested that the long surnames are
more frequent in the USA group [/4—15]. It is hard to determine at this point if 4 considered only the
variability within the American group, or the variability between the groups. Whichever interpretation
is taken here, this initial consideration of variability later became the foundation on which 4 and D
developed an informal model of the variability within, as well as between, the two groups. The
students’ first attempts to describe the variability in the data by comparing long and short names
raised a new concern about the borderline between long and short names [2/], which was not resolved
at this stage, and may be the beginning of an attempt to handle variability by grouping the data. The
interaction with the teacher closed with her recommendation to focus on comparing groups.

Stage 3. How to formulate a statistical hypothesis that accounts for variability
The above interaction with the teacher helped the students to re-focus and propose a hypothesis.
The following dialogue between A4 and D took place immediately after the teacher left them.

27 D Our hypothesis about interesting phenomena in the length of surnames is: In the USA,
surnames will be...

28 A Will be longer...

29 D Longer than in Israel...

30 A Usually than in Israel...

31 D Usually, not always, usually.

32 D Let’s see, we have Levkowitch here [in the Israeli class] and Cose there [in the American
class] — that’s different.

33 A Enough, enough, come on.

34 D OK, never mind.

35 A So, in the USA... the surnames...

36 D Will be usually longer.

37 A Very nice!

After the previous discussion with the teacher, the students were able to formulate a sensible
hypothesis regarding the comparison between the two groups that took into account the variability in
the data. They began with a deterministic proposal for a rule, ‘surnames in the USA are longer than in
Israel’. However, they noticed immediately that this assertion does not take full account of the
situation presented by the data, and decided that variability should be included in their description by
adding the constraint “usually, not always” to the rule. Understanding that some surnames can
“behave differently”, i.e., deviate from a general rule they formulated, can be considered an important
step in the development of their acceptance of the existence of and tolerance to variability. In other
words, they began to adopt the statistical perspective of trends that are generally true, but still have
exceptions.

This new understanding is evident in D’s provision of an “opposite example”, an Israeli name that
is longer than a USA name, to show that the ‘rule’ holds even if there are opposite cases. D suggested
this same example in the previous discussion with the teacher. While at that time it limited his ability
to formulate a general hypothesis and view the data globally, here it is an expression of comfort with
global views of the data that include variability. Hence, this opposite example, which derailed D from
being on the right track on the first occasion, helped him adopt a statistical view of variability at this
subsequent time.
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Why might the students have initially focused on deterministic relationships between the variables
and paid special attention to the unusual case? A possible explanation for their perspective can be
found in their short-term learning history. 4 and D used spreadsheets in their algebra studies
(immediately before they started to learn the EDA unit), to explore patterns, generalize, model
mathematical problems, create and use formulae, and draw tables and graphs. Most of the tables
investigated were linear correspondences between two sets of values. The students were accustomed
to generating tables with the spreadsheet by ‘extending’ the pattern of constant differences between
adjacent cells through the act of ‘dragging’ a pair of cells to duplicate this difference to the rest of the
cells in the column resulting in long tables with clearly defined patterns. Using the same exploratory
learning environment may have evoked for them the same deterministic nature of the relationship
between variables found in algebra, which they incorrectly applied in statistics in order to make sense
of data. Thus, their first focused observations referred to what was salient to them and a familiar part
of their practices, the ‘differences’ between adjacent data entries not being constant. The only
regularity they found in the data was a set of three Mc names. Maybe they implicitly began to sense
that the nature of these data in this new area of EDA, as opposed to algebra, is disorganized, and it is
not possible to capture it in a single deterministic formula, e.g., the previous “Usually, not always”
comment.

At the end of this episode the two students seemed very satisfied with their answer. However, it
was hard to appreciate at this stage how fragile their current understanding was. Additional
difficulties with their abilities to acknowledge, explain, describe and deal with the variability in data
in the context of this “noisy” and complex data situation unfolded in later stages of their work.

Stage 4. How to account for variability when comparing groups using frequency tables

After the students formulated a research question and hypothesis they were introduced by the
student textbook to different concepts related to frequency in the context of the surnames
investigation: frequency, relative frequency, and creating univariate frequency tables using
spreadsheets. At this stage, 4 and D worked smoothly with the software and tasks, explaining every
step and overcoming technical and conceptual hurdles. The following dialogue took place when they
completed the production of two univariate frequency tables and were asked to use them to compare
the two groups. See Figures 4 and 5, which are recreations of actual displays students generated on
their own.

Israeli class American class
Surname’s Frequency Relative Surname’s Frequency Relative
length frequency (%) length frequency (%)
2 1 3 4 4 11
3 7 20 5 2 6
4 11 31 6 10 29
5 4 11 7 4 11
6 4 11 8 9 26
7 6 17 9 2 6
8 2 6 10 1 3
Total: 35 100% 11 3 9
Total: 35 100%
Figure 4. Frequency table of surname’s Figure 5. Frequency table of surname’s
lengths in the Israeli class lengths in the American class
38 D [Reads the task] Use the frequency tables that you generated to compare the surnames’
length in the two countries... Emm... They [the American surnames] are really a little bit
longer. In the USA there are no 2 or 3-letter names...
39 A Yes. And in Israel...
40 D ... since they [the 2 or 3-letter names] are a bit short.
41 A The table [Figure 4] starts from...
42 D From 2 [letters] to 8 [letters].
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43 A The [Israeli] surname length is from 2 to 8... And in the USA they’re from 4 to 11... In

other words, in the USA 2 or 3-letter names are not considered at all.

They’re considered, but there are simply none.

There are none, or there is exactly one in the whole USA, something like that... And in

Israel, names with 9, 10, and 11 letters are not considered, because there are none.

46 D Because they [American names] have vowels. For example, Raz, Itzik Raz [a student in their
class]: Here [in Hebrew] it’s R and Z, and there [in English] it’s R, A, and Z — three letters,
did you understand?

44
45

EN

47 A In Israel, names with 9, 10, and 11 letters are not at all considered, because there are none.
There may be one or two all over the country, yes, yes.

48 D Like Levkowitch.

49 A So, for example, we see that names with 8 letters are 6% in Israel.

50 D There — they are 26%.

51 A In the USA they are 26%.

52 D 20% more.

53 A 20% more, and it’s a lot more, and...

54 D A lot more, interesting, lovely... Actually, emm... just a second... That’s exactly all I'm
saying...

55 A I assert that in the USA there are more... the names...

56 D There are longer names, right.

57 A Longer according to the comparison between these tables [Figures 4 & 5]. It may not be
certain, but at least according to these tables... So, in the USA table, there are no 2 and 3
letter-names while there are 9, 10, and 11, but none in Israel. This means that the names are
longer. [Writing this conclusion in his notebook.] Now, we also see here that in Israel, there
are many more 4-letter names, which is considered pretty short.

58 D Having a 4-letter name is the coolest matter in Israel.

59 A So maybe because of that, there are more of those [surnames] in Israel, and in the USA — the

names are longer. Therefore there aren’t many names with 4 letters there. I brought up the 4
letters just as an example.

The students were faced with an unfamiliar and complex situation, presented in two separate
frequency tables that included many values (Figures 4 & 5). Their purpose was to find ways to justify
their hypothesis that surnames in the USA are usually longer than in Israel using the two frequency
tables they had just created. On their own, they constructed a comprehensive argument, consisting of
the comparison of two kinds of “special” values within the distributions: disjoint edge values —
present in one distribution and absent from the other (and vise versa), and common edge values — the
first and the last common values of the two distributions.

They began their argument by looking at the distributions’ edges, moving from the lowest to the
highest edge, and the range of values in between. D used the left “tail” (the shortest surnames in Israel
that are missing in the USA group) as a justification for the claim that American surnames are “a little
bit longer” [38]. They continued by noticing the different ranges of the groups; however, they did not
make explicit use of them as measures of dispersion [4/—43]. Then A4 argued symmetrically about the
right “tail” of the USA distribution that is missing in Israel. While this opposite symmetry between
the distribution edges seems to strengthen their confidence in the claim that the USA surnames are
longer, it does not help them see the horizontal shift between the two generally-similar distributions.

Once the disjoint values were considered, the students moved on to compare the frequencies of
the neighboring values, namely the last and the first common values of the distributions (8 and 4-letter
names respectively). 4 suggested that the large differences in the relative frequencies of these values
provided additional support to their hypothesis. They also informally acknowledged that 4-letter
surname is the ‘mode’ in Israel [58]. These comments may represent first steps towards understanding
density in a distribution.

A and D integrated contextual knowledge to support their understanding of, and in order to
account for, the variability in the data. First, D suggested a causal explanation to account for the group
differences, namely the use of vowels in English versus diacritical symbols in Hebrew. He also
provided an example of one Israeli surname Raz, which has three letters in English but only two in
Hebrew [46]. A further speculated that their sample implied the rarity of very short and very long



53

surnames in the USA and the Israeli populations respectively [47]. D supported him bringing up his
frequently mentioned example of Levkowitz, a relatively long Israeli surname in their class. In these
actions, 4 and D were trying to synthesize statistical and contextual knowledge to draw out what can
be learned from the data about the context of the problem. The context of the problem supports their
statistical reasoning by providing reasonable explanations to the emergent patterns in the variation. At
the end of this dialogue they wrote the following synthesis in their notebooks.

A “In-the USA;-the names-are-longer-thanintsrael. [This sentence was written and later erased by A.] In

the American table, there are no names with 2 and 3 letters, and there are names with 9, 10, 11 (none
in Israel). In Israel, short names are more frequent; In the USA, the long names are more frequent.”

D “In the USA, the names are longer than in Israel (according to the tables). In the American table, there
are no names with 2, 3 letters, and there are of 9 to 11.”

Arriving at a general conclusion was not a straightforward process for both students; however,
they seem to be in different positions. D, without much doubt, accepted that the conclusion “In the
USA, the names are longer than in Israel” captured the essence of the situation, and was less
disturbed by the presence of outlying values, or irregular patterns in the data. In contrast, 4 struggled
more with the variability presented in the data, and was more attentive to the prominence of “local
deviations”, which kept him from dealing more freely with global views of data. This could have been
the reason for his erasing the general conclusion in his written summary. On the other hand, the rest of
his conclusion is a beginning step to modeling variability and conceptualizing the use of ‘density’ in
comparing distributions.

Stage 5. How to use center and spread measures to compare groups

In the second part of the Surnames activity the students were introduced to basic statistical
measures of center (mode, mean, and median), spread (range) and outliers. They used the computer to
find the statistical measures of the two groups and organized them in a table. See Figure 6 which is a
recreation of the actual display the students generated. The next question was to use these measures to
compare the groups. The students were uncertain how to answer the question and asked for help.
After the teacher approved one answer as being in the right direction, 4 and D started to interpret the
table.

Statistical Measures Israeli Class American Class

Number of Students 35 35

Mode 4 6

The maximal value 8 11

The minimal value 2 4

Range 6 7

Mean 4.83 7.06
Median 4 6
Outlying values 2,8 5,9,10

Figure 6. Statistical measures of the two classes (The correct median of the USA group is 7.
For the outliers, the students chose values with minimal frequency.)

Using the statistical measures table that they generated (Figure 6), the students started comparing
the groups by noticing that both the maximal and the minimal values of the Israeli group are smaller
than those of the American group. However, they erroneously concluded that the range is also smaller
since the two extreme values are smaller in the Israeli names. While the range does happen to be
smaller, it is not for the reason stated. This shows a misinterpretation on the part of the students. Once
they noticed that the mean and the median also behaved in a similar way, they inferred that all the
statistical measures of the Israeli distribution are smaller than those of the USA distribution. In spite
of their fluent work at this stage, their actions seem to be merely procedural, missing both the
meaning of measures as representative numbers (Mokros & Russel, 1995), and the distinction
between center and spread measures.
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Stage 6. How to model variability informally through handling outlying values
Dealing with information in the last row of the measures table (Figure 6) initiated the following
dialogue about outliers.

60 D But in the outlying values...

61 A In fact here it’s [different than the rest of the measures]... You expect that in Israel the
outlying values will be higher [larger] than in the USA, since there are less high [long
surnames in Israel]. But in fact you see here that in Israel the outlying values are not so high
[large].

62 D I am confused now, I don’t understand. Not correct, because if your data...

63 A If everything in Israel is smaller, then you would expect that the outlying values, yes, will be
high [large] numbers, since there are few of them; and in the USA, the outlying numbers —
will be lower [smaller], since there are few of the low [short surnames].

64 D Yes, but this is not correct.

65 A But in fact in the USA also - the high [large surnames] are the outliers.

66 D 9 and 10.

67 A Right, 10 and 9 are outliers, but 11 is really high [long].

68 D Correct.

69 A Well, let’s not write about that.

So far, the comparing of the two groups using statistical measures had been a straightforward and
monotonous task. However, the outliers in the last row of the measures table presented a new
challenge to the students: how to compare sets of numbers (2 and 8 in Israel vs. 5, 9, and 10 in USA)
that had no trivial pattern and meaning. Furthermore, 4’s pre-conceptualization of outliers as unusual
and least frequent values in a distribution made him predict that the outliers in Israel would be only
the long surnames since the Israeli surnames tended to be short (and vice versa in the USA
distribution).

A seems to deal with distributions’ variability with a plain dichotomous model. In his mental
model, he divides the distributions to two groups: The short surnames that include the majority of the
Israeli values, and the long surnames - the minority (and vice versa in the USA). This model appears
to have helped him deal, describe and quantify the variability by reducing the ‘noise’ within the
distributions. He consequently predicted that the variability between the groups would be also
straightforward [67]. Once the students realized that the outliers were telling them a conflicting, more
complex ‘story’ of the variability in the data, they did not find an alternative explanation and gave up
on the resolution of the conflict.

It appears that having to deal with the outlier as a concept (i.e., a principled class of observations,
not just some specific data points) contributed to the complexity of the students’ conceptual task and
understanding at this stage. A few minutes before the above dialogue took place, they came across
outliers and chose to define them as “the highest and the lowest values”. The meaning of the Hebrew
word for outlier is “exceptional or unusual” and may have influenced their definition choice. Thus,
from their perspective, the modal value was also an outlier. The teacher’s explanation that outliers are
individual data points that fall outside the overall pattern of the distribution made them abandon the
mode as an outlying value, but left them with the view of outliers as merely the least frequent values.

Through their dealing with the outliers, the students presented a simplistic view of the
distributions in order to handle the variability in the data. In their model, resembling a skewed
distribution, the majority of the distribution concentrates in one interval, while the less frequent
values, the outliers, are positioned in a disjoint interval. This model helped them to present clearly the
difference between the distributions, which followed opposing patterns. In their view, the selection of
outliers is based on low frequencies, meaning they are exceptional, since they are rare. In that respect,
the students’ consistent use of “high” and “low” to describe the “long” and “short” surnames in all the
dialogues can be attributed to their focus on the variability in frequencies and not only to a careless
use of language.
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Stage 7. How to notice and distinguish the variability within and between the distributions in a

graph
In the third and final part of the activity, the students were guided to generate graphical displays

of the data and were asked to use them to compare the distributions. The following dialogue took
place after they created a double bar chart of the two groups (similar to the graph displayed in Figure

2).
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[Reading the task] Use the graph you generated (Figure 2) to describe the emerging trend in
the surnames’ length of the two countries.

Let’s see: The USA... usually... no... hold on...

It seems that it’s a lower trend in the USA.

Not low, it seems about the same in the graph.

Aha... No, higher trend.

Hold on, the USA...

Since you do not compare this to that, but rather this to that.

[Cynically] Really!

All right. [Unclear] ... seven.

So it’s higher here, it’s higher here, here, here, and it’s higher here; but in Israel it’s higher
here, here, here, and here.

And here.

And here.

They balance each other.

Look, the advantages [height differences] are bigger in Israel. No, not always. Let’s ask
someone [a teacher] what it means.

I know what it means.

What?

It means that the emerging trend is...

But it is not equal. Look, we said that the USA is longer... The USA leads in 8, 9, 10, and
11, while Israel leads only in 2, 3, 4, 5, and...

We said that the USA names are longer, what’s the big deal?

That’s right. So, the USA leads in the longer names. That’s also not a big deal since 2 was
not considered at all in the USA, while 11 was not considered at all in Israel.

What’s the big deal? They were not considered because there are none.

OK, but...

They did not ignore data... It appears that in Israel the lengths of the lower names are...

No...

The length of the names

In Israel... In Israel...

The lengths of the lower names are...

No. In Israel, the lengths of names with fewer letters have a higher frequency, but in the
USA, the lengths with... [having difficulties to complete the sentence]

I know how to formulate this. Write down.

No. I first want to hear what you have to say.

OK. In Israel, the frequency of the names with low number of letters...

Relatively low.

... is higher than in the USA.

Just a second, low — let’s say smaller than 5.

Let’s assume so. ...is higher than...

No. But there is also one exception here.

The frequency is higher than in the USA.

But there is also one exception here.

[Angrily shouting] OK, it’s in general! It’s a general trend! It’s not the trend for the
exceptional one.

[Surprised by D’s reaction] Buu ...

OK. On the other hand, in the USA, the trend... the frequency of the long surnames is
relatively higher than in Israel.
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Although the students are familiar with generating and interpreting bar-graphs, handling this
particular double bar-graph (Figure 2) is a complex task for them. Their challenge is figuring out the
graph and understanding the variation embedded in the data. At first, the students provided conflicting
interpretations of the graph; their rather unclear statements [72-73] are initial attempts to find one
global description that accounts for variability by summarizing the difference between the bars in the
two groups. This attempt can be considered a progress in comparison to their previous interpretations
of graphs in the SC, which were mostly local, focusing on one or more individual values within the
distributions (Ben-Zvi & Arcavi, 2001). D suggested that their disagreement arose from their different
ways of reading the graph: ‘horizontal’ reading — comparing values, vs. ‘vertical’ reading —
comparing heights of bars (density, frequency).

The students then began focusing on comparing the heights of adjacent bars from the two groups.
Based on a method 4 suggested for summarizing the differences between the groups [76-79], they
counted how many times the bar of one group was higher than the bar of another group for each
surname value on the X-axis. For example, if for a surname length of 6 letters the bar for the Israeli
group was of height 4 and for the US group of height 10, then the US group was “winning” there.
However, this led them to an impasse: the number of “winning” Israeli and American bars was equal
[82]. A second trial to compare the height differences between adjacent bars also proved fruitless.

Only when they began focusing on the location of the “winning” bars of each group, did they
realize that the American bars are higher than the Israeli bars for the long names, while the Israeli bars
are higher for the short names. Thus, they reduced the problem of comparing each pair of bars to
comparing two subgroups, the relatively short and long surnames. Their previous success, in the
frequency table task, in handling the variability between the groups by dividing the distributions to
two groups seems to have helped the students out of impasse also here. This informal comparing
method resembles Cobb’s (1999) finding that the idea of middle clumps (“hills”) can be appropriated
by students for the purpose of comparing groups.

However, 4 was not completely satisfied with the above realization and was particularly
concerned [/03] about the distinction between short and long names. This issue, which worried him
also at the beginning of the activity [2/], was triggered here by the lack of clear-cut borderline
between the groups: 5 and 7-letter names are more frequent in Israel and the 6-letter names are more
frequent in the USA (see Figure 2). While A4 could not ignore the presence of this deviation in favor of
a global summary of the variability between the groups, D was not disturbed by the ‘noise' in the data.
He claimed that their comparison is general and therefore they must ignore the one exception [/08].

They requested the teacher’s approval before they wrote a summary in their notebooks: “7The
emerging trend is that the frequency of relatively short names (up to 5 letters) is higher in Israel than
in the USA, but the frequency of relatively long names is higher in the USA than in Israel.” Thus their
final description of the variability between the groups was based on comparing the frequencies of two
subgroups ignoring the deviation from the trend in the center.

4. DISCUSSION

This study was undertaken to contribute to our understanding of the process through which
students develop ways to reason about variability within and between distributions. The study
examined the first steps of two students who worked on a group-comparison task in a rich technology-
based environment. In this environment, as happens in regular classes, students’ work and intuitions
are supported by formal curricular materials and ongoing instructional activities. The results
illustrated several aspects, discussed below, of students’ emerging understanding of variability in
comparing groups and the role of supporting factors in that process, in particular the teacher’s role.
Conclusions and implications are discussed further below.

4.1. STAGES IN DEVELOPMENT OF REASONING ABOUT VARIABILITY

A and D started by trying to make sense of general questions normally asked in EDA tasks. Their
learning trajectory included coming up with irrelevant answers and feeling an implicit sense of
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discomfort with them, asking for help, getting feedback, trying other answers, working on a task even
with partial understanding of the overall goal, and confronting the same issues with different sets of
data and in different investigation contexts. This problem-solving process is consistent with several
other research findings (see, for example, Moschkovich, Schoenfeld, & Arcavi, 1993; Magidson,
1992): novices may be either at a loss (when asked these kinds of questions) or their perceptions of
what is relevant are very different from the experts’ view.

When looking at raw data (stages 1-2), the students initially did not notice global features of the
data and the variability within them. Their initial focus on what they saw as outstanding regularity in
the data, the three “Mc” surnames, was based on attention to local features and seems to have
restricted them from observing global features of the distributions. As noted in an earlier activity of
the SC, 4 and D were attentive to the prominence of “local deviations” in data and this kept them
from dealing more freely with global views of data. It is interesting that they did not benefit from this
earlier experience. Only after the teacher’s intervention they started focusing on relevant information
and took into account the variability in the data. Their reasoning about variability evolved then from
observing differences between two values, to distinguishing between long and short names, to
noticing and informally describing the variability between the groups. They finally arrived (stage 3) at
a formulation of a rule or hypothesis that took into account the variability in the data (“usually, not
always™).

In the frequency table task (stage 4), 4 and D focused on individual edge values, not noticing the
global features of the distribution and ignoring the center interval of the distributions (5 to 7 letters).
Possible sources of their difficulties could have been their being novices in the new area of EDA, and
the type of representation used, two single frequency tables, which seems complex to analyze and less
supportive in terms of displaying general trends. Their initial focus on distribution edges is consistent
with other studies, for example, Biehler (2001). Novice students tend to focus on the “least” and the
“most” while describing the variability between two distributions using box plots.

The students’ insignificant and monotonous use of statistical measures (stage 5) to compare the
groups (“Everything is smaller”) resembles students’ reluctance to use averages meaningfully to
compare two groups in other studies. There are a number of studies in which students who appeared
to use averages to describe a single group or knew how to compute means did not use them to
compare two groups (e.g., Bright & Friel, 1998; Watson & Moritz, 1999). Konold et al. (1997) argue
that students’ reluctance to use averages to compare two groups suggests that they have not developed
a sense of average as a measure of a group characteristic, which can be used to represent the group
(see also Mokros & Russell, 1995). In addition, students in this study may be seeing averages as only
representing middles and having nothing to do with variation.

Throughout their dealing with and comparing the outliers between the groups (stage 6), the
students presented a simplistic view of the distributions in order to handle the variability in the data.
In their model, resembling a skewed distribution, the majority of the distribution concentrates in one
interval, while the less frequent values, the outliers, are positioned in another interval. This model
helped them to compare the distributions as following opposing patterns. In their view, the selection
of outliers was based on low frequencies, meaning they are exceptional, since they are rare. In that
respect, the students’ consistent use of “high” and “low” to describe the “long” and “short” surnames
in all the dialogues can be attributed to their focus on the variability in frequencies and not only to a
careless language flow.

They finally struggled (stage 7) with reading and interpreting the graph they generated (double
bar chart, Figure 2). They first practiced their reading of the graph, trying ‘vertical’ (density) and
‘horizontal’ (variation in values) interpretations of the variability presented in it. Then they used
different local methods to describe the variability in the data. Information they gained in handling the
frequency table task helped them in developing a dichotomous model to compare the groups.

The students’ development of reasoning about variability in comparing the groups was
accompanied by somewhat parallel development of global perception of a distribution as an entity that
has typical characteristics such as shape, center, and spread. This perception seems to be a
precondition to being able to describe the two distributions as generally similar in shape and
variability, but horizontally shifted (USA distribution shifted to the right of the Israeli distribution).
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Similar difficulties were demonstrated by eight-grade students working on “prediction” questions
about comparing groups (Bakker & Gravemeijer, 2004). These students did not shift a whole shape of
a distribution, but reasoned about just the individual bars or the majority (see also Biehler, 2001).

4.2. SUPPORTING FACTORS

The study describes the difficulties and successes of what 4 and D did and how they reasoned
about variation in the presence of supporting factors that are part of the learning environment in many
classes: carefully-planned curricular materials, computer tools, peer collaboration and teacher
interventions. It is difficult to tease out, however, what was “naturalistic” about students’ actions, and
what was an outgrowth of these external factors of the learning environment. What students can and
cannot do or think regarding variation is not merely a series of simple natural steps, but rather
reactions to and struggles with the challenges and tools (including computer tools, two frequency
displays, bar graphs, etc.) that were presented to them at each successive stage of an EDA journey. In
particular, students’ statistical reasoning and actions were developed throughout by introduction to
new cognitive tools and statistical concepts in a supportive learning environment.

Several factors appear to have helped the students develop their statistical reasoning about
variability:

a) Students repeatedly experimented with using different informal tools and methods, mostly local in
nature (e.g., comparing heights of adjacent bars in a graph) or invented simple models (e.g.,
dividing the distributions to two subgroups) that partially capture the variability in the data within
and between the groups.

b) Students were helped by previous experiences with these data and other sets of data. For example,
the dichotomous interpretation of the graph (stage 6) outgrows of previous handling of the
statistical measures table.

¢) The context of the Surnames problem (e.g., the difference between Hebrew and English names)
supported 4’s and D’s reasoning in the statistical sphere and provided reasonable explanations to
the patterns they observed in the variation. Integration of statistical knowledge and contextual
knowledge is considered a fundamental element of statistical thinking (Pfannkuch & Wild, 2004).

d) The incorporation of technological tools enabled students to simply and directly explore data in
different forms and experiment with and alter views or displays of data.

e) The interactions with the teacher helped students to adopt a statistical perspective but did not
instruct them in exactly what to do. A detailed description of the teacher’s role is provided in the
following section.

4.3. APPROPRIATION: A LEARNING PROCESS THAT PROMOTES UNDERSTANDING

The data show that most of the learning took place through dialogues between the students
themselves but also after brief conversations with the teacher. Of special interest were the teacher’s
interventions at the students’ request (additional examples of such interventions are described in Ben-
Zvi & Arcavi, 2001; Ben-Zvi, 2004). These interventions, though short and not necessarily directive,
had catalytic effects. They can be characterized in general as “negotiations of meanings” (in the sense
of Yackel & Cobb, 1996). More specifically, they are interesting instances of appropriation as a
nonsymmetrical, two-way process (in the sense of Moschkovich, 1989). This process takes place, in
the zone of proximal development (Vygotsky, 1978, p. 86), when individuals (expert and novices, or
teacher and students) engage in a joint activity, each with their own understanding of the task.
Students take actions that are shaped by their understanding; the teacher “appropriates” those actions,
into her own framework, and provides feedback in the form of her understandings, views of
relevance, and pedagogical agenda. Through the teacher’s feedback, the students start to review their
actions and create new understandings for what they do.

In this study, the teacher appropriated students’ utterances with several objectives: to reinforce the
legitimacy of an interpretation as the right ‘kind’ in spite of not being fully correct, to simply refocus
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attention on the question, to redirect their attention, to encourage certain initiatives, and implicitly to
discourage others (by not referring to certain remarks). The students appropriate from the teacher a
reinterpretation of the meaning of what they do. For example, they appropriate from her answers to
their inquiries (e.g., what phrasing an hypothesis or interesting phenomena may mean), from her
unexpected reactions to their request for explanation (e.g., “You suggest that there are very short
names and very long ones.”), and from inferring purpose from the teacher’s answers to their questions
(e.g., “About the length of surnames. OK?”). Appropriation by the teacher (to support learning) or by
the students (to change the sense they make of what they do) seems to be a central mechanism of
enculturation: entering and picking up the points of view of a community or culture (Schoenfeld,
1992; Resnick, 1988). In this process, the teacher is considered as an ‘enculturator’. As shown in this
study, this mechanism is especially salient when students learn the dispositions that accompany using
the subject matter (data analysis) rather than its skills and procedures.

4.4. LIMITATIONS OF THE STUDY

The two students described in this study were considered by their teacher to be both able and
verbal. Their choice was aimed to enable the collection and analysis of focused and remarkably
detailed data in order to draw, in very fine strokes, the “picture” of their emerging statistical reasoning
about variability. Even when a phenomenon seems important and the data interpretation was validated
and agreed upon, the question of the idiosyncrasy of the identified phenomenon may remain open.
Therefore, in other studies, the data and interpretations from students in the same class or from other
classes assist in checking for generalizability of the phenomena (cf., Ben-Zvi, 2002).

In presenting the students with tasks based on comparing two groups of equal size, some
complications are avoided. This is both an advantage and disadvantage for the overall aims of this
study. Research shows that the group comparison problem is one that students do not initially know
how to approach and the challenge may remain even after extended periods of instruction (e.g.,
Bakker & Gravemeijer, 2004). Avoiding some of the complexity of proportional reasoning, the key
for handling groups of different size, simplifies the task and may help researchers focus on and
expose students' reasoning about variability. In this study, students were “pushed” to consider other
complex statistical issues, such as integrating measures of variation and center and comparing
measures within each group and between groups. However, it should be acknowledged that the study
of students’ statistical reasoning about variability in comparing groups is not complete without
incorporating tasks of comparing unequal data sets.

5. IMPLICATIONS

The idiosyncratic aspects of this study restrict the provision of broad recommendations. However,
several conclusions that are tied to specifics of this study and its results, in the context of results from
similar studies, can be drawn. The learning processes described in this paper took place in a carefully
designed environment. This environment included: a curriculum built on the basis of expert views of
EDA as a sequence of semi-structured, yet open, leading questions within the context of extended
meaningful problem situations (Ben-Zvi & Arcavi, 1998), timely and non-directive interventions by
the teacher as representative of the discipline in the classroom (cf., Voigt, 1995), and computerized
tools that enable students to handle complex actions (change of representations, scaling, deletions,
restructuring of tables, etc.) without having to engage in too much technical work, leaving time and
energy for conceptual discussions (cf., Ben-Zvi, 2000).

In learning environments of this kind, from the very beginning students encounter, develop, and
work with ideas, concepts, cognitive tools and dispositions related to the culture of EDA, such as
making hypotheses, summarizing data, recognizing trends and variability, identifying interesting
phenomena, comparing distributions and handling numerical, tabular and graphical data
representations. Skills, procedures and strategies, such as creating and interpreting graphs and tables
or calculating statistical measures, are learned as integrated in the context and at the service of the
main ideas of EDA.
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It can be expected that beginning students will have difficulties, of the type described, when
confronting the problem situations of the curriculum. However, it is proposed that what 4 and D
experienced should be an integral and inevitable component of a meaningful learning process if it is to
have lasting effects. If students were to work in environments such as the above, teachers are likely to
encounter the following learning phenomena:

* Students’ prior knowledge would and should be engaged in interesting and surprising ways,
possibly hindering progress in some instances but making the basis for construction of new
knowledge in others,

* many questions that would either make little sense to the students, or, alternatively, will be re-
interpreted and answered in different ways than intended, and

* students’ work that would inevitably be based on partial understandings, which will grow and
evolve.

This study suggests that in order to help students gradually build a sense of the meaning of the
data and statistical task with which they engage, multiple factors can and should be planned. These
include appropriate teacher guidance, peer work and interactions, and more importantly, ongoing
cycles of experiences with realistic problem situations.

Given that it is difficult to tease out the effects of what students learned or could or couldn’t do
from the enculturation processes and support of the teacher, further study is recommended that focus
more attention on the role of teachers and what they should do, or learn to do, in order to promote
statistical reasoning about variability. Much of students’ progress in the current study is influenced by
their interactions with the teacher that helped them adopt the statistical perspective but did not instruct
them in exactly what to do or how to reason. The role of the teacher which is considered as an
‘enculturator’ deserves further exploration.

It is generally recommended that students be provided with multiple opportunities to engage with
data in group-comparison tasks. The role of comparing unequal-size groups in promoting reasoning
about variability, which was not studied here, should be further explored. The students in this study
have gained from reading and interpreting multiple types of conventional data representations. The
role of student-invented data representations and new graphical tools available through educational
software and Internet has to be investigated to better expose the many ways variability is noticed,
measured, and modeled by students. It is hoped that the complexity involved in group-comparison
tasks can push students to think about the meaning of what they do and how they reason in statistics,
develop relevant actions and interpretations, and be more critical of their actions and interpretations.
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