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ABSTRACT 
 
In this reflective paper, we explore students’ local and global thinking about informal 
statistical inference through our observations of 10- to 11-year-olds, challenged to 
infer the unknown configuration of a virtual die, but able to use the die to generate as 
much data as they felt necessary. We report how they tended to focus on local 
changes in the frequency or relative frequency as the sample size grew larger. They 
generally failed to recognise that larger samples provided stability in the aggregated 
proportions, not apparent when the data were viewed from a local perspective. We 
draw on Mason’s theory of the Structure of Attention to illuminate our observations, 
and attempt to reconcile differing notions of local and global thinking. 
 
Keywords: Statistics education research, Task design, Informal statistical inference, 

Sample size, Local and global meanings or perspectives, Structure of 
Attention 

 
1. WHAT IS INFERENCE AND IN WHAT SENSE IS IT INFORMAL? 

 
Statistical inference is typically introduced as a formal topic in the curriculum at 

around age 16 or older. Inferential analysis is typically taught as a tool for judging the 
source of variation in data. Students’ lack of comprehension has been widely reported and 
in response there has been a recent research effort to understand how better to approach 
the topic from a pedagogic perspective. One response has been Exploratory Data 
Analysis, in which students attempt to infer informally about underlying trends in data 
without explicit reference to probability. These approaches make even more urgent a 
deeper understanding of how young students might make sense of this inferential process. 
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In this paper, we reflect on recent small-scale experiments to clarify understanding of 
young students’ activity when engaged in an inference related task designed to trigger 
intuitions, assumptions and conceptual thinking. Our aim is to elaborate the conceptual 
struggle that needs to take place for young students to engage in inferential reasoning. In 
so doing, we acknowledge a constructivist stance in which we search for naïve 
conceptions (as opposed to misconceptions, a distinction delineated by Smith, diSessa, & 
Rochelle, 1993) that might serve as resources for further development. We begin by 
clarifying our perspective on what we see as the conceptual roots of statistical inference 
because it is in those roots that we may find informal inference.  

Makar and Rubin (2007) give a working definition that we find useful: “We consider 
informal inferential reasoning of statistics in broad terms to be the process of making 
probabilistic generalizations from (evidenced with) data that extend beyond the data 
collected.” For us, this definition describes, without misrepresentation, statistical 
inference per se. By focussing on the conceptual basis for inference, we can begin to 
imagine younger students engaging in such activity without necessarily conducting formal 
statistical hypothesis tests or building carefully defined confidence intervals, as we would 
see in a classical statistics course. Our focus is primarily on students around the age of 10 
or 11 years, well before any formal teaching of inference. It is therefore likely that 
intuitions will not yet have been formalised through schooling and that student thinking 
can be thought of, in that sense, as informal. 

However, we wish to probe a little further into what Makar and Rubin might mean by 
“making probabilistic generalisations from data.” Immediately, we recognise a direction 
to the statement – from data to probabilistic generalisation. Inference is concerned with 
identifying patterns in the form of trends or statistical parameters in the “underlying” 
population. There has been recent research interest in how children might make, or be 
encouraged to make, inferences such as these by studying how children think informally 
about populations, given samples of data (Ben Zvi, 2006; Pfannkuch, 2006). Typically, 
the activity has been focussed on using sampled data to make statements about a finite 
population from which the data were drawn. However, other possibilities for informal 
inference exist. Our interest focuses on situations where the population cannot be 
described in terms of the total finite dataset but instead is most adequately described 
through a probability distribution. The data may be used to draw inferences about aspects 
of an infinite population or process. Indeed, our focus in this paper will largely be on 
inferences about the probability distribution associated with outcomes from a die. Here 
again it is important to distinguish between an expert sophisticated perspective on what 
was happening and the likely relatively naïve perspective of a 10-year-old. Although we 
might see the activity as being rooted in making inferences about a probability 
distribution, it is reasonable to think that 10-year-olds saw the game they were playing as 
trying to guess what the die looked like. 

We also note that in some reported studies on informal inference the activity used 
may be open to ambiguous interpretation. During SRTL-4 in Auckland, New Zealand, the 
theme for discussion was students’ thinking about distribution, rather than inference. 
However, several presentations showed students working informally with data. There was 
a realisation during discussion that the focus of the students may at times have been on 
the dataset as if it were the whole population, whereas the teacher’s attention may have 
been on the underlying population from which that dataset was only a sample. We 
referred to these two situations as Game 1, where the dataset was all there was, and Game 
2, where the dataset was merely a sample. This distinction is critical in considering how 
students think about inference. Game 1 allows no room for inference (what you see is 
what you get) whereas Game 2 demands an ability to make inferences about the 
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population on the basis of the data available (what you see might be what you get). We 
designed a task involving making inferences about the probability distribution of a die, in 
which, even from the students’ perspective of simply guessing the configuration of the 
die, the focus is firmly in Game 2. The results of throwing the die are a sample arising 
from a “hidden” (or “underlying” in the usual statistical parlance) generator (or 
“population”). 

Let us now return again to Makar and Rubin’s definition, and consider the thinking 
involved in ‘making probabilistic generalizations from data’. Prodromou (2007), and 
Prodromou and Pratt (2006) have shown that 15-year-old students, using a Basketball 
microworld, were able to make connections between data and what was called the 
modelling distribution. (We can think of the modelling distribution as a probability 
distribution used to model any particular phenomenon. Prodromou distinguished two 
perspectives on distribution, the modelling perspective and the data-centric perspective, 
which attends to the sample of data.) She has proposed the mechanisms that act in the 
explanations expressed by learners as quasi-causal agents connecting the modelling and 
the data-centric perspectives. These agents are not causal in the sense of direct cause and 
effect. Rather they are invented substitutes, which for learners play the role of causal 
agents given the lack of any explicit determining agent. 

In the ‘inferential direction’, from a data-centric to a modelling perspective, some of 
Prodromou’s students saw the modelling distribution as a target, towards which the data-
centric distribution was aiming. There is a sense of variation in the data, out of which the 
population is an emergent phenomenon, like a trend (Prodromou, 2008). In the absence of 
any explicit cause for how this happens, emergence itself is seen as a somewhat 
mysterious causal-like agent that enables the modelling distribution to emerge out of the 
data-centric distribution. 

In the opposite direction, from a modelling to a data-centric perspective, there is a 
sense of intention. In Prodromou’s research, the intention is attributed by the students 
variously to the human modeller, the characters in the software or the tools within the 
software that trigger the random generation of data from the modelling distribution. 
Software tools allowed students to explain the generation of the data-centric distribution 
as ‘caused’ by the actions of agents on behalf of the modelling distribution. We would 
recognise such explanations as the situated roots of a view of probability theory as a 
causal-like agent that enables the modelling distribution to generate the data-centric 
distribution. Indeed, in classical statistics, data are seen as generated through a mixture of 
signal and noise from a modelling distribution. 

Although we would regard making such connections between data and population as 
lying at the heart of informal statistical inference, neither probability nor emergent 
phenomena are trivial areas of mathematical modelling, and so, when we observe 
children, we are likely to see either (i) naïve understandings, which serve to make sense of 
the world in the absence of such theory, or (ii) meanings, which appear to us to be rooted 
in a situational way to these abstracted theories. Maker and Rubin (2007) refer to the 
importance in informal inference of aggregate thinking, sample size, controlling for bias, 
and tendency. Our focus is firmly related to aggregate thinking and how students might 
perceive the effect of sample size on the inferential process. In particular, we have 
become interested in the shifting of attention between what is happening in the here-and-
now, the immediate, and what is happening in an aggregated sense over the longer-term. 
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2. THE LOCAL AND THE GLOBAL 
 
Our interest in informal inference emerges out of aspects of previous work. Pratt and 

Noss (2002) reported that 10- to 11-year-olds were able to articulate expert-like views 
about short-term randomness, through meanings that were immediately accessible. These 
meanings were described in that study as local, in the sense that such resources focus on 
trial by trial variation. According to Pratt and Noss, local meanings refer to 
unpredictability, irregularity and uncontrollability. 

In contrast, these students did not easily express meanings for long-term randomness. 
Using a design research approach (Cobb et al., 2003), Pratt built a computer-based 
domain of stochastic abstraction called ChanceMaker. This microworld provided 
‘gadgets’, simulations of everyday random generators such as coins, spinners and dice, 
whose behaviour was controlled through a ‘workings box’, which is an unconventional 
representation of the distribution. Figure 1 shows the default workings box for the dice 
gadget. The software allowed children to explore the gadgets using tools to display results 
in different ways (pie chart, pictograms, and lists), and to examine and edit the contents of 
the workings box, which controlled the behaviour of the gadget (see Figure 1). 
Challenged to identify which gadgets might not be working properly, the children began 
to use the tools provided to decide how to mend the gadgets. 

 

 
 
Figure 1. The ChanceMaker dice gadget can be opened up to reveal a “broken” workings 
box. Here the student has created a pie chart from 10 throws, kept that picture, and then 

created a second pie chart from 20 throws. 
 
Gradually, the children began to articulate meanings for long term randomness, which 

focussed on an aggregated overall view of the stochastic, such as the proportion of 
outcomes was predictable (probability), the proportion of results stabilised when more 
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trials were executed (large numbers), and the observer is able to exert control over these 
proportions through manipulation of the possibility space (distribution). 

Pratt (2000) noted an interesting correspondence between local and global meanings: 
 “…local resources tend to be inverted in relation to their global counterparts. Thus, 
unpredictability as a local resource is inverted in comparison to the global resource of 
predictability (in a proportional sense). Similarly, control cannot be exerted locally 
whereas there is a global resource for control through manipulation of the 
distribution.” (p. 609) 
In Pratt’s study, the students were observing patterns in the data via the different 

representations. By interacting with the workings box, they were in effect creating a 
probability distribution to generate data. Their task became one of understanding the 
nature of the control exerted by the workings box over the variability and the structure of 
the data. It is clear from this work that it was far from trivial for students of this age to 
identify the global structures that enable statisticians to view aggregated results as 
predictable amidst the local variability of the data. Nevertheless, the design of 
ChanceMaker appeared to support students in articulating situated heuristics such as “the 
more times you throw the dice, the more even is the pie chart,” and to recognise that such 
a heuristic could be applied to explain the behaviour of various gadgets. 

Whereas Pratt’s approach led to students initially articulating local meanings before 
the emergence of global meanings alongside the local, Johnston-Wilder (2006) has shown 
how the perceptions of students of various ages (the youngest were three years older than 
those in Pratt’s study) shifted back and forth between the local and global, as they 
attempted to identify whether various types of dice were fair or not. In one-to-one 
interviews, students rolled each die and recorded the outcome, pausing frequently to 
reflect on the observed sequence. As the outcomes unfolded, students’ attention shifted 
between a local perspective, in which successive outcomes were seen as disordered and 
unpredictable, and a global perspective, in which they looked for an empirical distribution 
of the outcomes. This shift of attention was sometimes rapid and often subtle. In the light 
of Pratt’s study, we noted the direction of the shift with particular interest. 

In Johnston-Wilder’s study, students were trying to make judgements about the 
fairness of various different kinds of dice by looking at the observed outcomes. A 
student’s attention was initially focussed in the local perspective, typically looking at 
short sequences of outcomes, and often seeking patterns in these. Although such patterns 
might appear by chance, they were typically not sustained as more outcomes were 
generated. Students often discerned sequential patterns, which they thought might be 
extended in later outcomes, using them to make predictions about future outcomes. 
However, these illusory patterns appeared to be a significant distraction for the student 
trying to make a judgement about whether the dice might be considered to be fair.  

Looking at the outcomes through the global perspective involves looking across the 
space of possible outcomes to consider the frequencies of the various outcomes. The 
focus of attention is not on successive outcomes, but on the distribution of the outcomes 
across the outcome space. To see the process through the global perspective involves a 
different way of looking at the outcomes, and through this perspective it is possible to see 
an emergent order and pattern in the distribution. 

However, the distribution of outcomes can be thought of in two different ways. 
Firstly, the distribution can be a theoretical probability model which expresses what one 
expects from a process. Secondly, the observed distribution of outcomes might be viewed 
empirically as a representation of the underlying probability model. In the case of a 
student experimenting with, say, a spherical die (a hollow sphere with a hidden weight 
moving around inside the shaped interior such that it comes to rest in one of six different 
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orientations), the student might expect the die to be fair, beause the spherical appearance 
gives the die an apparent symmetry. The student might therefore hold in mind a 
theoretical distribution according to which they expect each outcome to occur equally 
often. Working with this theoretical prior model of a distribution, such a student might try 
consciously to control the process of throwing the die to produce an outcome that had not 
yet been observed in the outcomes so far. In doing so, the student has shifted from the 
global perspective, in which they were comparing the observed frequency distribution of 
outcomes with their mental model of what they expected the distribution to look like, to a 
local perspective in which they look for a particular outcome to occur next.  

In interviews with students as they experimented with the different dice, Johnston-
Wilder observed that the students’ attention shifted between, on the one hand, the 
unpredictability of the next outcome and the lack of order and pattern in short sequences 
of outcomes, and on the other hand, the order and pattern that was seen to emerge in an 
empirical distribution. When the student tried to infer the distribution from small samples, 
the apparently conflicting information arising from successive small samples appeared to 
lead the student to make particularly rapid shifts of attention between global and local 
perspectives.  

There are two interesting contrasts between the use of global and local by Pratt and by 
Johnston-Wilder. Whereas Pratt’s work focussed on the emergence of the global out of 
the local, Johnston-Wilder’s observation was one of constant shifting of attention between 
the local and the global. Secondly, in Pratt’s work, the students had available to them the 
workings box, which came to be seen as a representation (of distribution from our 
perspective) that could be used to predict behaviour and results, whereas Johnston-
Wilder’s students could see the dice but did not have access to the associated 
probabilities. Pratt’s students could therefore draw on information about the workings box 
as well as the generated data, whereas Johnston-Wilder’s students had available the data 
and whatever prior distribution they held for the dice, in the sense of expectations about 
how it might behave. 

This difference could be important because inference is more closely related to the 
activity of Johnston-Wilder’s students. When statisticians make inferences, they attempt 
to make descriptions of the population (the distribution, or at least statistical parameters 
such as the mean, which describe elements of that distribution) based on data that have 
been sampled. Johnston-Wilder’s students, in trying to understand what was happening 
when the die was thrown, were trying to infer something about the underlying infinite 
probability distribution (at least from our perspective), in some respects the inverse of 
what Pratt’s students were doing. By attending to the workings box, a representation of 
the modelling distribution, and observing consequential changes in the data, Pratt’s 
students might be expected to see, in Prodromou’s (2007) terminology, intention in how 
the human or computer agent generates the data through the modelling distribution. In 
contrast, again using Prodromou’s terminology, one might expect Johnston-Wilder’s 
students to see the data as targeting the modelling distribution in the way that the model 
emerges out of the data. However, it is unclear whether the shifting of attention observed 
by Johnston-Wilder could simply be accounted for by differences in theoretical 
perspective from that of Pratt, or by methodological issues related to the task differences, 
whereby target connections are more prone to such shifting than intention connections. 

In this paper, we seek to elaborate on the shifting between the local and the global in 
such a way that we begin to recognise the difficulties that students may have in making 
informal inferences that connect data to probability distribution. Our approach will be to 
examine fresh data, arising from a small-scale study in which students were challenged to 
infer the nature of a single hidden ChanceMaker die, given data being generated by the 
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students’ manipulation of that die. We aim, through this new elaboration, to guide the 
design of new resources that would have the potential to support young students’ 
inference-making. In this respect, this paper could be thought of as an extended reflection, 
marshalling thoughts geared towards the next phase of a long-term design experiment. We 
have found it useful to extend our corpus of data from the work of Pratt and Johnston-
Wilder with some fresh data, collected in an attempt to tease out the subtle differences 
alluded to above. In the next section, we explain further the basis of the additional data 
which will inform our understanding of the relationship between the local and the global 
in statistical inference. 

In our discussion of the new data in this paper, we have drawn upon a framework for 
the Structure of Attention (see, for example, Mason & Johnston-Wilder, 2004). This 
describes how a person’s attention can shift rapidly between different foci, related to 
different ways of attending. Mason and Johnston-Wilder refer to the following five ways 
of giving attention to a situation: 

• attention on the whole, the global; 
• attention on distinctions, distinguishing and discerning aspects, detailed 

features and attributes; 
• attention on relationships between parts or between part and whole, among 

aspects, features and attributes discerned; 
• attention on relationships as properties that objects like the one being 

considered can have, leading to generalisation; 
• attention on properties as abstracted from, formalised and stated 

independently of any particular objects, forming axioms from which 
deductions can be made. 

(Mason & Johnston-Wilder, 2004, p. 60) 
There is considerable evidence that people working to make sense of random 

phenomena are sometimes attending to what will happen next (immediately), to what has 
just happened, and to what has been happening over a longer period. They may easily 
circle around these very rapidly, or focus for a time on one or the other. It is a reasonable 
conjecture that some people at least are seeking a relationship between two or three of 
these, not always with success. But the overall goal of the instruction is that they see these 
relationships as examples of properties that can hold in other situations. 

Children in the data discussed below run into conflict with the essential 
unpredictability in the short-term, and the fact that only long-term statistics (summaries of 
data) are likely to show some relative invariance. Sometimes the children are discerning 
details in the graphs for example (past history) and seeking relationships between the past 
history and the number of occurrences of something. But, in the back of their minds there 
is a nagging doubt because these ‘relationships’ are at best approximate. 

One aim of the tasks is to get learners to restructure their attention from the local to 
the global, from the details of specific events to the summary statistics of a large number 
of events. This could be described as perceiving a property which is instantiated in the 
data collected. However, this has an extra wrinkle because summary statistics are never 
exact, only approximated by instantiations. 

In the discussion of the data that follows, we use this way of thinking to account for 
the way that the children often show a somewhat tenuous desire for more trials. 
Sometimes it is the interviewer who suggests the need for more trials, and sometimes the 
idea comes from the children. We suggest that, in this study, children seem to be seeking 
relationships between three distinct features of the software: the ‘workings box’ (whether 
they have access to it or imagine it); the role of a ‘large number of trials’; and the 
graphical representation of the outcomes (whether it be ‘pie-chart or pictogram’). 
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3. A FURTHER APPROACH TO STUDYING THE LOCAL AND THE GLOBAL 
IN INFORMAL INFERENCE 

 
Building on the work of Prodromou and of Johnston-Wilder, we designed a small-

scale study, which aimed to explore children’s thinking-in-change (Noss & Hoyles, 
1996). One aspect of the study was to examine in detail students’ attention to the local and 
global when they worked with ChanceMaker as in Pratt’s original study. However, in 
order to connect this work to the second aspect of the study, and because of our limited 
resources, we restricted the children to work only with the die gadget. 

For the second aspect, we wished to explore a situation which seemed to bear the 
hallmark of Johnston-Wilder’s work, in that the students were not aware of the underlying 
probability distribution, and yet had the advantages of simulation, such as the ease of 
generating large amounts of data as available in the ChanceMaker study. In fact, we 
recognize that in pedagogic tasks which aim to engage pupils in inference, there is a 
potential gap between the focus of the teacher/designer on reasoning about the population 
(looking at the population through the sample as in Game 2 in Section 1) and the focus of 
pupils who may be looking at and reasoning about the sample, without understanding the 
true nature of the game (as in Game 1 in Section 1). We therefore wanted to design a 
context in which it would be clear to the pupils that they needed to attend to the sample in 
order to reason about the population. We therefore implemented a simple modification to 
the original software, which allowed the ‘workings box’ for the die to be hidden (see 
Figure 2). Using this modified software (which, for the sake of clarity, we call 
InferenceMaker), we designed a task based on the creation of a ‘funny’ die which children 
could explore in order to guess what numbers were on its sides. The software allowed the 
user to enter any numbers into the workings box, and also any number of numbers, so it 
was possible to ‘make’ very unusual dice. 

 

 
 
Figure 2. In InferenceMaker, it was possible to edit the workings box and then hide it by 

clicking the “Hide Workings” button. Children were then challenged to infer the 
configuration of the die by generating data and charts. 

 
We conducted clinical interviews with small groups of 10- to 11-year-old children, in 

the final year of primary school. We worked with children from a single class group, 
covering a range of attainment. While the children were working, CamtasiaTM software 
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was used to capture all activity on the computer and audio recordings were made of all 
discussion. Field notes were kept by the researchers. 

When working with InferenceMaker, after a brief introduction to the software, a 
funny die was created in secret by editing the workings box. This was then hidden, and 
the children were challenged to guess what the new die looked like, using any facilities of 
the software that they chose. To focus their explorations, they were told how many sides 
the die had (i.e., how many items were in the workings box). Once they had decided on a 
description, a discussion was held about how the description was arrived at, before the 
workings box was revealed. 

In the ensuing elaboration, we shall first discuss students’ attention on the local and 
global when the workings box was available, as in the original ChanceMaker study, and 
secondly two main themes relating to how the students’ attention to the local impacted 
upon their inferential reasoning when the workings box was hidden. Our focus on 
attention throughout Sections 4 and 5 is informed by the Structure of Attention 
framework. 
 

4. THE LOCAL AND THE GLOBAL WHEN CONNECTING  
THE WORKINGS BOX TO THE DATA 

 
We report first on the activity of Jim and Ivan, as they worked on mending the die 

gadget (as in the ChanceMaker study) for 30 minutes. The boys were presented with a 
‘broken’ die gadget, whose workings box contained too many sixes (see Figure 1). The 
workings box was visible, but at first the boys paid little attention to it. Most of the initial 
interaction with this gadget was done by Jim. He approached the investigation 
systematically, ensuring that each batch of data had exactly the same number of trials. 
During this work, Ivan was very quiet and said almost nothing. After several experiments 
with 32 trials in each, Jim reported that “the dice might be a bit wonky if it keeps having 
six as the most, like the biggest.” However, although he had stated clearly that the die was 
‘wrong’, he later commented that “it could just be total luck that it happens to do 
that.”.We continued to press the two boys to suggest ways that they could be more certain 
about whether there was something wrong with the die gadget, but the boys’ only 
suggestion was to experiment with the ‘strength’ control, to see whether this made a 
difference. At this point, Ivan began to contribute more, and after a further set of 32 trials, 
he quickly (and correctly) stated, “It doesn’t make a difference.” Jim agreed that this 
suggested that “there might be something wrong with the dice.”  

The persistence of the relatively high frequency of sixes over several sets of trials 
attracted Jim and Ivan’s attention. They attended to the detail of the proportion of sixes in 
each set of trials, and related the frequency of sixes to the frequencies of the other 
outcomes. The details became, for the boys, a property, which Jim has expressed as 
“something wrong with the dice.” The boys compared what they noticed with their 
unarticulated expectation that the distribution of outcomes should be uniform. 

The boys then turned their attention to the workings box, and Ivan immediately 
identified that there were “loads of sixes in there,” confirming their conjecture. He edited 
the contents of the workings box, deleting two of the three sixes, to leave one of each digit 
from 1 to 6. When the boys went on to test the mended die, Jim again took control of the 
experiments, but the uneven outcomes from the 32 trials left him unconvinced that the die 
was truly mended. 

For clarity in all protocols we have adopted a convention in which we use the word, 
such as ‘six’, to represent the cardinal number on the face of the die or in the workings 
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box, and the digit, for example ‘2’, to represent the frequency with which an outcome 
appears in the workings box or in the results. 

 
Res: So what do you think now? Do you think the dice is mended or do you 

think it’s still wonky? 
Jim:  Well, dices aren’t supposed to do equal amounts of each number, really. 

Cos they’re dices, but… it’s… it doesn’t give out that much, but… it’s not 
like having six as the biggest thing any more… We could probably fix it 
properly if we changed the numbers round on the workings a bit more. 
And we could make it equal I suppose. 

Res: How would you do that? 
Jim: Umm… If there were less ones, you could put 2 ones in. Or something. 

But that would increase its chances by two and then that would make it go 
wonky, so… 

 
In contrast, Ivan saw no difficulty with the conclusion that the die was now mended. 

He was certain that the die was working properly, “Because the workings there, 
everything’s good.”  

 
Res: Oh, right! But it’s not coming… the numbers aren’t all coming out the 

same amount. Does that matter? 
Ivan: No. Because in real life each one will sometimes be higher. 
 

Even after they had altered the number of sixes in the workings box, the proportion of 
sixes observed in the subsequent set of 32 trials was still subject to the vagaries of random 
variation; 32 trials is still a relatively small sample upon which to base a judgement. 
There is no evidence here that the boys have yet perceived the wider and more powerful 
property relating to large samples: the Law of Large Numbers. Jim in particular appeared 
to expect more stability than he found from his relatively small samples of 32 trials. 

 
5. THE LOCAL AND THE GLOBAL WHEN INFERRING FROM THE DATA 

 
In this section, we consider how students worked with InferenceMaker, where the 

workings box was hidden. The children engaged enthusiastically with the task. They 
typically began by making single throws of the die and looking at the results list, but, with 
a little prompting, they moved to using the pie chart or pictogram to make predictions 
about the die as they extended their sample. Their final samples varied in size 
considerably, and there was no general recognition that a larger sample might be more 
effective. We shall say more about this in the next subsection, but first we want to discuss 
the dominant tendency for students to attend to the local. 

A recurring feature of the children’s activity was their focus on the changes which 
occurred in the appearance of the graph as they grew their samples by adding more 
throws, and the relative invisibility of more stable features.  

Rob and Carl had been given a ‘funny’ die with six sides [3 4 5 6 6 6]. They decided 
quite quickly that the only numbers on the die were three, four, five and six. They also 
realised that six was occurring most often, and so conjectured that there were 2 sixes (‘the 
six is 2’). This left them with four faces on the die to fill. As their sample grew, three and 
five seemed to appear more often than four (though not as often as six). As they added 
more throws, and studied the pie charts, they explored different ways to describe the die. 
This conversation took place when they were examining the pie chart, generated from 130 
throws (see Figure 3). 
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Rob: The six is 2 [sides]. 
Carl: Six is definitely 2 or 3. Three is 1, I think. No four is 

definitely 1. I think three is… 
Rob: It’s either three or five, isn’t it [that is 2 sides]? 
Carl: Three or five, may be 2. 
Res: Why do you think six is 2? 
Carl: Because it’s getting the most rolls. 
Res: Ah, why do you think it’s 2 and not 3?  
Carl: We don’t, I think it’s either 2 or 3. 
 

130 throws 

 
Figure 3. Rob and Carl make informal inferences after 130 throws. 

 
At first sight, it seemed puzzling that the boys did not ‘see’ that six was taking up a 

much larger slice of the pie than either three or five, and so could not have been 
representing the same number of sides of the die. However, their extended discussion 
showed how their attention was, at this point, focussed on the way each slice was 
changing as the sample grew. The five-slice seemed to be getting bigger, but was it bigger 
than the three-slice? Their attention was focussed upon the way that each slice was 
changing and on the need to fill the appropriate number of ‘faces’ on the die: They 
recognised that if there were 2 sixes, and only 4 numbers in total, there must be another 
duplicate number somewhere on the die. 

Throughout their work on the task, Rob and Carl seemed willing to grow their sample 
with larger numbers of throws, but whether in the hope of seeing stability in the results or 
simply because this was the only action available to them other than to make a conjecture 
and settle upon it, we cannot tell. The local and sense-triggered phenomenon of change 
seems to be at the forefront of their attention, whereas invariance (stability) is hard to 
detect as a relationship, particularly so because each new graph replaced the previous one 
as more throws were added. They gave no evidence (as we might have wished) of 
perceiving a property (global) of ‘settling down in the long run’. In the end they had a 
sample of 280 throws before agreeing on their final (correct) description of the die. 

We then challenged their confidence in this description by making a new sample of 10 
throws. Their confidence proved to be fragile (Figure 4). 

 
Carl: Six is the most 
Res: What do you think? 
Rob: 2, 2, 2 (pointing to the three sections) 
Carl: No 
Res: It’s the same dice 
Carl: 2 sixes, 2 threes and the rest are 1 
Rob: Yeah but remember there’s a four as well 2 sixes, 2 

threes 
Carl: 2 sixes, 2 threes and then 1 is five and 1 is... 
Res: But you were saying to me that there were 3 sixes and 

1 three, 1 four and 1 five 
Carl: This is confusing! 

10 throws 

 

 
Figure 4. Carl and Rob respond to our challenge based on 10 throws. 

 
Adding ten more throws to the sample produced yet another image, with a small slice 

for four and a reduced slice for five. When asked which image they believed. Carl 
favoured the one for twenty throws: “Because the 280 was just getting too stupid, I think, 
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and had too much in.” Rob set about making a sample of 140 throws, half way to 280. 
Carl’s dismissal of the larger sample as “too stupid” seemed at odds with his earlier 
willingness to create more data, but may have reflected his frustration that more data 
seemed to produce more change rather than more stability. Carl’s dismissal of the larger 
sample might be explained in terms of the way senses work; the senses may have been 
activated by change and the learner’s attention may have been drawn to change. Although 
Rob and Carl were expecting invariance in the midst of change, as they may have learned 
to expect from their past experience of mathematics and from learning to make sense of 
their experiences in daily life, their attention was drawn to change rather than to 
invariance. They lost sight of the significance of the global perspective (the results of the 
larger sample of 280 outcomes) as the change arising from what had happened most 
recently in the smaller sample of 10 outcomes (a local perspective) had attracted their 
attention. 

It was unclear what Rob and Carl were expecting or hoping to see as they added more 
and more throws to their sample. We conjecture that they were expecting to reach a point 
where the new, larger sample produced a graph which looked the same as the previous 
one; that is, where there was no change. However, as even small changes were grabbing 
their attention, because this is what our senses are most attuned to, they became frustrated. 
Even though they had drawn an initial inference from a sample of 280 outcomes, their 
attention was drawn by the change apparent in the subsequent sample of 10 outcomes. 
They did not have a secure perception of the (global) property that large samples were 
more informative than small samples, and perhaps assumed that the strategy of taking 
larger samples was the wrong one. 

We now return to the work of Jim and Ivan, whose first encounters with the workings 
box in the software were described and discussed in Section 4. In what follows, we had 
used InferenceMaker to set up a 12-sided die whose workings box was hidden and 
contained the following: [1 2 2 2 3 3 3 4 5 6 6 7]. Jim and Ivan were told only that the die 
had 12 faces. Jim initially took the lead in controlling the software and generating data 
until they had a pictogram of 100 outcomes (Figure 5). Ivan commented from this graph 
that there were “loads of twos and threes,” but Jim found difficulty in interpreting what 
this graph implied about the die. 

 
 

Figure 5. Jim and Ivan generated a pictogram based on 100 throws. 
 

Ivan: Well last time it was all different (indicating the outcomes), and it was the 
same numbers (indicating the workings box?) 

Res: So what might it have?  
Jim: Umm. It might have 2 sevens and 3 ones and … (pause) and 7 sixes… 
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Jim seemed to have switched to describing the numbers of spots in the pictogram as 
though they were exactly the numbers of each element in the workings box. This appears 
to be an unintended metonymy, in which Jim’s attention has switched from one detail to 
another. In contrast Ivan appeared to have a clear idea of how to interpret the pictogram. 

 
Res: Which number do you think that there might be most of on [the] dice? 
Ivan: Well, threes and twos. 
Res: threes and twos. …So do you think there might be the same number of 

threes and twos? 
Ivan: No. 
Jim: Yeah. Well it’s going to be more than the fives, fours, sixes, sevens and 

ones. 
Res: OK. 
Ivan: But it doesn’t have to be the same number of threes and twos because it 

could be just accident.  
Res: So what could we do to be a bit more certain? 
Ivan: Do it again.  
Res: Do another 70 throws? Or another 100 throws?  
Ivan: One hundred. 
 

Ivan stated clearly here that his strategy for understanding what was in the workings box 
was to collect more data. He clicked the gadget to collect a further 100 outcomes, which 
were added to the previous 100, and he produced a new pictogram (with a different scale) 
to display all 200 outcomes (Figure 6). When Jim commented on this graph, he expressed 
a plan to save this graph, collect a new sample and compare the resulting graph with this 
one. 

 
 

Figure 6. Ivan generated a pictogram for 200 throws. 
 

Jim: If we kept that, and then made another, made a new one and then did 
another 4 hundred, we could see if there were actually the same problem. I 
think that there’s more twos than threes cos it says (inaudible)… And 
we’ve made it more fours… threes… and that’s where we can see which 
is the biggest.  

 
Jim’s proposal for taking a new sample, rather than continuing to grow the existing 

one, may suggest that, like Rob and Carl, he has recognised that growing the sample is not 
producing the stability he is looking for. His plan to compare samples may be an 
expression of a shift in his thinking to a more global perspective. Jim produced the new 
graph of fifty outcomes and displayed it beside the previous graph of 200 outcomes 
(Figure 7). 

However, as the boys contemplated these images, Jim’s attention was again drawn to 
local changes. He noted that the new graph showed more threes than twos, in contrast to 
the previous one. The Researcher’s questions in response to this remark seemed to prompt 
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Ivan to look at the data in a new way, as he suddenly began to express a complete 
description of what was in the workings box. 

 

 
 

Figure 7. Jim compared a graph of 50 (on the left) outcomes with  
one of 200 (on the right). 

 
Ivan: Now there’s more threes. 
Jim: …There’s more threes than twos. So that means that that could have been 

randomisation. 
Res:  So, do you still think there would be more twos than threes on this dice? 

Than the other numbers? 
Ivan: Yes. 
Res:  What about the other numbers then? Do you think they would all be the 

same? Do you think that there’d be the same number of one, and four, and 
five, and six and seven? 

Ivan: I think that there’s 2 sixes. 
Res:  2 sixes? 
Jim: Well five and four could be the same, but, we did think that two and three 

would be the same but then two got bigger and then three got bigger, so…  
Res:  We’ve got 12 places to fill up. So there was…? 
Jim:  If I divided it by 12… 
Ivan: Yeah, I think… I think I am right…  
Res:  Go on then. What do you think? 
Ivan: Cos I think that there’s in the workings there’s 3 twos, 3 threes and 2 

sixes. And that makes 12. 
Res:  Ahh. Right. …Say it again, 3… 
Ivan: 3 threes, 3 twos and 2 sixes. And that all these numbers for one. 
 

This conjecture was recorded on paper for the boys to consider. Ivan’s guess here was 
in fact correct, but he was not certain of it, and he tried to compare recent graphs with 
those that they had generated earlier. There was a particular difficulty here as the graphs 
did not record the number of trials that they showed, and early graphs had been derived 
from collections of outcomes with differing numbers of trials. 

Jim decided to collect 150 more outcomes to add to the 50 shown on the latest graph, 
and when he did so, the new sample of 200 showed a greater proportion of sixes shown 
than before. 

Ivan noted this and wanted to revise slightly his earlier guess. Faced with the dilemma 
of which guess was more likely to be correct, both boys suggested collecting some more 
data. Again they collected a sample of 200 outcomes and again they did not consider that 
the graph was conclusive. Eventually, the interviewer suggested that they might collect a 
larger sample of say 500 outcomes. Ivan quickly adopted this suggestion and the resulting 
graph convinced him that his first guess was correct. 
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There seems to be evidence, in Ivan and Jim’s response to the graph in Figure 7, of a 
shift towards perceiving the property that a large sample size gives useful summary 
statistics. However, when they looked at the next sample of 200 outcomes (Figure 8), 
their attention was again drawn to change rather than invariance. Perhaps they were 
seeking too rigid or robust an invariance, in which case there were aspects of the property 
still for them to appreciate. An important consideration relating to the property of 
invariance in distribution is what degree of variability can be accepted while still 
recognising invariance. 

 

 
 

Figure 8. Jim’s new sample of 200 throws showed more sixes. 
 
Within our design research approach we adjusted the exact nature of the tasks as we 

worked with different groups of children in order to explore ways to support their 
thinking. We tried an approach in which we set a series of challenges for a group of 
children with dice which were progressively more complex (four sides: [1, 2, 2, 3], six 
sides: [1, 2, 2, 3, 3, 6], nine sides: [1 2 2 3 3 4 4 4 6]). 

Alice, Freya and Bella quickly realised that the four-sided die had only three numbers. 
After only 12 throws they made a pie chart and recognised that two was occurring more 
frequently than one or three. Freya expressed this in a proportional way, though it is not 
clear if she was talking here about the pie chart image, the imagined die, or the workings 
box. 

 
Freya: The two is double… there’s 2 in it … 2 twos 

 
It was relatively rare for children working on this task to use proportional language to 

describe the images. Generally they talked in terms of relative sizes, but did not attempt to 
quantify these differences. This might be seen as evidence of their local, rather than 
global, focus. When we challenged the girls’ prediction by showing them a different 
sample of 10 throws, the image confirmed their decision.  

However, Freya’s use of language may point towards a power that is released when 
representations admit the same language for different ways of perceiving; there can also 
be unintended metonymies, where attention switches between details (such as attributes), 
because of similarity of language in both perceptions (in this case, the same number). We 
asked ourselves what Freya was referring to when she said “there’s 2 in it.” She might be 
referring to the pie chart image, or the workings box, or the die. Initially, Freya seems to 
describe the pie chart image (“the two is double”), but, perhaps because there is a 
potential ambiguity to this reference, she seems to shift towards possibly referring to the 
workings box or the die. The use of ambiguous language such as this may offer the 
potential for the speaker (and perhaps the listener) to slide across from referring to the 
data representation to describing the die, or even the workings box, and in this way to see 
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beyond the data to the sense in which the data provide insight about the population. Such 
a switch of attention, prompted by the ambiguity in the language used in trying to express 
what has been observed, might provide a stimulus to ‘see beyond the data’ and to begin to 
infer the nature of the population. 

The six-sided die proved a little more challenging, but the girls quickly reached a 
point where they had a number of different conjectures about the distribution of numbers. 
As they worked, they seemed at times to accept implicitly that doing more throws was a 
way to test out their conjectures. The following comes from a point where they have done 
33 throws. 

 
Alice: one, six, two, three, three, two 
Bella: yeah … that’s it 
Freya: Are you sure? 
Bella: Let’s do it again, and if the threes keep coming up… 
Freya:  It’s three … it has to be three 
 

The girls continued to add throws without discussing this strategy, and to make 
further conjectures about the die. They made a new pie chart after each group of 10 
throws, and the local changes in this became the focus of their attention. At the stage 
shown in Figure 9 the three-slice on the pie was larger than any of the others, and the 
difference between the two-slice and the six-slice was less pronounced. They were 
struggling to reconcile the image in front of them with what they knew to be possible 
combinations in the workings box. At one point, they suggested [1 2 2 3 3 3 6], but 
realised that this would give 7 sides. 

 
Bella: But if it was [1 2 2 3 3 6] I think that the threes  
 and twos would be the same. 
Res:  Ah! 
Freya: Oh yes 
… 
Bella: The three and the two would be the same   

 size 
… 
Alice: It’s definitely three and two have got the  
 most numbers and one and six have got the least. 

63 throws 

 
 

Figure 9. Alice and Bella draw informal inferences from 63 throws. 
 
Once they had decided confidently that [1 2 2 3 3 6] was their prediction, we 

challenged this by keeping the pie chart shown above, and making a new sample of 10 
throws (Figure 10). 

Initially this seemed to shake the girls’ confidence in their decision, but Bella soon 
introduced a different perspective, suggesting that she was considering all the graphs they 
had looked at, not just those immediately in front of them. 

 
All: It’s twos! 
Alice: It must be I reckon 
Freya: Well it’s two and three, two and three 
Alice: But look at the six there … it’s six and two 
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Bella: But there’s …most of the sixes have been quite low, but most of the threes 
have been big … if you look at the two it’s been right in the middle and 
it’s… 

Freya: On that one … on that one it’s six and two 
 

 
As in the example from Jim discussed earlier, this might suggest that Bella is able at 

this point to take a more global perspective and see similarities across the set of graphs, 
rather than focussing on changes between them. Despite Bella’s insight, however, the 
girls continued to be influenced by the new image in front of them, and to make new 
conjectures about the die. However when asked directly about whether the different 
number of throws that produced the two graphs might make a difference, the girls agreed 
that it would, and decided to add more throws to the new sample. They quickly obtained 
an image which reinforced their confidence in the prediction of [1 2 2 3 3 6]. 

After their success with the six-sided die, the girls were keen to tackle the next 
challenge, but found the nine-sided die [1 2 2 3 3 4 4 4 6] much more difficult. 
Throughout their work they implicitly increased the sample size to get a clearer picture, 
but actually never went above 100 throws (which they considered to be a very large 
number). A sample this size had been large enough to show some stability for a six-sided 
die, but was not sufficiently large to fully explore the nine-sided die. Their strategy was to 
save graphs, and then begin new samples, but this became complex as they lost track of 
the sample size for each graph. They continued to struggle between descriptions of the 
distribution, which seemed to match the images in front of them (but might contain more 
than 9 numbers), and those which they knew were possible for a nine-sided die, but which 
did not fit comfortably with the graphs. 

 
6. DISCUSSION 

 
6.1. SAMPLING STRATEGIES IN INFORMAL INFERENCE 

 
When children were working on the task of guessing what the ‘funny’ die looked like, 

we saw them use two different strategies which were supported by the software. Having 
made a graph from a particular number of throws which was inconclusive, they either 
‘grew’ their sample by adding more throws, or they extended the data available to them 
by beginning a new sample. The latter strategy was supported by a facility in the software 

 
 

Figure 10. We challenged Bella and Alice with a pie chart 
 based on 10 throws (on the left). 
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to keep a number of graphs, and return to them. In one sense both of these strategies 
involve increasing the sample size, but the two experiences they provide are very 
different. 

In passing, it is worth mentioning that what is involved in ‘growing the sample’ here 
is rather different from the activity described by Ben-Zvi and Sharett-Amir (2005), in 
which children widened the scope of their data collection from a small group of friends, to 
a whole class, to several classes, and so on. In their activity, it may not be entirely clear, 
from the children’s perspective, whether it is the sample or the population which is 
‘growing’, but the data collected in each iteration can clearly be distinguished. In the case 
of our task, growing the sample clearly involves collecting ‘more of the same’ data, but 
the nature of the sample remains the same. 

An important question for our thinking about the future development of the task 
design is how the two different experiences of adding to the sample and taking a new 
sample impact on children’s local and global thinking. It is clear from our data that 
neither experience leads easily to the recognition that larger samples are more reliable in 
providing an image of the distribution; that is, to an appreciation of the Law of Large 
Numbers. In order to understand this somewhat surprising outcome we need to conjecture 
about what the children might be expecting to see.  

We conjectured earlier that Jim was expecting (or hoping) to see invariance in terms 
of consecutive graphs which stayed much the same as he added to the sample. Given the 
natural tendency to focus on even small changes, this expectation is almost certain to be 
confounded, even within sample sizes much greater than those the children were prepared 
to explore. Seeing repeated change seemed to make some children distrust taking larger 
samples. Of course taking repeated samples also produced images which reflected change, 
but possibly the experience of looking at several similar graphs allowed Jim and Bella, if 
only fleetingly, to gain some sense of the overall stability of the patterns. 

However, there is perhaps another way to think about what the children were 
expecting to see: that is, to see a ‘clear’ pattern. An image in which the sizes of the pie 
slices, or the lengths of the pictogram bars, were clearly ‘in proportion’ (i.e., some two or 
three times the size of others) might have proved very convincing, regardless of the size 
of the sample. Indeed, one group of children did spend time adjusting the scale of the 
pictogram in order to try to produce such images, with the smallest portions represented 
by one bead. When children in our study were adding to the sample, they may have been 
expecting the graph to ‘settle down’ to a clear image, and were frustrated when this did 
not appear to happen within the sample size they used. 
 
6.2.  INFORMAL INFERENCE AS EMERGENCE TOWARDS A TARGET 

 
We are struck by how rarely during the Guess-my-dice game in InferenceMaker the 

children referred to luck or chance. Jim was one exception when he was trying to explain 
to himself the number of observed sixes without abandoning the idea that the die was 
‘fair’. It has been well documented how people often do not make sense of phenomena 
through a stochastic model (as in Konold’s, 1989, outcome approach) or avoid facing the 
nuances of probability by regarding everything as equally likely, just a matter of chance 
(as in Lecoutre’s, 1992, equiprobability bias). However, we believe that neither of these 
interpretations quite fits how the children were trying to infer the nature of the die. We 
think that these students were trying to see through the data in order to identify the die. 
Their approach was consistent with Prodromou’s (2007) target connection from the data-
centric to the modelling distribution, in which emergence rather than probability is the 
relevant model.  



125 

 

 

This is somewhat in contrast to the results observed in Johnston-Wilder’s study, 
where students who were a little older (aged 13 to 18 years) experimented with physical 
dice; these students therefore did not have such easy access either to larger samples or to 
graphical summaries of the aggregated data. In Johnston-Wilder’s study, the emergence of 
the modelling distribution was not such a salient feature for the students, and their 
attention was not so readily drawn to it. Instead, the students were most concerned with 
judging whether or not the dice that they were using was fair. 

 
6.3. INFORMAL INFERENCE AS THE SEARCH FOR INVARIANCE AMIDST 

LOCAL CHANGE 
 
Emergent phenomena involve the actions (and often interactions) of many agents at 

the local level, resulting in the formulation of identifiable patterns at the global level. In 
order to discern a modelling distribution in InferenceMaker, students first need to attend 
to aggregated data rather than to individual outcomes. They need to focus upon 
frequencies, and eventually upon relative frequencies, and to pay attention to the pattern 
of distribution of these across the outcome space, rather than looking only at changes in a 
single relative frequency from one sample to another. Appropriate graphing tools might 
support the student in attending to the distribution of relative frequencies. Once a pattern 
is discerned, and a possible configuration for the die has been conjectured, then this 
conjecture needs to be tried to see what patterns of outcomes it will produce. The 
coordination of attention to each of these agents in order to discern the invariance of an 
underlying emergent distribution, when each manifestation of the distribution in a sample 
is different, requires several steps, each of which might be supported by developments to 
the software. 

In trying to make a connection from data-centric to modelling distribution, the 
students needed to identify the trend, a global pattern, that might be emerging from the 
data. However, our study shows clearly how students’ focus of attention, when using 
InferenceMaker, tends to be on the local. Rob and Carl focussed on how the five-slice 
seemed to be getting bigger, rather than on the dominant size of the six-slice. Jim tended 
to focus on how there had been more two’s but then there were more three’s. Alice, Bella 
and Freya constantly referred to the changes in the new pie chart compared to the 
previous pie chart. This attention to the here and now, rather than the aggregated longer-
term pattern, characterised the activity throughout our trials. Ivan was a clear exception 
here, who seemed to have a deeper understanding from the start, although even he had 
required some prompting to consider a sample size of larger than 200 trials. Bella also 
showed some evidence that she was thinking about the images presented over several 
graphs. There is plenty of evidence that the students wanted to find invariance but were 
constantly frustrated because all they could see was change. In Mason’s terms, the 
students were unable to hold the same wholes that more experienced statisticians might do 
because the properties of invariance were constantly hidden by the tendency to perceive 
change. The task of identifying the invariant properties was made even more difficult 
because invariance in the aggregated whole is not absolute invariance but relative 
invariance; to identify the property of relative invariance, one has to notice how the 
changes in proportion becomes less significant as the sample gets larger. 
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6.4. INFORMAL INFERENCES ARE OFTEN MADE ON SMALL AMOUNTS 
OF DATA 

 
We are struck by an apparent paradox that students wanted to generate more and more 

data, as they were slow to feel confident about their conclusions, and yet they placed no 
greater confidence on inferences based on large amounts of data than those made from 
small amounts of data. Konold (1995) has in the past made the point that data are not 
forceful in persuading people, though our students did seem to choose to generate more 
data. 

We believe this paradox might be resolved from the perspective of emergence. The 
students were looking for stability at the wrong level. They hoped, in their search for 
invariance, that by collecting another batch of data, they would get the same pie chart or 
pictogram as the last one. We have discussed above how different strategies for collecting 
the additional data shaped the attention. 

Inevitably, whichever way they sought to collect data, there would be change which 
would attract attention away from their search for invariance at the global level towards 
the local level where invariance could not be found. How that data were displayed could 
also make a difference. Pictograms tended to emphasise differences between the lengths 
of bars in the case of dice with fairly uniform distributions but would be effective in 
showing up patterns in more distinctive distributions (such as would be the case with the 
frequencies of the totals of two dice). Pie charts tended to be ineffective in showing up 
such patterns but reduced the apparent differences between sectors. 

Nevertheless, even when using pie charts there was a powerful attraction towards 
local change. And so, in practice, the extra data provided only more complexity. Carl 
pointed out that more throws were “just getting too stupid” because they “had too much 
in.” Somehow, Carl needed to focus at the global level to find the stability he wanted. 

Eventually, the students would sometimes see no added value in generating yet more 
data and would be content to make their inference on what we might regard as flimsy 
evidence. 

 
7. CONCLUSION 

 
When we argue that young students’ naïve informal inference is emergence-related 

(rather than based on chance), focussed on the local, and made on small amounts of data, 
we do not present these as misconceptions to be eradicated. Rather, we see these findings 
as identifying students’ starting points, informing how we should be building new designs 
for tasks and learning environments which will offer to students experiences that may 
enable them to construct more sophisticated meanings for informal inference out of these 
relatively naïve conceptions. And we do not see this as a forlorn hope. 

We believe that, although inference involves making a connection from the data-
centric distribution to the modelling distribution, this connection is supported by the 
intention connection in the opposite direction. We conjecture that giving students the 
experience of mending gadgets before asking them to infer the nature of the die may be a 
necessary experience to enable students to understand more deeply the connection from 
data to modelling distribution. Seeing that random mechanisms can generate many 
different looking pie charts when the data are limited may be another vital experience. For 
comparison, perhaps the students needed to see the stable patterns generated by a large 
number of throws. At the outset, we worried that the students would simply throw the die 
1000 times and immediately infer the nature of the die. However, this simple strategy was 
not available to them because they were not paying attention to the global level of 
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emergence. Indeed, it is likely that they had no global resource such as the Law of Large 
Numbers available to them. 

But suppose they did have. Would this mean that the students were in a powerful 
position to make informal inferences? Possibly not. Then, it would be interesting to 
explore the level of confidence students place in their inference if they are allowed only a 
limited number of throws. How would we support changes in thinking towards an 
abstraction, which might be schematised as “the more data we have, the more confident 
we can be in our inferences”? 

In considering a new design for InferenceMaker, we recognise the key objective is to 
support students in their attempts to observe global relative invariance in the midst of 
local change. Such an aspiration leads us to consider (i) increased support for systematic 
recording and reflection, and (ii) functionality for exploring the behaviour of conjectured 
die configuration for comparison with the behaviour of the unknown die. More 
specifically 

• We recognise the need to enable systematic recording of the students’ conjectures 
about what the die looks like at any particular time through entering the 
conjectured sides into a blank ‘die’ with the correct number of sides. 

• We would then consider allowing experimentation with the conjectured die for 
comparison with what the unknown die has generated. In effect, the students 
would be creating a workings box and generating results from it, thus enabling the 
possibility of intention connections from the modelling perspective to the data-
centric perspective without losing contact with the challenge of finding the 
configuration of the unknown die. 

• We would consider the provision of graphing and summative tools to enable 
students to compare the conjectured die with the unknown die. (For example, we 
can imagine deploying graphing and modelling tools of the type available and 
becoming available in TinkerplotsTM, Konold & Miller, 2001.) 

• Finally, we believe there would be value in enabling better recording of the 
number of throws with easy cross-reference to the display generated. 

From the research perspective, it would be valuable to register what appears to be the 
focus of the students’ attention, local data or global effects. We would therefore want to 
place more attention on recording aspects of body language, gesture, and where students 
appear to be looking to augment the Camtasia records. 

We reconsider the differences described at the start of this paper between the 
perspectives of local and global thinking presented in the previous studies of Pratt and 
Johnston-Wilder. The theoretical lens of Structure of Attention may allow us to see these 
as products of the available technology and task design, rather than as more fundamental 
discrepancies. Pratt’s students, unlike Johnston-Wilder’s, were not able to focus on the 
sequential outcomes of throwing the dice. Although this is available on the screen, the 
layout makes it difficult to see, and when using the facility to generate data quickly 
through groups of trials, the individual results appear too quickly to allow attention to 
focus on each individually. This might be seen as an advantage, because students are 
unlikely to become distracted by local sequential patterns, but it may also disguise a 
potential opportunity to move between local and global perspectives. Similarly, Johnston-
Wilder’s students did not have access to the graphing facilities provided in Pratt’s 
software, which, although they provide tools, may also serve to disguise the growth of the 
sample, because each graph may appear to be ‘the same size’. 

As a final reflection, we return to Makar and Rubin’s analysis (2007) in which they 
identified aggregate thinking and sample size as two important components of informal 
inference. Through the lens of Structure of Attention, we have seen how our students, 
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aged 10-11 years, were drawn to local variation and often the invariant characteristic of 
relative frequency, apparent in aggregate thinking, was obscure to them. By being aware 
of the focus of the students’ attention, we have not only begun to appreciate why 
inference may be such a problematic area but also how the design challenge should begin 
to respond. 
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