Statistics 120 Mosaic Plots

Who Listens To Classical Music?

The following table of values shows a sample of 2300 music listeners classified by age, education and whether they listen to classical music.

Education

	High		Low		
	Classical Music				
Age	Yes	No		Yes	No
Old	210	190		170	730
Young	194	406		110	290

This is a $2 \times 2 \times 2$ contingency table.

Old Versus Young

The effect of age and education on muscial taste can be investigated by breaking the observations down into more homogenous groups. The most obvious split is by age. There are 1300 older people and 1000 younger people.

$$
\begin{array}{cc}
\text { Old } & \text { Young } \\
\hline 56.5 \% & 43.5 \%
\end{array}
$$

This is almost certainly a result of the way in which the sample was taken.

Education Level

Within the old and young groups we can now find the proportions falling into each of the high and low education categories.

\[

\]

The young group is clearly more highly educated than the old group.

Music Listening

Finally, we can compute the proportion of people who listen to classical music in each of the age/education groups.

Old			Young	
High Ed.	Low Ed.		High Ed.	Low Ed.
52.5%	18.9%		32.3%	27.5%

The music-listening habits of younger people seem to be fairly independent of education level. This is not true for older people.

Summary

The result of our "analysis" is a series of tables. From these tables we can see:

1. There are slightly more old people than young people in the sampled group.
2. The younger people are more highly educated than the older ones.
3. The likelihood of listening to classical music depends on both age and education level.

Mosaic Plots

- Mosaic plots give a graphical representation of these successive decompositions.
- Counts are represented by rectangles.
- At each stage of plot creation, the rectangles are split parallel to one of the two axes.

The Perceptual Basis for Mosaic Plots

- It is tempting to dismiss mosaic plots because they represent counts as rectangular areas, and so provide a distorted encoding.
- In fact, the important encoding is length.
- At each stage the comparison of interest is of the lengths of the sides of pieces of the most recently split rectangle.

Creating Mosaic Plots

- In order to produce a mosaic plot it is neccessary to have:
- A contingency table containing the data.
- A preferred ordering of the variables, with the "response" variable last.

Entering the Data

- To enter the data, we must settle on the order in which the values.
- The order of values in an R array is with the first subscript varying most quickly, the second subscript varying next most quickly, etc.
- In the case of the music data we can take the first subscipt to correspond to Age, the second to Education and the third to Listening.
- The steps are then (i) entering the data, (ii) shaping it as an array and (iii) labelling the extents.

Order for Data Entry

Education
High Low

Classical Music

| Age | Yes | No | | Yes | No |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Old | 210 | 190 | | 170 | 730 |
| Young | 194 | 406 | | 110 | 290 |
| | | | | | |

Data Order			
1	5	3	7
2	6	4	8

Data Entry

> music $=c(210,194,170,110$,

$$
190,406,730,290)
$$

$>\operatorname{dim}($ music $)=c(2,2,2)$
> dimnames(music) =

$$
\begin{gathered}
\text { list (Age = c("Old", "Young"), } \\
\text { Education = c("High", "Low"), } \\
\text { Listen }=c(" Y e s ", ~ " N o "))
\end{gathered}
$$

Data Inspection

```
> music
, , Listen = Yes
```

	Education
Age	High
Low	
Old	210
170	
Young	194

, , Listen = No

Education

Age High Low

Old	190	730
Young	406	290

Producing A Mosaic Plot

The R function which produces mosaic plots is called mosaicplot. The simplest way to produce a mosaic plot is:
> mosaicplot(music)
It is also easy to colour the plot and to add a title.
> mosaicplot(music, col = hcl(240),
main = "Classical Music Listening")

Example: Survival on the Titanic

On Sunday, April 14th, 1912 at 11:40pm, the RMS Titanic struck an iceberg in the North Atlantic. Within two hours the ship had sunk. At best reckoning 705 survived the sinking, 1,523 did not.

The Data

- There is very good documentation on who survived and who did not survive the sinking of the Titanic.
- R has a data set called "Titanic" which gives data on the passengers on the Titanic, cross-classified by:
- Class: 1st, 2nd, 3rd, Crew.
- Sex: Male, Female.
- Age: Child, Adult.
- Survived: No, Yes.

Adults	Survivors Male		Non-Survivors Female			
Ist Class	57	140	118	Female		
2nd Class	14	80	154	13		
3rd Class	75	76	387	89		
Crew	192	20	670	3		
Children	Survivors		Non-Survivors			
	Male		Female	Male		Female
1st Class	5	1	0	0		
2nd Class	11	13	0	0		
3rd Class	13	14	35	17		
Crew	0	0	0	0		

Producing a Mosaic Plot

First load the "Titanic" data from the R data library.
> data(Titanic)
Next produce the mosaic.

```
> mosaicplot(Titanic,
    main = "Survival on the Titanic",
    col = hcl(c(240, 120)),
    off = c(5, 5, 5, 5))
```

Note the use of $\mathrm{col}=$ to produce alternating coloured rectangles - green for survivors and blue for non-survivors. Also note that the $\circ f \mathrm{f}=$ argument is used to squeeze out a little of the space between the blocks.

Survival on the Titanic

Example: Sexual Discrimination at Berkeley

- In the 1980s, a court case brought against the University of California at Berkeley by women seeking admission to graduate programs there.
- The women claimed that the proportion of women admitted to Berkeley was much lower than that for men, and that this was the result of discimination.

Gender	Admitted	Rejected	\%Admitted
Male	1198	1493	44.5
Female	557	1278	30.4

- It is clear that a higher proportion of males is being admitted.

The University Case

The Dean of Letters and Science at Berkeley was a famous statistician (called Peter Bickel) and he was able to argue that the difference in admissions rates was not caused by sexual discrimination in the Berkeley admissions policy, but was caused by the fact that males and females generally sought admission to different departments.

The Dean broke the admissions data down by department and showed that within each program there was no admission discrimination against women. Indeed, there seemed to be some admissions bias in favour of women.

		Male	Female
Department A	Admitted	512	89
	Rejected	313	19
Department B	Admitted	353	17
	Rejected	207	8
Department C	Admitted	120	202
	Rejected	205	391
Department D	Admitted	138	131
	Rejected	279	244
Department E	Admitted	53	94
	Rejected	138	299
Department F	Admitted	22	24
	Rejected	351	317

Student admissions at UC Berkeley

Producing The Plot

To produce the mosaic plot of the UCB data we must reverse order of the extents of the data array. We can either do this using aperm, or by using the sort= argument to mosaicplot.
> data(UCBAdmissions)
> mosaicplot (UCBAdmissions, sort = 3:1,

$$
\begin{aligned}
& \mathrm{col}=\mathrm{hcl}(\mathrm{c}(120,10)) \text {, } \\
& \text { main }=\text { "Student admissions at UC Berkeley") }
\end{aligned}
$$

(The order of the variables in the R data set is: Admit, Gender, Dept - the reverse of what mosaicplot expects.)
> UCBAdmissions
, , Dept = A

Gender

Admit	Male	Female
Admitted	512	89
Rejected	313	19

, , Dept = B

Gender
Admit Male Female
Admitted 35317
Rejected 2078

Gender		
Admit	Male	Female
Admitted	353	17
Rejected	207	8

, , Dept = C

Gender		
Admit	Male	Female
Admitted	120	202
Rejected	205	391

, , Dept = D

Gender			
Admit	Male Female		
Admitted	138	131	
Rejected	279	244	

Collapsing Contingency Tables

- The Berkeley Admissions contingency table has three dimensions.
- Admit: Admitted, Rejected.
- Gender: Male, Female.
- Dept: A, B, C, D, E, F.
- To obtain the overall effect, ignoring Dept, we have to compute the table which would result by summing over departments.
- This is called collapsing the original table.

Collapsing Tables in \mathbf{R}

The process of collapsing contingency tables is easy in R. The apply function can be used to collapse over the third subscript of the UCBAdmissions table.
> apply(UCBAdmissions, 1:2, sum)
Gender
Admit Male Female

$$
\begin{array}{lr}
\text { Admitted } 1198 & 557 \\
\text { Rejected } 1493 & 1278
\end{array}
$$

The effect of the apply statement is to sum the table over all the subscripts not given in the second argument.

Collapsing Tables in \mathbf{R}

The order of the subscripts specified in an apply statement determines the order of the subscripts in the result. Reversing the order of subscripts in the previous apply statement produces the transpose of the original result.
> apply(UCBAdmissions, 2:1, sum)
Admit
Gender Admitted Rejected

Male	1198	1493
Female	557	1278

