
Back To The Future:
Lisp as a Base for a Statistical

Computing System

Ross Ihaka Duncan Temple Lang
University of Auckland University of California



Talk Outline

This talk will seek to answer a number of questions about
statistical software systems:

• An apology

• Goals

• Implementation strategy

• Performance results

• The future



An Apology

• This talk addresses a perceived need for an improved
interactive statistical computing environment.

• The basic requirements of such a system are:

– it should be possible to easily express a wide
variety of computations (i.e. it should be a
“language”),

– it should be possible to define new
functionality easily (at run time).

– good performance.

• Examples of such systems are S, R, etc.



Present Systems are Not Enough

• Present systems are not satisfying all the present
demands placed on them.

• They do not handle large problems well:

– they place too much demand on machine
resources,

– they run too slowly for many purposes.

• In some cases, they do not provide the flexibility we
need.

• It is highly likely that they will fail to meet more and
more of the demands made of them in the future.



Particular Problems with the S Family

• The whole-object model limits the size of problem
which can be handled. This is compounded by the
use of call-by-value semantics which can produce
multiple copies of data sets in memory.

• It also leads to dependence on algorithms which
require the presence of entire data sets.

• The emphasis is very much on vector operations. In
fact the family does not include the notion of scalar
quantities, meaning the overhead of array access is
unavoidable. This makes it difficult to implement
many computations efficiently.



Features for a New System

• Speed

• Smaller (relative) footprint

• Foreign function interface

• Parallelism (multicores)

• Support for reasoning about code

• Ability to play nicely with other software



Candidate Systems

• We don’t have the resources to build a new system
entirely from scratch. We need some giant shoulders
to stand on.

• Two candidate systems are:

– Python

– Lisp

• Benchmarking shows that (compiled) Lisp is better
for some array-based computations (by a factor of 4).

• We also think that Lisp has features which will
ultimately make it a better data analysis language.



Lisp as the Base for New System

On the plus side:

• Lisp is a well-established, widely-used system

• There are a multiplicity of high-quality
implementations

• There are very good resources explaining Lisp at
both the high and low levels.

On the minus side:

• Lisp has an image problem – it is perceived as a
“dead” language.

• Because Lisp is an amalgam of features there are
some inelegances to deal with.



Particular Lisp Features of Interest

• Compilation to machine code

• Optional type-declaration

• Pass-by-reference semantics

• A flexible generic-function based object system

• Macros

• Support for computing on the language.



A System Vision

• We envision Lisp lying at the heart of a rich
computational environment.

• On top there is an interactive language which is
really just a thin syntax layer over the Lisp system.

• Desirable Lisp features such as the FFI, and existing
interfaces can be exploited directly.

• Commercial tree-shaking technology can be used to
produce small stand alone applications.



Implementation Issues

• Syntax

• Lisp idiosyncrasies

• The object model

• Access to standard technologies



A Simple Example

defun runif(n &optional a = 0, b = 1)
{

local x = make_array(n, element_type = ’double)
local offset = a
local scale = b − a
for (i = 0; i < n; ++i; x)

x[i] = offset + scale * random(1.0)
}

x = runif(10000)



A Simple Benchmark

defun sum(x)
{

local sum = 0.0
local n = length(x)
for (i = 0; i < n; ++i; sum)

sum = sum + x[i]
}

time(for(i = 0; i < 10000; ++i) sum(x))



A Simple Benchmark

defun sum(x)
{

local sum = 0.0
local n = length(x)
for (i = 0; i < n; ++i; sum)

sum = sum + x[i]
}

time(for(i = 0; i < 10000; ++i) sum(x))

Run time: 6.833 sec



A Simple Benchmark

defun sum(x)
{

local sum = 0.0
local n = length(x)
for (i = 0; i < n; ++i; sum)

sum = sum + x[i]
}

time(for(i = 0; i < 10000; ++i) sum(x))

Run time: 6.833 sec
Run time for R: 133.9 sec (20 times slower than lisp)



The Effect of Type Declarations

defun sum(double[*] x)
{

local double sum = 0.0
local fixnum n = length(x)
for (fixnum i = 0; i < n; ++i; sum)
sum = sum + x[i]

}

time(for(i = 0; i < 10000; ++i) sum(x))



The Effect of Type Declarations

defun sum(double[*] x)
{

local double sum = 0.0
local fixnum n = length(x)
for (fixnum i = 0; i < n; ++i; sum)
sum = sum + x[i]

}

time(for(i = 0; i < 10000; ++i) sum(x))

Run time: 0.207 sec (33 times faster than without
declarations and 650 times faster than R)



Other Performance Results

• We examined the performance of a lisp based system
using a number of examples.

– Artificial examples (like the one shown here).

– “Real” examples; generally simulations for
random walks, Markov chains etc.

• Some of the real examples showed up to 300-fold
performance gains over the best we could get with R.

• Performance in Lisp for the artificial examples was
significantly better than we could achieve in
competing environments such as Python.



Development Time-Frame

• At present we are very much exploring the feasibility
of building a new system.

• We feel that it is prudent to invest a good deal of time
in understanding the technology we are proposing to
adopt.

• Building a basic computing language can be
relatively quick, but there are other tasks which may
take longer.



Summary

• This talk represents a progress report on an
investigation of how we might go about producing a
new statistical computing environment.

• Preliminary experiments have indicated that building
a system on top of Common Lisp provides a
productive direction to proceed in.

• We believe that systems based on Lisp will be both
more sophisticated and better performing than
present systems.


	Title Page
	Talk Outline
	An Apology
	Present Systems are Not Enough
	Particular Problems with the S Family
	Features for a New System
	Candidate Systems
	Lisp as the Base for New System
	Particular Lisp Features of Interest
	A System Vision
	Implementation Issues
	A Simple Example
	A Simple Benchmark
	The Effect of Type Declarations
	Other Performance Results
	Development Time-Frame
	Summary

