
CONTRIBUTED ARTICLE 1

What’s in a Name?
The Importance of Naming grid Grobs

by Paul Murrell

Abstract Any shape that is drawn using the
grid graphics package can have a name associ-
ated with it. If a name is provided, it is possi-
ble to access, query, and modify the shape after
it has been drawn. These facilities allow for very
detailed customisations of plots and also for very
general transformations of plots that are drawn
by packages based on grid.

When a scene is drawn using the grid graphics pack-
age in R (R Development Core Team, 2011), a record
is kept of each shape that was used to draw the scene.
This record is called a display list and it consists of
a list of R objects, one for each shape in the scene.
For example, the following code draws several sim-
ple shapes: some text, a circle, and a rectangle (see
Figure 1).

> library(grid)

> grid.text(c("text", "circle", "rect"),
+ x=1:3/4, gp=gpar(cex=c(3, 1, 1)))
> grid.circle(r=.25)
> grid.rect(x=3/4, width=.2, height=.5)

text circle rect

Figure 1: Some simple shapes drawn with grid.

The following code shows the contents of the dis-
play list for this scene. There is an object for each
shape that we drew. The output below shows what
sort of shape each object represents and it shows a
name for each object (within square brackets). In the
example above, we did not specify any names, so
grid made some up.

> grid.ls(fullNames=TRUE)

text[GRID.text.5]
circle[GRID.circle.6]
rect[GRID.rect.7]

It is also possible to explicitly name each shape
that we draw. The following code does this by speci-
fying the name argument in each function call (the re-
sulting scene is the same as in Figure 1) and shows
that the objects on the display list now have the
names that we specified.

> grid.text(c("text", "circle", "rect"),
+ x=1:3/4, gp=gpar(cex=c(3, 1, 1)),
+ name="leftText")
> grid.circle(r=.25, name="middleCircle")
> grid.rect(x=3/4, width=.2, height=.5,
+ name="rightRect")

> grid.ls(fullNames=TRUE)

text[leftText]
circle[middleCircle]
rect[rightRect]

Furthermore, grid provides functions that allow
us to access and modify the objects on the display
list. For example, the following code modifies the cir-
cle in the middle of Figure 1 so that its background
becomes grey (see Figure 2). We select the object to
modify by specifying its name.

> grid.edit("middleCircle", gp=gpar(fill="grey"))

text circle rect

Figure 2: The simple shapes from Figure 1 with the
middle circle modified so that its background is grey.

The purpose of this article is to discuss why it is
useful to provide explicit names for the objects on the
grid display list. We will see that several positive
consequences arise from being able to identify and
modify the objects on the display list.

Too many arguments

This section discusses how naming the individual
shapes within a plot can help to avoid the problem
of having a huge number of arguments or parame-
ters in a high-level plotting function.

The plot in Figure 3 shows a forest plot , a type
of plot that is commonly used to display the results
of a meta-analysis. This plot was produced using the
forest() function from the metafor package (Viecht-
bauer, 2010).

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 2

RE Model

0.05 0.25 1.00 4.00

Relative Risk (log scale)

Comstock et al, 1976

Comstock & Webster, 1969

Comstock et al, 1974

Rosenthal et al, 1961

Coetzee & Berjak, 1968

TPT Madras, 1980

Vandiviere et al, 1973

Stein & Aronson, 1953

Frimodt−Moller et al, 1973

Hart & Sutherland, 1977

Rosenthal et al, 1960

Ferguson & Simes, 1949

Aronson, 1948

27

5

186

17

29

505

8

180

33

62

3

6

4

16886

2493

50448

1699

7470

87886

2537

1361

5036

13536

228

300

119

29

3

141

65

45

499

10

372

47

248

11

29

11

17825

2338

27197

1600

7232

87892

619

1079

5761

12619

209

274

128

0.98 [0.58 , 1.66]

1.56 [0.37 , 6.53]

0.71 [0.57 , 0.89]

0.25 [0.15 , 0.43]

0.63 [0.39 , 1.00]

1.01 [0.89 , 1.14]

0.20 [0.08 , 0.50]

0.46 [0.39 , 0.54]

0.80 [0.52 , 1.25]

0.24 [0.18 , 0.31]

0.26 [0.07 , 0.92]

0.20 [0.09 , 0.49]

0.41 [0.13 , 1.26]

0.49 [0.34 , 0.70]

TB+ TB− TB+ TB−

Vaccinated Control

Author(s) and Year Relative Risk [95% CI]

Figure 3: A forest plot produced by the forest()
function from the metafor package.

This sort of plot provides a good example of how
statistical plots can be composed of a very large num-
ber of simple shapes. The plot in Figure 3 consists of
many different pieces of text, rectangles, lines, and
polygons.

High-level functions like forest() are extremely
useful because, from a single function call, we can
produce many individual shapes and arrange them
in a meaningful fashion to produce an overall plot.
However, a problem often arises when we want to
customise individual shapes within the plot.

For example, a post to the R-help mailing list in
August 2011 asked for a way to change the colour
of the squares in a forest plot because none of
the (thirty-three) existing arguments to forest() al-
lowed this sort of control. The reply from Wolfgang
Viechtbauer (author of metafor) states the problem
succinctly:

“The thing is, there are so many different
elements to a forest plot (squares, lines,
polygons, text, axes, axis labels, etc.), if I
would add arguments to set the color of
each element, things would really get out
of hand ...

... what if somebody wants to have a dif-
ferent color for *one* of the squares and a
different color for the other squares?”

The reality is that it is impossible to provide
enough arguments in a high-level plotting function
to allow for all possible modifications to the low-
level shapes that make up the plot. Fortunately,
an alternative is possible through the simple mech-
anism of providing names for all of the low-level
shapes.

In order to demonstrate this idea, consider the
lattice plot (Sarkar, 2008) that is produced by the fol-
lowing code and shown in Figure 4.

> library(lattice)

> xyplot(mpg ~ disp, mtcars)

disp

m
pg

10

15

20

25

30

35

100 200 300 400

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Figure 4: A simple lattice scatterplot.

This plot is simpler than the forest plot in Figure
3, but it still contains numerous individual shapes.
Anyone familiar with the lattice package will also
know that it can produce plots of much greater com-
plexity; in general, the lattice package faces a very
difficult problem if it wants to provide an argument
in its high-level functions to control every single
shape within any of its plots.

However, the lattice package also provides
names for everything that it draws. The following
code shows the contents of the grid display list after
drawing the plot in Figure 4.

> grid.ls(fullNames=TRUE)

rect[plot_01.background]
text[plot_01.xlab]
text[plot_01.ylab]
segments[plot_01.ticks.top.panel.1.1]
segments[plot_01.ticks.left.panel.1.1]
text[plot_01.ticklabels.left.panel.1.1]
segments[plot_01.ticks.bottom.panel.1.1]
text[plot_01.ticklabels.bottom.panel.1.1]
segments[plot_01.ticks.right.panel.1.1]
points[plot_01.xyplot.points.panel.1.1]
rect[plot_01.border.panel.1.1]

Because everything is named, it is possible to ac-
cess any component of the plot using the low-level
grid functions. For example, the following code
modifies the x-axis label of the plot (see Figure 5).

> grid.edit("plot_01.xlab",
+ label="Displacement",
+ gp=gpar(fontface="bold.italic"))

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 3

Displacement

m
pg

10

15

20

25

30

35

100 200 300 400

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Figure 5: The lattice plot from Figure 4 with the x-
axis modified using low-level grid functions.

That particular modification of a lattice plot
could easily be achieved using arguments to the
high-level xyplot() function, but the direct access to
low-level shapes allows for a much wider range of
modifications.

For example, the following code generates a more
complex multipanel lattice barchart.

> barchart(yield ~ variety | site, data = barley,
+ groups = year, layout = c(1,6),
+ stack = TRUE,
+ ylab = "Barley Yield (bushels/acre)",
+ scales = list(x = list(rot = 45)))

B
ar

le
y

Y
ie

ld
 (

bu
sh

el
s/

ac
re

)

0
40
80

120

Sva
ns

ot
a

No.
46

2

M
an

ch
ur

ia

No.
47

5

Ve
lve

t

Pea
tla

nd

Glab
ro

n

No.
45

7

W
isc

on
sin

 N
o.

38
Tr

eb
i

Grand Rapids
0
40
80
120

Duluth
0

40
80

120
University Farm

0
40
80
120

Morris
0

40
80

120
Crookston

0
40
80
120

Waseca

Figure 6: A complex multipanel lattice barchart.

There are too many individual shapes in this plot
to show the full display list here, but all of the shapes
have names and the following code makes use of
those names to perform a more sophisticated plot
modification: highlighting the sixth set of bars in
each panel of the barchart (see Figure 7).

> grid.edit("barchart.pos.6.rect",
+ grep=TRUE, global=TRUE,
+ gp=gpar(lwd=3))

B
ar

le
y

Y
ie

ld
 (

bu
sh

el
s/

ac
re

)

0
40
80

120

Sva
ns

ot
a

No.
46

2

M
an

ch
ur

ia

No.
47

5

Ve
lve

t

Pea
tla

nd

Glab
ro

n

No.
45

7

W
isc

on
sin

 N
o.

38
Tr

eb
i

Grand Rapids
0
40
80
120

Duluth
0

40
80

120
University Farm

0
40
80
120

Morris
0

40
80

120
Crookston

0
40
80
120

Waseca

Figure 7: The barchart from Figure 6 with the sixth
set of bars in each panel highlighted.

It would not be reasonable to expect the high-
level barchart() function to provide an argument
that allows for this sort of customisation, but, be-
cause lattice has named everything that it draws,
barchart() does not need to cater for every possible
customisation. Low-level access to individual shapes
can be used instead bceause individual shapes can be
identified by name.

Post-processing graphics

This section discusses how naming the individual
shapes within a plot allows not just minor customi-
sations, but general transformations to be applied to
a plot.

The R graphics system has always encouraged
the philosophy that a high-level plotting function is
only a starting point. Low-level functions have al-
ways been provided so that a plot can be customised
by adding some new drawing to the plot.

The previous section demonstrated that, if every
shape within a plot has a label, it is also possible
to customise a plot by modifying the existing shapes
within a plot.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 4

However, we can go even further than just mod-
ifying the existing parameters of a shape. In theory,
we can think of the existing shapes within a picture
as a basis for more general post-processing of the im-
age.

As an example, one thing that we can do is to
query the existing components of a plot to deter-
mine the position or size of an existing component.
This means that we can position or size new draw-
ing in relation to the existing plot. The following
code uses this idea to add a rectangle around the x-
axis label of the plot in Figure 4 (see Figure 8). The
grobWidth() function is used to calculate the width
of the rectangle from the width of the x-axis label.
The downViewport() function is used to make sure
that we draw the rectangle in the right area on the
page.1

> xyplot(mpg ~ disp, mtcars)

> rectWidth <- grobWidth("plot_01.xlab")

> downViewport("plot_01.xlab.vp")
> grid.rect(width=rectWidth + unit(2, "mm"),
+ height=unit(1, "lines"),
+ gp=gpar(lwd=2),
+ name="xlabRect")

disp

m
pg

10

15

20

25

30

35

100 200 300 400

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Figure 8: The lattice plot from Figure 4 with a rectan-
gle added around the x-axis label.

The display list now contains an new rectangle
object, as shown below.

> grid.ls(fullNames=TRUE)

rect[plot_01.background]
text[plot_01.xlab]
text[plot_01.ylab]
segments[plot_01.ticks.top.panel.1.1]

segments[plot_01.ticks.left.panel.1.1]
text[plot_01.ticklabels.left.panel.1.1]
segments[plot_01.ticks.bottom.panel.1.1]
text[plot_01.ticklabels.bottom.panel.1.1]
segments[plot_01.ticks.right.panel.1.1]
points[plot_01.xyplot.points.panel.1.1]
rect[plot_01.border.panel.1.1]
rect[xlabRect]

Importantly, the new object depends on the size
of the existing x-axis label object within the scene.
For example, if we edit the x-axis label again, as be-
low, the rectangle will grow to accommodate the new
label (see Figure 9).

> grid.edit("plot_01.xlab",
+ label="Displacement",
+ gp=gpar(fontface="bold.italic"))

Displacement

m
pg

10

15

20

25

30

35

100 200 300 400

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Figure 9: The lattice plot from Figure 4 with a rectan-
gle added around the modified x-axis label.

A more extreme example of post-processing is
demonstrated in the code below. In this case, we
again query the existing x-axis label to determine its
width, but this time, rather than adding a rectangle,
we replace the label with a rectangle (in effect, we
“redact” the x-axis label; see Figure 10).

> xyplot(mpg ~ disp, mtcars)

> xaxisLabel <- grid.get("plot_01.xlab")
> grid.set("plot_01.xlab",
+ rectGrob(width=grobWidth(xaxisLabel) +
+ unit(2, "mm"),
+ height=unit(1, "lines"),
+ gp=gpar(fill="black"),
+ name="plot_01.xlab"))

1This downViewport() works because the grid viewports that lattice creates to draw its plots all have names too!

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 5
m

pg

10

15

20

25

30

35

100 200 300 400

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Figure 10: The lattice plot from Figure 4 with the x-
axis label redacted (replaced with a black rectangle).

The display list now consists of the same number
of objects as in the original plot, but now the object
named "plot_01.xlab" is a rectangle instead of text
(see below).

> grid.ls(fullNames=TRUE)

rect[plot_01.background]
rect[plot_01.xlab]
text[plot_01.ylab]
segments[plot_01.ticks.top.panel.1.1]
segments[plot_01.ticks.left.panel.1.1]
text[plot_01.ticklabels.left.panel.1.1]
segments[plot_01.ticks.bottom.panel.1.1]
text[plot_01.ticklabels.bottom.panel.1.1]
segments[plot_01.ticks.right.panel.1.1]
points[plot_01.xyplot.points.panel.1.1]
rect[plot_01.border.panel.1.1]

The artificial examples shown in this section so
far have been deliberately simple in an attempt to
make the basic concepts clear, but the ideas can be
applied on a much larger scale and to greater effect.
For example, the gridSVG package (Murrell, 2011)
uses these techniques to transform static R plots into
dynamic and interactive plots for use in web pages.
It has functions that modify existing objects on the
grid display list to add extra information, like hyper-
links and animation, and it has functions that trans-
form each object on the grid display list to SVG code.
The following code shows a simple demonstration
where the original lattice plot is converted to an SVG
document with a hyperlink on the x-axis label. Fig-
ure 11 shows the SVG document in a web browser.

> xyplot(mpg ~ disp, mtcars)

> library(gridSVG)

> url <- "http://www.mortality.org/INdb/2008/02/12/8/document.pdf"

> grid.hyperlink("plot_01.xlab", href=url)
> gridToSVG("xyplot.svg")

Figure 11: The lattice plot from Figure 4 transformed
into an SVG document with a hyperlink on the x-axis
label.

Naming schemes

The basic message of this article is straightforward:
name everything that you draw with grid. However,
deciding what names to use—deciding on a naming
scheme—is not necessarily so easy.

The approach taken in the lattice package is to
attempt to reflect the structure of the plot in the nam-
ing scheme. For example, everything that is drawn
within a panel region has the word "panel" in its
name, along with a suffix of the form i.j to identify
the panel row and column.

The decision may be made a lot easier if a plot
is drawn from gTrees rather than simple grobs, be-
cause the gTrees reflect the plot structure already and
names for individual components can be chosen to
reflect just the “local” role of each plot component.
The naming scheme in the ggplot2 package (Wick-
ham, 2009) is an example of this approach.

In addition to the code developer deciding on a
naming scheme, the code user also faces the problem
of how to “discover” the names of the components
of a plot.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 6

From the developer side, there is a responsibil-
ity to document the naming scheme (for example,
the lattice naming scheme is described on the pack-
ages’s R-Forge web site2). It may also be possi-
ble to provide a function interface to assist in con-
structing the names of objects (for example, the
trellis.grobname() function in lattice).

From the user side, there are tools that help to dis-
play the names of objects in the current scene. This
article has demonstrated the grid.ls() function, but
there is also a showGrob() function, and the gridDe-
bug package (Murrell and Ly., 2011) provides some
more tools.

Discussion

In summary, if we specify an explicit name for every
shape that we draw using grid, we allow low-level
access to every object within a scene. This allows us
to make very detailed customisations to the scene,
without the need for long lists of arguments in high-
level plotting functions, and it allows us to query and
transform the scene in a wide variety of ways.

An alternative way to provide access to individ-
ual shapes within a plot is to allow the user to simply
select shapes on screen via a mouse. How does this
compare to a naming scheme?

Selection using a mouse works well for some
sorts of modifications (see, for example, the playwith
package; Andrews, 2010), but providing access to in-
dividual shapes by name is more efficient, more gen-
eral, and more powerful. For example, if we write
code to make modifications, referencing objects by
name, we have a record of what we have done, we
can easily automate large numbers of modifications,
we can share our modification techniques, and we
can express more complex modifications (like “high-
light every sixth bar”).

Another alternative way to provide detailed con-
trol over a scene is simply to modify the original R
code that drew the scene. Why go to the bother of
naming objects when we can just modify the original
R code?

If we have written the original code, then mod-
ifying the original code may be the right approach.
However, if we draw a plot using someone else’s
code (for example, if we call a lattice function), we do
not have easy access to the code that did the draw-
ing. Even though it is possible to see the code that
did the drawing, understanding it and then modi-
fying it may require a considerable effort, especially
when that code is of the size and complexity of the
code in the lattice package.

A parallel may be drawn between this idea of

naming every shape within a scene and the general
idea of markup . In a sense, what we are aiming to do
is to provide a useful label for each meaningful com-
ponent of a scene. Given tools that can select parts
of the scene based on the labels, the scene becomes a
“source” that can be transformed in many different
ways. When we draw a scene in this way, it is not
just an end point that satisfies our own goals. It also
creates a resource that others can make use of to pro-
duce new resources. When we write code to draw a
scene, we are not only concerned with producing an
image on screen or ink on a page; we also allow for
other possible uses of the scene in ways that we may
not have anticipated.

Acknowledgements

Thanks to Wolfgang Viechtbauer for useful com-
ments on an early draft of this article.

Bibliography

F. Andrews. playwith: A GUI for interactive plots
using GTK+, 2010. URL http://CRAN.R-project.
org/package=playwith. R package version 0.9-53.

P. Murrell. gridSVG: Export grid graphics as SVG,
2011. R package version 0.7-0.

P. Murrell and V. Ly. gridDebug: Debugging Grid
Graphics, 2011. R package version 0.2.

R Development Core Team. R: A Language and Envi-
ronment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2011. URL
http://www.R-project.org/. ISBN 3-900051-07-0.

D. Sarkar. Lattice: Multivariate Data Visualization with
R. Springer, New York, 2008. URL http://lmdvr.
r-forge.r-project.org. ISBN 978-0-387-75968-5.

W. Viechtbauer. Conducting meta-analyses in R with
the metafor package. Journal of Statistical Software,
36(3):1–48, 2010. URL http://www.jstatsoft.
org/v36/i03/.

H. Wickham. ggplot2: elegant graphics for data analysis.
Springer New York, 2009. ISBN 978-0-387-98140-6.
URL http://had.co.nz/ggplot2/book.

Paul Murrell
Department of Statistics
The University of Auckland
New Zealand
paul@stat.auckland.ac.nz

2http://lattice.r-forge.r-project.org/documentation.php

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://CRAN.R-project.org/package=playwith
http://CRAN.R-project.org/package=playwith
http://www.R-project.org/
http://lmdvr.r-forge.r-project.org
http://lmdvr.r-forge.r-project.org
http://www.jstatsoft.org/v36/i03/
http://www.jstatsoft.org/v36/i03/
http://had.co.nz/ggplot2/book
mailto:paul@stat.auckland.ac.nz
http://lattice.r-forge.r-project.org/documentation.php

	What's in a Name?
	Too many arguments
	Post-processing graphics
	Naming schemes
	Discussion
	Acknowledgements

