CONTRIBUTED RESEARCH ARTICLE

The gridGraphics Package

by Paul Murrell

Abstract The gridGraphics package provides a function, grid. echo(), that can be used to convert a
plot drawn with the graphics package to a visually identical plot drawn using grid. This conversion
provides access to a variety of grid tools for making customisations and additions to the plot that are
not possible with the graphics package.

Updated 2015-04-16

Introduction

The core graphics system in R is divided into two main branches, one based on the graphics package
and one based on the grid package, with many other packages building on top of one or other of these
graphics systems (see Figure 1).

The graphics package is older and provides an emulation of the original GRZ graphics system
from S (Becker and Chambers, 1984). The newer grid package, although its performance is actually
slower, provides greater flexibility and additional features compared to the graphics package. In
particular, a plot drawn with grid can be manipulated and edited in many more ways than a plot
drawn with the graphics package.

This article describes a new package, called gridGraphics, that allows a plot drawn with graphics
to be converted into an identical plot drawn with grid, thereby allowing the plot to be manipulated
using all of the tools available in grid.

grDevices

Figure 1: The structure of the core graphics system in R. The lattice package (Sarkar, 2008), the ggplot2
package (Wickham, 2009) and many others are built on top of the grid package; the plotrix package
(Lemon, 2006), the maps package (Brownrigg, 2013) and many others are built on top of the graphics
package.

The grid.echo() function

The gridGraphics package provides a single main function called grid.echo(). By default, this
function takes whatever has been drawn by the graphics package on the current graphics device
and redraws it using grid. The following code provides a simple demonstration. We first draw a
scatterplot using plot() from the graphics package, then we call grid.echo() to replicate the plot
with grid. Figure 2 shows that the original plot and the replicated plot are identical.

> plot(mpg ~ disp, mtcars, pch=16)
> library(gridGraphics)
> grid.echo()

The following sections will attempt to demonstrate why, although the plots appear identical to the
eye, there are important advantages that arise from using grid to do the drawing.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=ggplot2
http://CRAN.R-project.org/package=plotrix
http://CRAN.R-project.org/package=maps

CONTRIBUTED RESEARCH ARTICLE

o _| o _|
(3] ™
w0 | I
N N
j=2] (=2
o o
£ . £ .o
o | o |
N N
v . 9 .
9' . e ‘?' .
T T T T T T T T
100 200 300 400 100 200 300 400
disp disp

Figure 2: On the left, a scatterplot drawn with graphics package and, on the right, the result of
grid.echo(), which produces the same scatterplot using the grid package.

Manipulating grobs

One advantage of drawing the plot with grid is that there is an object, a grid grob, recorded for
each separate component of the plot that we have drawn. We can see that list of grobs with a call
to the grid.1s() function, as shown below. There is a grob called graphics-plot-1-points-1 that
represents the data symbols in the plot, there is a grob called graphics-plot-1-xlab-1 that represents
the x-axis label, and so on.

> grid.1s()

graphics-plot-1-points-1
graphics-plot-1-bottom-axis-line-1
graphics-plot-1-bottom-axis-ticks-1
graphics-plot-1-bottom-axis-labels-1
graphics-plot-1-left-axis-line-1
graphics-plot-1-left-axis-ticks-1
graphics-plot-1-left-axis-labels-1
graphics-plot-1-box-1
graphics-plot-1-xlab-1
graphics-plot-1-ylab-1

The grid package provides several functions to manipulate these grobs. For example, the code
below uses the grid.edit() function to rotate the tick labels on the x-axis of the plot to 45 degrees
(and turns them red so that the change is easy to spot; see Figure 3). This is a simple example of a
customisation that is impossible or very difficult in the graphics package, but is quite straightforward
once the plot has been converted to grid.

> grid.edit("graphics-plot-1-bottom-axis-labels-1", rot=45,
+ gp=gpar(col="red"))

To provide a more sophisticated example, consider the conditioning plot produced by the following
code with a call to the coplot () function from the graphics package (see the left-hand plot in Figure
4).

> coplot(lat ~ long | depth, quakes, pch=16, cex=.5,
+ given.values=rbind(c(0, 400), c(300, 700)))

This is an example of a much more complex plot with many different components. Functions
that produce this sort of complex plot can struggle to provide arguments to fine tune all possible
elements of the plot. For example, suppose that we want to modify the “conditioning panel” at the top
of the plot so that the background is a solid colour and the bars are filled in white. This specific task is
probably not a common one for most people, but the point of this example is to represent a class of
problems where a small detail within a complex plot needs to be modified.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

o _|
™
o _|
N
j=2)
o
£ .
o _|
N
ﬂ, L4
9
T T T T
N N N N
S ® Y ®
disp

Figure 3: A scatterplot that was drawn using plot() from graphics, then redrawn using grid via the
grid.echo() function, then edited using grid.edit().

The coplot() function does have an argument bar.bg to control the fill colour for the bars, as
demonstrated in the code below (see the right-hand plot in Figure 4). However, there is no argument
that allows us to control the background colour for the panel behind the bars.

> coplot(lat ~ long | depth, quakes, pch=16, cex=.5,

+ given.values=rbind(c(0, 400), c(300, 700)),
+ bar.bg=c(num="white"))
Given : depth Given : depth

0 100 200 300 400 500 600 700 [100 200 300 400 500 600 700
I I I I I I I I I I I I I I I I

165 170 175 180 185 165 170 175 180 185

-15
-15

lat
-25
lat
-25

-35
-35

T T T T - T T T T
165 170 175 180 185 165 170 175 180 185

long long

Figure 4: A conditioning plot produced by the coplot() function from the graphics package. The
right-hand version of the plot demonstrates the use of the bar.bg argument to customise the fill colour
of the bars in the conditioning panel at the top of the plot.

If we replicate this plot using grid, we have more tools available to be able to manipulate the plot.
The grid.echo() function can replicate this plot and gives an identical result to that shown in Figure
4.

The call to grid.echo() shown below also demonstrates the use of the prefix argument, which
can be used to control the naming of the grobs that grid.echo() draws. The grobs created by this call
to grid.echo() all have names that start with "cp” rather than the default "graphics” prefix.

> grid.echo(prefix="cp")

Once this conversion has taken place, we now have grid grobs that represent all components of
the plot. In particular, there is a grob called "cp-plot-4-box-1" that draws the border around the
conditioning panel. We can edit that grob to give it a fill colour (see the left-hand plot in Figure 5).

> grid.edit("cp-plot-4-box-1", gp=gpar(fill="red"))

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

This provides another demonstration that converting a plot to grid provides access to all of the
components of the plot, which allows fine control over details of the plot that cannot be controlled via
the arguments to the original high-level function that created the plot.

In this particular example, we have also created a new problem, because the border on the
conditioning plot is drawn after the bars, so the bars are now obscured. Fortunately, we can fix this as
well with further tools that grid provides for manipulating grobs.

In the following code, we call the grid.grab() function to create a single grob (a gTree) that
contains all of the other grobs on the page. We then call the grid.reorder () function to change the
order of the grobs within the gTree. The code specifies that the border grob will be drawn first (behind
all other components in the plot). Finally, we redraw the reordered plot with the grid.draw() function
to get the final result that we were after (see the right-hand plot in Figure 5).

> gt <- grid.grab()

> gt <- reorderGrob(gt, "cp-plot-4-box-1")
> grid.newpage()

> grid.draw(gt)

Given : depth Given : depth

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

165 170 175 180 185 165 170 175 180 185

-10
-10

lat

-30 -25 -20 -15

lat
-35 -30 -25 -20 -15
|

-35

165 170 175 180 185 165 170 175 180 185

long long

Figure 5: On the left, the plot from Figure 4 after conversion with grid.echo(), followed by editing to
fill the rectangle that draws a border around the top conditioning panel (in red so that the change is
visible). On the right, the edited plot has been reordered so that the border around the conditioning
panel is drawn first (behind everything else).

This access to individual components of a plot and the ability to manipulate those components is
one benefit of converting a graphics plot to grid.

Making use of viewports

Another advantage of using grid is that we can make use of viewports. Viewports are similar to the
different plotting regions that the graphics package uses for drawing (see Figure 6), but in a grid plot
there can be an unlimited number of viewports and all viewports are accessible at any time. In the
graphics package there is only the current plot region, figure margins, and outer margins to work
with.

Figure 7 shows a diagram of the hierarchy of viewports that grid.echo() created when we
replicated the simple scatterplot in Figure 2. This shows that gridGraphics produces quite a lot of
viewports (even for a simple plot), but there is a coherent structure to the viewports, so the complexity
can be navigated without too much difficulty.

In general, the names of the viewports reflect the plot regions that they mimic in the original plot.
At the top of the hierarchy of viewports is a viewport called ROOT, which represents the entire page (this
viewport is always present). Below that is a viewport called graphics-root and that represents the
area of the page that grid.echo() has drawn into (by default, also the whole page). The next viewport
down is called graphics-inner and this represents the region that is the whole page minus the outer
margins. Below that are two viewports, graphics-figure-1 and graphics-figure-1-clip, both of
which correspond to the figure region (the grey area in Figure 6). There are two viewports because
one has clipping turned on, so that drawing within that region cannot extend beyond the boundaries

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

Outer margin 3

Figure margin 3

Plot Region

Figure margin 2

Outer margin 2
. Figuremargind
Outer margin 4

Figure margin 1

Outer margin 1

Figure 6: The plotting regions involved in the drawing of a graphics plot.

of the region, and one has clipping turned off. Below each of the figure region viewports are one or
more viewports representing the plot region, called either graphics-plot-1 or graphics-plot-1-clip.
Again, the difference between these two plot viewports is whether clipping is on or off. By having the
graphics-plot-1 viewport beneath both figure viewports, we can represent all possible values of the
par("xpd") settings: clipping to the figure region, or clipping to the plot region, or no clipping at all.
The bottom layer of viewports represent the plot region again, but this time with a viewport that has
scales to represent the plot axes. The reason for this additional layer is so that we can reproduce plots
that make use of more than one set of axes (e.g., two different y-axis scales).

ROOT

graphics—inner

graphics—figure-1

’ graphics—figure-1-clip ‘

|

graphics—plot-1 ’ graphics—plot-1-clip ‘ graphics—plot-1
graphics-window-1-0 ‘ ’ graphics-window-1-1 ‘ ’ graphics-window-1-0 ‘ ’ graphics-window-1-1 ‘ ’ graphics-window-1-0 ‘ ’ graphics-window-1-1

Figure 7: A diagram of the viewports that were created by the grid.echo() function when it drew the
plot in Figure 2.

The upside to having so many viewports is that the grid package provides functions to navigate
between viewports. So we can have a lot of viewports on the page at once, but switch between them
if we want to add drawing within different viewports. As an example, the following code uses the
downViewport() function to revisit the plot region viewport that was created by grid.echo() and
draws a red rectangle around the border (see Figure 8). The upViewport() function is then used to
take us back to the whole page (the ROOT viewport).

> downViewport(”"graphics-plot-1")
> grid.rect(gp=gpar(col="red", lwd=3))
> upViewport(0)

Once again, a more sophisticated demonstration can be provided if we consider the more complex
conditioning plot from Figure 4. Another limitation of the coplot() function, because it is based on

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

25

mpg

I I I I
100 200 300 400

disp

Figure 8: The echoed plot from Figure 2 with a rectangle added by revisiting the viewport that
corresponds to the plot region.

the graphics package, is that there is no way to add further drawing to the conditioning panel at the
top of the plot.

This plot has several different panels so the replication created by grid.echo() generates many
different viewports, including viewports used to draw the conditioning panel at the top of the plot.
With grid, all of these viewports can be revisited after the plot has been drawn. In the following code,
we revisit the viewport used to draw the conditioning panel and draw some grid lines in it.

Those new lines will be drawn on top of everything else, so additional manipulations, similar to
the reordering performed for Figure 5, can also be carried out to push the segments behind everything
else (code not shown). The result is shown in Figure 9.

> downViewport("cp-window-4-1")

> v <- unit(seq(0, 700, 100), "native")

> grid.segments(v, 0, v, 1, gp=gpar(col="red"), name="grid")
> upViewport(0)

Given : depth

0 100 200 300 400 500 600 700
I I I

165 170 175 180 185

-20 -15 -10

lat
-25

-35 -30

T T T T
165 170 175 180 185

long

Figure 9: The conditioning plot from Figure 4 with a reference grid added (in red so that the change is
visible) to the conditioning panel at the top of the plot.

Another limitation of the original coplot() function is that it insists on occupying the entire page.
Another advantage of working with grid grobs and viewports is that they can be nested within each
other to any level. This means that once the output from coplot() has been replicated as grid output,
it can be drawn within a grid viewport and combined on a page with other plots.

The following code creates a grid viewport occupying the bottom 70% of the page and then
replicates the conditioning plot only using that part of the page. This code demonstrates another way

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

to call the grid.echo() function. Rather than calling the graphics function coplot() to draw a plot
and then calling grid. echo() to replicate it, we can define a function (with no arguments) that draws
the plot and then provide that function as the first argument to grid. echo(). This way the plot is only
drawn once, using grid. We also specify newpage=FALSE in the call to grid.echo() so that it just draws
in the current viewport rather than starting a new page.

> cpfun <- function() {

+ coplot(lat ~ long | depth, quakes, pch=16, cex=.5,
+ given.values=rbind(c(0, 400), c(300, 700)))
+ 3

> grid.newpage()

> pushViewport(viewport(y=0, height=.7, just="bottom"))
> grid.echo(cpfun, newpage=FALSE, prefix="cp")

> upViewport()

The next piece of code draws a ggplot2 histogram in the top third of the page, so not only do we
have a conditioning plot combined with another plot on the same page (something that was not at all
possible with the original graphics-based conditioning plot), but we have a mixture of graphics-based
and grid-based output on the same page (see Figure 10).

> library(ggplot2)

> pushViewport(viewport(y=1, height=.33, just="top"))
> gg <- ggplot(quakes) + geom_bar(aes(x=depth)) +

+ theme(axis.title.x = element_blank())

> print(gg, newpage=FALSE)

> upViewport()

count

Given : depth

0 100 200 300 400 500 600 700

-15

lat
-35 -25
L1

Figure 10: The conditioning plot from Figure 4 combined with a ggplot2 histogram on the same page.
A dashed red box has been drawn around the region that is occupied by the conditioning plot, to
emphasise the fact that the conditioning plot does not occupy the entire page.

This sort of result—grid-based plots combined with graphics-based plots on the same page—can
also be achieved using the gridBase package (Murrell, 2012). However, gridBase only allows plots
from the two packages to coexist side-by-side on the same page; it does not provide any of the benefits
of grid for graphics-based plots.

Exporting to SVG

Another benefit that we get from converting a graphics plot to grid is that the converted plot can then
be exported to SVG via the gridSVG package (Murrell and Potter, 2014). This means that we gain the
potential to add hyperlinks to the plot, animate components of the plot, add advanced SVG features to
the plot, and add interactivity (possibly via JavaScript code).

As a simple example, the following code draws the scatterplot from Figure 2 with plot() from
the graphics package, converts the plot to grid with grid.echo(), and then adds tooltips to each data

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://CRAN.R-project.org/package=gridSVG

CONTRIBUTED RESEARCH ARTICLE

symbol and exports the plot to SVG with the functions grid.garnish() and grid.export() from the
gridSVG package. The SVG plot, as viewed in a browser, is shown in Figure 11.

> library(gridSVG)

> plot(mpg ~ disp, mtcars, pch=16)
> grid.echo()

A\

grid.garnish("graphics-plot-1-points-1", group=FALSE,
title=rownames(mtcars))
grid.export("murrell-echo.svg")

vV +

= Morzilla Firefox - + X

| file://fhomerl...irell-echo.svg % |\ g0

@ &= file://fhome/local/EC/pmurd02/Files/Research/Rstuff/Integration/grid ~ | & =

30
1

mpg

20
.

15
1

.

L

o _| L]

100 200 300 400

disp

Figure 11: The scatterplot plot from Figure 2, after conversion to grid using grid. echo(), exported to
SVG, with tooltips added, using functions from the gridSVG package. The tooltips in this example
may only work with Firefox.

A graphics plot that is converted by gridGraphics and then exported by gridSVG also has
potential benefits for accessibility because, for example, text labels are exported as <text> elements,
which can be recognised by screen reading software. This is not the case with the standard svg()
graphics device, which exports text as <path> elements.

Naming schemes

Something that has been ignored in the examples so far is the fact that all manipulations of grid grobs,
as well as navigation between grid viewports, rely on being able to identify, by name, which grob we
want to manipulate or which viewport we want to visit. This section describes the naming scheme
that the gridGraphics package uses to assign names to the grobs and viewports that it creates.

The names of grobs have the following basic pattern:
<prefix>-plot-<i>-<label>-<j>

where <prefix> is graphics by default, but can be specified in the call to grid.echo(), <i> reflects
which plot the grob was drawn in (because there can be more than one plot region on the page), <label>
reflects what sort of shape was drawn, and <j> is a numeric index that automatically increments when
more than one of the same shape is drawn within the same plot. The full set of possible shape labels is
given in Table 1.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

Table 1: The labels used for different shapes (grobs) that can be created by grid. echo(). The “Function”
column gives the name of the graphics function that produces the original shapes, the “Description”

column describes what sort of shape is drawn, and the “<label>" column gives the names used for the
grid grobs that the shapes are converted into.

Function Description <label>
plotXY() Points, lines, etc through data points
lines
step
Step
spike
brokenline
text() Text in plot region text
title() Plot title, sub-title, and axis labels main
sub
x1lab
ylab
axis() Axes, including tick marks and bottom-axis-line
labels bottom-axis-ticks
bottom-axis-labels
(ditto left-, top-, and right-)
mtext() Text in margins mtext-bottom
mtext-left
mtext-top
mtext-right
mtext-<side>-outer
box() Border rectangles for plot regions box
box-figure
box-inner
box-outer
segments() Straight line segments segments
arrows() Segments with arrow heads arrows
abline() A straight line parameterised by ~ abline-ab
slope and intercept, or horizontal abline-h
or vertical constant abline-v
rect() Rectangles rect
polygon() Polygons polygon
path() General path path
rasterImage() Raster image raster
xspline() X-Splines xspline
clipQ) Clipping region rectangle clip
contour() Contour lines contour-<i>
image() Filled rectangles image-rect
symbols() High-dimensional data symbols symbols-circle

symbols-square

symbols-rect

symbols-star
symbols-thermo-box
symbols-thermo-fill
symbols-thermo-whisker-right
symbols-thermo-whisker-left
symbols-boxplot-box
symbols-boxplot-lower-whisker
symbols-boxplot-upper-whisker
symbols-boxplot-median

The R Journal Vol. XX/YY, AAAA

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

10

The names of viewports have one of the following basic patterns:

<prefix>-root
<prefix>-inner<a>
<prefix>-figure-<i><a>
<prefix>-plot-<i><a>
<prefix>-window-<i><a>-<j>

where <prefix>is the same as for grob names. There is only ever one root viewport, which is parent
to usually one inner viewport. Both plot and window viewports occupy the same region, but window
viewports represent the axis scales. The <i> part of the name is a numeric index that is automatically
incremented, each time that plot.new() is called. The <j> part is similar, but increments each time
that plot.window() is called. The <a> part of the name only occurs when par() is used to modify
graphical parameters that affect the location of plot regions, for example, to modify the plot region via
par(pin). The part is similar, but occurs when par (usr) is used to modify the axis scales.

For complex plots, like the conditioning plot in Figure 4, there can be a large number of grobs
and viewports. To help with exploring the potentially large number of grobs and viewports, the
grid package provides functions grid.1s(), showGrob(), and showViewport(), and the gridDebug
package (Murrell and Ly, 2012) provides further tools.

Testing

The gridGraphics package is known to produce identical results for all examples in the graphics
package help pages, plus the results of demo("graphics”) (subject to the caveats described in the next
section). However, it is still possible that there are some combinations of arguments in the low-level
graphics functions that will not be emulated correctly by grid.echo().

To test whether a graphics-based plot is reproduced correctly by grid.echo(), the gridGraphics
package provides a plotdiff() function. This takes an expression as its first argument, which is
assumed to be one or more calls to graphics functions. The plotdiff() function creates PDF and PNG
files from evaluating the expression and from converting the result with grid.echo(), plus a PNG file
showing differences between the graphics original and the grid copy, if there are any (a total of either
four or five files).! A plotdiffResult() function is also provided to summarise the results of multiple
calls to plotdiff().

Limitations

There are a few graphics functions that grid.echo() cannot currently replicate: persp() for drawing
3-dimensional surfaces, filled.contour () for drawing a filled contour plot, and recordGraphics(),
which allows delayed evaluation of drawing code.

For some other functions, there are a few details that do not reproduce exactly. For example,
grid.echo() cannot reproduce text labels on contours drawn by contour() and grid.echo() will
sometimes eliminate fewer axis tick labels than the axis() function.

More generally, grid.echo() cannot cope with code that opens or closes graphics devices or
changes the current graphics device, it can only replicate a single page of plots, and if there is already
a mixture of grid and graphics plots on a page, grid. echo() will only replicate the graphics plots.

An important situation where the above limitations will be encountered is within the RStudio IDE
(RStudio, 2014). Plots drawn in the RStudio “Plots” pane will not reproduce well with grid.echo().
However, using a standard R graphics device with RStudio should still work.

Finally, the output from grid.echo() is only valid at the size it is first drawn. Subsequently
resizing the graphics window or copying to another graphics device is likely to produce a distorted
result.

Conclusion

The gridGraphics package provides a bridge between the graphics and grid packages (see Figure 12).

The grid.echo() function converts a plot drawn using the graphics package into exactly the same

1On R versions prior to 3.2.0, and on systems where ImageMagick (ImageMagick Studio LLC, 2014) is not
available, only the PDF files are created; there is no conversion or comparison. Prior to R 3.2.0, there will be some
(typically very small) differences between some plots because of a bug in grid.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 11

result drawn using grid. In effect, the gridGraphics package provides an automated way to create a
grid-based version of almost any plotting function that is based on the graphics package.

The benefit of converting to grid is that grid provides tools for making customisations and
additions to a plot that are not possible with the graphics package:
* To allow customisation of fine details that are not accessible via the graphics package
(e.g., Figures 3 and 5).

* To add extra drawing to a region of the plot that is inaccessible via the graphics package
(e.g., Figure 9).

¢ To combine graphics-based plots with grid-based plots
(e.g., Figure 10).

¢ To export a graphics-based plot to SVG with the gridSVG package

(e.g., Figure 11).

gridGraphics

grDevices

Figure 12: How the gridGraphics package fits into the structure of the core graphics system in R. The
gridSVG package is also shown as an alternative route from grid to SVG output.

Availability

The gridGraphics package is available from CRAN, with ongoing development occurring on github.”
Supporting material for this article, including a live version of Figure 11, is available from the following
web site:

https://www.stat.auckland.ac.nz/~paul/Reports/gridGraphics/

Acknowledgements

Thanks to the anonymous reviewers who made several useful suggestions that improved this
manuscript.

Bibliography
R. A. Becker and J. M. Chambers. S: An Interactive Environment for Data Analysis and Graphics.
Wadsworth, Belmont, CA, 1984. [p1]

R. Brownrigg. maps: Draw Geographical Maps, 2013. URL http://CRAN.R-project.org/package=maps.
R package version 2.3-2. [p1]

ImageMagick Studio LLC. ImageMagick, 2014. URL http://www.imagemagick.org/. [p10]

thtps://github.com/pmurOOZ/gridgraphics

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

https://www.stat.auckland.ac.nz/~paul/Reports/gridGraphics/
http://CRAN.R-project.org/package=maps
http://www.imagemagick.org/
https://github.com/pmur002/gridgraphics

CONTRIBUTED RESEARCH ARTICLE 12

J. Lemon. plotrix: A package in the red light district of R. R-News, 6(4):8-12, 2006. [p1]

P. Murrell. gridBase: Integration of base and grid graphics, 2012. URL http://CRAN.R-project.org/
package=gridBase. R package version 0.4-6. [p7]

P. Murrell and V. Ly. Debugging grid Graphics. The R Journal, 4(2):19-27, Dec. 2012. URL http:
//journal.r-project.org/archive/2012-2/RJournal_2012-2_Murrell+Ly.pdf. [p10]

P. Murrell and S. Potter. The gridSVG package. The R Journal, 6(1):133-143, June 2014. URL http:
//journal.r-project.org/archive/2014-1/murrell-potter.pdf. [p7]

RStudio. RStudio: Integrated development environment for R, 2014. URL http://www.rstudio.org/. [p10]

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer, New York, 2008. URL http:
//1mdvr.r-forge.r-project.org. ISBN 978-0-387-75968-5. [p1]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer New York, 2009. ISBN 978-0-387-
98140-6. URL http://had.co.nz/ggplot2/book. [pl]

Paul Murrell

Department of Statistics

The University of Auckland
New Zealand
paul@stat.auckland.ac.nz

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://CRAN.R-project.org/package=gridBase
http://CRAN.R-project.org/package=gridBase
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Murrell+Ly.pdf
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Murrell+Ly.pdf
http://journal.r-project.org/archive/2014-1/murrell-potter.pdf
http://journal.r-project.org/archive/2014-1/murrell-potter.pdf
http://www.rstudio.org/
http://lmdvr.r-forge.r-project.org
http://lmdvr.r-forge.r-project.org
http://had.co.nz/ggplot2/book
mailto:paul@stat.auckland.ac.nz

	The gridGraphics Package
	Introduction
	The ```grid.echo() function
	Manipulating grobs
	Making use of viewports
	Exporting to SVG
	Naming schemes
	Testing
	Limitations
	Conclusion
	Availability
	Acknowledgements

