s THE UNIVERSITY

M%([EV The conduit Package & OF AUCKLAND
S Ashley Noel Hinton & Paul Murrell

[1] "June 30 - July 3, 2015

L Te Whare Winanga o Tamaki Makaurau

module("m", language = "R",
‘ inputs = list(
moduleInput("x", internalVessel("x")))),

Z:lff()x) sources = list(
dev.off(moduleSource(fileVessel("script.R"))),
outputs = list(
moduleQutput ("Rplot",
fileVessel("Rplots.pdf"))))

pdf()
plot(x) feeep "Rplots.pdf”
dev.off()

CONDUIT *

The conduit package for R provides a system for combining R
SCRIPTS.

A script is first embedded within a MODULE wrapper, which

defines the inputs required by the script and the outputs that
the script produces.

Modules are then combined into PIPELINES by specifying con-
nections ("pipes”) from the outputs of one module to the inputs

The conduit GLUE SYSTEM runs a pipeline by executing the

scripts within the modules and passing results from one module pipeline("p",

to the next. modules = list(ml, m2),

pipes = list(pipe("ml", X", "m2", "x")))

The architecture of the package is designed to maximise the
independence of scripts, modules, and pipelines so that, for ex-
ample, the author of a script can be distinct from the author
of a module, who can in turn be distinct from the author of a
pipeline.

pdf()
plot(x) ® "Rplots.pdf"
dev.off()

Importantly, the author of a script can have no knowledge of
conduit, so that scripts written originally for one purpose can
be repurposed and reused via the conduit package.

X <=
iris[-5]

Furthermore, modules can be created to wrap scripts in other
languages, such as Python.

The motivation for the package is to support greater use of

public data sets by facilitating and encouraging the creation, PIPELINE

reuse, and recombination of small scripts that perform simple
tasks.

OUTPUTS GLUE SYSTEM

> pl <- loadPipeline("pl", "pipeline.xml")
> runPipeline(pl)

Sepal Length

$m2

$m2$Rplot
$m2$Rplot$name
[1] "Rplot"

Sepal.Width

Petal.Length
$m2$Rplot$type
[1] "fileVessel"

$m2$Rplot$object
[1] "/tmp/RtmpVHD4wt/pipelines/pl/modules/m2/Rplots.pdf"

ACKNOWLEDGEMENTS AND FURTHER READING

This work was partially funded by a University of Auckland, Fac- conduit github page
ulty of Science, Research Development Fund and an Ockham E https://github.com/anhinton/conduit
Foundation Postgraduate Scholarship. =

“Introducing OpenAPI”.

The conduit package is an implementation of the OpenAPI architecture. The following is an extract from the document

What is OpenAPI

The problem:
connecting people with data

OpenAPTI’s main aim is to make it easier for people to con-
nect with data. Connecting with data is not just a simple
case of making raw data available to people (though this
is one component of it). When people are fully connected
with data they can examine, manipulate, display, compare,
interpret and share it. We believe the following things are
required to connect people with data:

e Access to data
Domain knowledge
Data Science skills
Statistical Graphics skills
Graphical Design skills

While many people possess one or several of these at-
tributes, it is very rare to find someone who possesses all of
them. Access to data is getting easier thanks to initiatives
to make data widely and freely available, like Open Data,
Open Government and Open Access. Domain knowledge,
data science skills, statistical graphics skills and graphical
design skills can all be acquired through education and ex-
perience. OpenAPI intends to help connect with data those
people who do not have the luxury of acquiring special skills
and knowledge. OpenAPI will do this by allowing anyone
to contribute using those skills that they already possess.

Possible solutions

One solution to the problem of connecting people with data

is providing software or resources containing all of the re-

quired attributes on the user’s behalf. Some examples of

this are:

Public visualisation services
There are a variety of services which present data
in visual form for non-experts to use. Some ex-
amples of this are Wiki New Zealand (http://
wikinewzealand.org/) and Gapminder (http://
www . gapminder.org/)).

Visual programming
Two significant obstacles to connecting people with
data are data science skills and statistical graph-
ics skills. Visual programming software attempts to
overcome these obstacles by providing graphical in-
terfaces to common data analysis jobs. This way a
user can do an analysis by choosing different options
from the interface without having to work with any
scripts or code.
Visual programming makes massive demands on its
authors to ensure it covers all the uses that may be
required, and to make sure that the entire program
works well. If some piece of analysis or some aspect
of an analysis is not coded into the visual program-

ming software it is no small task for a user to have it
included.
Comprehensive solutions for advanced users

We recognise that there appears to be some similar-
ities between the OpenAPI system and some of the
advanced comprehensive solutions that already ex-
ist. Omne such example is the Galaxy platform for
bio-medical research. A discussion of how these sys-
tems differ from OpenAPI in both their intentions
and their execution can be found in the full version
of this document (see the link below).

The OpenAPI solution:
everyone contributes a small amount

Rather than attempt to capture all of the necessary at-
tributes in one program or service, OpenAPI attempts to
capture small contributions which can be combined to suit
the user. This means that contributors only require some
of the attributes that we have listed. This allows for small
contributions like:

e A contributor with raw data can make this data avail-
able to other OpenAPI users.

e A domain expert can clean up data and annotate it.

e Someone with data analysis skills can produce mean-
ingful statistics about the data.

e A statistical graphics guru can provide a script to
make suitable charts for a data type.

e The graphical design team at a news blog can take
graphical output and manipulate it to produce well
designed images for their articles.

In OpenAPI each of these contributions is meaningful.
Further, they allow for someone who has none of the re-
quired attributes to combine other users’ contributions in
a meaningful way. Even if a contributor has no particular
facility in any of the areas mentioned so far, she can still
contribute my making data and scripts available to other
users of OpenAPI.

At its simplest OpenAPI is about modules. Each mod-
ule can ask for inputs, describe some work to be done,
and produce some outputs. Modules can be combined in
pipelines which plug one module’s outputs into another
module’s inputs. The small contributions listed above
could each be captured in a module, and a further con-
tribution would combine them as a pipeline.

The OpeAPI architecture defines an XML format for
describing modules and pipelines and it also defines the
requirements for a glue system that can read and execute
modules and pipelines.

Further reading

The full version of this document can be found at
http://stattech.wordpress.fos.auckland.ac.nz/
2015-01-introducing-openapi/.

http://wikinewzealand.org/
http://wikinewzealand.org/
http://www.gapminder.org/
http://www.gapminder.org/
http://stattech.wordpress.fos.auckland.ac.nz/2015-01-introducing-openapi/
http://stattech.wordpress.fos.auckland.ac.nz/2015-01-introducing-openapi/

