Examples of the Use of grid grobs

Paul Murrell

February 12, 2004

The document “Reimplementing grid grobs” discusses reasons for changing the
way graphical objects are implemented in grid. These changes are available in
an experimental version of grid and this document provides a number of exam-
ples that demonstrate the sorts of things that are possible in this experimental
version.

First of all, the changes have no impact on grid code that just produces output.
For example, the following works exactly as before:

> example(Grid)

Grid> grid.show.layout(grid.layout(4, 2, heights = unit(rep(1,
4), c("lines", "lines", "lines", "null")), widths = unit(c(1,
1), "inches")))

Grid> grid.show.viewport(viewport(x = 0.6, y = 0.6, w = unit(l,
"inches"), h = unit(1, "inches")))

Grid> grid.multipanel(vp = viewport(0.5, 0.5, 0.8, 0.8))
viewport [ROOT]

There is a new distinction between grobs which are just stored in user-level
R objects and grobs which represent drawn output (i.e., grobs on the display
list. There is a naming convention that grid.*() functions are (mainly) used
for their side-effect of producing output or modifying existing output (they
create/affect grobs on the display list). Functions of the form *Grob() are
used for their return value; the grob that they create/modify. For example,
the following creates a grob and then modifies it, but performs absolutely no
drawing; this is purely manipulating a description of a graphical object.

> gl <- linesGrob()
> gl <- editGrob(gl, gp = gpar(col = "green"))

The next example produces output. As previously, a grob is returned, but that
grob is just a description of the output that was drawn and has no direct link to
the output. A link to the output is possible using the grob’s name. In order to



access a grob which represents drawn output (i.e., a grob on the display list),
you must specify a gPath. The gPath should be created using the gPath()
function for writing scripts, but in interactive use, it is possible to specify the
gPath directly as a string. The code below shows both approaches.

> grid.newpage ()

> grid.lines(name = "lines")

> grid.edit(gPath("lines"), gp = gpar(col = "pink"))
> grid.edit("lines", gp = gpar(col = "red"))

Complex graphical objects are provided by the gTree class. A gTree is a grob
which may have other grobs as children. The xaxis and yaxis grobs provided
by grid are examples of gTrees; the children of an axis include a lines grob for
the tick-marks and a text grob for the tick-mark labels. The function child-
Names () can be used to list the names of the children of a gTree. When dealing
with these hierarchical objects, more complex gPaths can be used to access chil-
dren of a gTree. In the following example, an x-axis is drawn, then the xaxis
itself is edited to modify the locations of the tick-marks, then the xaxis’s text
child is edited to modify the location of the labels on the tick-marks.

grid.newpage ()

pushViewport (viewport(w = 0.5, h = 0.5))

grid.rect(gp = gpar(col = "grey"))

grid.xaxis(name = "myxaxis")

grid.edit ("myxaxis", at = 1:4/5)

grid.edit (gPath("myxaxis", "labels"), y = unit(-1, "lines"))

V V.V Vv Vv Vv

This next example extends the idea a step further to edit the child of a child
of a gTree. It also shows the use of the gTree function to construct a simple
gTree (this is just creating an instance of the gTree class — it is also possible
to extend the gTree class in order to provide specialised behaviour for drawing
and other things; more on this later). Finally, the example demonstrates how
gPaths of depth greater than 1 can be specified directly as a string.

grid.newpage ()

pushViewport (viewport(w = 0.5, h = 0.5))

myplot <- gTree(name = "myplot", children = gList(rectGrob(name
gp = gpar(col = "grey")), xaxisGrob(name = "xaxis")))

grid.draw(myplot)

grid.edit ("myplot: :xaxis", at = 1:10/11)

grid.edit("myplot: :xaxis::labels", label = round(1:10/11, 2))

grid.edit ("myplot: :xaxis::labels", y = unit(-1, "lines"))

VvV VVV + VvV VYV

The semantics of "grobwidth" units are slightly changed in the new implemen-
tation. Existing code will still work, but the grobs provided as data are no
longer “pointers”. This means that modifications to the grob will not be re-
flected in the evaluation of the unit. The following example just shows that
"grobwidth" units still work (but if you modify gt it will have no effect on the
width of the drawn rectangle).

"bOX ”’



> grid.newpage ()
> gt <- grid.text("Hi there")
> grid.rect(width = unit(1, "grobwidth", gt))

In order to allow “pointers” to grobs within "grobwidth", it is possible to specify
a gPath rather than a grob as the data for a "grobwidth" unit. The following
example modifies the previous example to use such a “pointer”.

> grid.newpage ()

> gt <- grid.text("Hi there", name = "sometext")

> grid.rect(width = unit(1, "grobwidth", "sometext"))
> grid.edit ("sometext", label = "Something different")

One issue in the evaluation of "grobwidth" units has always been establishing
the correct “context” for a grob when determining its width (if a grob has
a viewport in its vp slot then that viewport gets pushed before the grob is
drawn; that viewport should also be pushed when determining the width of
the grob). This has been pretty awkward in the past and is slightly cleaner in
the new implementation. The old drawDetails() generic has been split into
preDrawDetails(), drawDetails(), and postDrawDetails() (suggestions for
better names welcome!). The idea is that pushing and popping of viewports
should occur in the pre and post generics, and any actual drawing happens in
the main drawDetails() generic. This allows the code that calculates a grob
width to call the preDrawDetails() in order to establish the context in which
the grob would be drawn before calculating its width. The following example
shows a test case; a grob is created (extending to a new class to allow specific
methods to be written), and methods are provided which establish a particular
context for drawing the grob. These methods are used both in the drawing of
the grob and in the calculation of the grob’s width (when drawing a bounding
rectangle).

grid.newpage ()
mygrob <- grob(name = "mygrob", cl = "mygrob")
preDrawDetails.mygrob <- function(x) {
pushViewport (viewport (gp = gpar(fontsize = 20)))
}
drawDetails.mygrob <- function(x, recording = TRUE) {
grid.draw(textGrob("hi there"), recording = FALSE)
}
postDrawDetails.mygrob <- function(x) {
popViewport ()
}
widthDetails.mygrob <- function(x) {
unit (1, "strwidth", "hi there")
}
grid.draw(mygrob)
grid.rect (width = unit(1, "grobwidth", mygrob))

VV++V++V++YVE+V VY



This next example shows a slightly different test case where the standard pre-
DrawDetails() and postDrawDetails() methods are used, but the grob does
have a vp slot so these methods do something. Another interesting feature of
this example is the slightly more complex gTree that is created. The gTree has
a childrenvp specified. When the gTree is drawn, this viewport is pushed and
then “up”ed before the children of the gTree are drawn. This means that the
children of the gTree can specify a vpPath to the viewport they should be in.
This allows the parent gTree to create a suite of viewports and then children of
the gTree select which one they want — this can be more efficient than having
each child push and pop the viewports it needs, especially if several children
are drawn within the same viewport. Another, more realistic example of this is
given later.

grid.newpage ()

mygtree <- gTree(name = "mygrob", childrenvp = viewport(name = "labelvp",
gp = gpar(fontsize = 20)), children = gList(textGrob("hi there",
name = "label", vp = "labelvp")), cl = "mygtree")

widthDetails.mygtree <- function(x) {
unit (1, "grobwidth", getGrob(x, "label"))

}

grid.draw(mygtree)

grid.rect (width = unit(1, "grobwidth", mygtree))

VV+ +V+ + VvV

The “frames and packing” facilities in grid have always involved working with
grobs rather than just producing output, so they are affected quite significantly
by the changes. In particular, the behaviour of grid.pack() and grid.place()
are quite different because they now only affect drawn output and consequently
only allow a gPath for the frame argument. Constructing a description of a
frame grob must now be done via packGrob() and placeGrob(). The following
example shows the construction of a simple frame consisting of two equal-size
columns.

grid.newpage ()

fg <- frameGrob(layout = grid.layout(1l, 2))

fg <- placeGrob(fg, textGrob("Hi there"), col = 1)
fg <- placeGrob(fg, rectGrob(), col = 2)
grid.draw(fg)

vV V.V Vv Vv

This next example constructs a slightly fancier frame using packing.

> grid.newpage ()

> pushViewport (viewport (layout = grid.layout(2, 2)))

> drawlt <- function(row, col) {

pushViewport (viewport (layout.pos.col = col, layout.pos.row = row))
grid.rect(gp = gpar(col = "grey"))

grid.draw(fg)

upViewport ()

+ + + + +



fg <- frameGrob()

fg <- packGrob(fg, textGrob("Hi there"))

fg <- placeGrob(fg, rectGrob())

drawIt(1, 1)

fg <- packGrob(fg, textGrob("Hello again"), side = "right")
drawIt(1, 2)

fg <- packGrob(fg, rectGrob(), side = "right")

drawIt (2, 2)

V VVVVYVVYV

In order to allow frames and packing to make use of “pointers” to grobs (so
that a frame can be made to expand or contract if the contents are edited),
there is a dynamic argument to packGrob() (and grid.pack()). The following
extends the previous example to show how this might be used. Another feature
of this example is the demonstration of “non-strict” searching that occurs in the
grid.edit() call; the grob called "midtext" is not at the top-level, but is still
found. Something like grid.get("midtext", strict=TRUE) would fail.

grid.newpage ()

fg <- frameGrob()

fg <- packGrob(fg, textGrob("Hi there"))

fg <- placeGrob(fg, rectGrob())

fg <- packGrob(fg, textGrob("Hello again", name = "midtext"),
side = "right", dynamic = TRUE)

fg <- packGrob(fg, rectGrob(), side = "right")

grid.draw(fg)

grid.edit ("midtext", label = "something much longer")

VVV+VVVVYV

There have been a few examples already which have involved creating a gTree.
This next example explicitly demonstrates this technique. A gTree is created
with two important components. The childrenvp is a vpTree consisting of a
"plotRegion" viewport to provide margins around a plot and a "dataRegion"
viewport to provide x- and y-scales. The "dataRegion" gets pushed within
the "plotRegion" and both are pushed and then “up”ed before the children are
drawn. The children of the gTree are an xaxis and a yaxis both drawn within
the "dataRegion", and a rect drawn around the border of the "plotRegion".
A further feature of this example is the use of the addGrob() and removeGrob()
functions to modify the gTree. The first modification involves adding a new
child to the gTree which is a set of points drawn within the "dataRegion".
The second modification involves adding another set of points with a different
symbol (NOTE that this second set of points is given a name so that it is easy
to identify this set amongst the children of the gTree). The final modification
is to remove the second set of points from the gTree.

grid.newpage ()

pushViewport (viewport (layout = grid.layout(2, 2)))

drawlt <- function(row, col) {
pushViewport (viewport (layout.pos.col = col, layout.pos.row =
grid.rect(gp = gpar(col = "grey"))

+ + Vv vV

row))



grid.draw(gplot)
upViewport ()
}
gplot <- gTree(x = NULL, y = NULL, childrenvp = vpTree(plotViewport (c(5,
4, 4, 2), name = "plotRegion"), vpList(viewport(name = "dataRegion"))),
children = gList(xaxisGrob(vp = "plotRegion::dataRegion"),
yaxisGrob(vp = "plotRegion::dataRegion"), rectGrob(vp = "plotRegion")))
drawIt(1, 1)
gplot <- addGrob(gplot, pointsGrob(vp = "plotRegion::dataRegion"))
drawIt(1, 2)
gplot <- addGrob(gplot, pointsGrob(name = "datal", pch = 2, vp = "plotRegion::dataRegion
drawIt(2, 1)
gplot <- removeGrob(gplot, "datal")
drawIt (2, 2)

VVVVVVYV+ + +V + + +

One of the original motivations for the new implementation was the ability to
save/load grobs. This next example provides a simple demonstration that this
now works. It is also a nice demonstration that grobs really do copy like normal
R objects now.

gplot <- gTree(x = NULL, y = NULL, childrenvp = vpTree(plotViewport(c(5,
4, 4, 2), name = "plotRegion"), vpList(viewport(name = "dataRegion"))),
children = gList(xaxisGrob(vp = "plotRegion::dataRegion"),
yaxisGrob(vp = "plotRegion::dataRegion"), rectGrob(vp = "plotRegion")))
save(gplot, file = "gplotl")
gplot <- addGrob(gplot, pointsGrob(vp = "plotRegion::dataRegion"))
save(gplot, file = "gplot2")
grid.newpage ()
pushViewport (viewport (layout = grid.layout(1, 2)))
pushViewport (viewport (layout.pos.col = 1))
load("gplot1")
grid.draw(gplot)
popViewport ()
pushViewport (viewport (layout.pos.col = 2))
load("gplot2")
grid.draw(gplot)
popViewport ()

VVVVVVVVVVVVV+ + + YV

This next example just demonstrates that it is possible to use a gPath to access
the children of a gTree when editing. This is the editGrob() equivalent of an
earlier example that used grid.edit(). One useful application of this API is
the ability to modify the appearance of quite precise elements of a large, complex
graphical object by editing the gp slot of a child (of a child ...) of a gTree.

> myplot <- gTree(name = "myplot", children = gList(rectGrob(name = "box",
+ gp = gpar(col = "grey")), xaxisGrob(name = "xaxis")))

> myplot <- editGrob(myplot, gPath = "xaxis", at = 1:10/11)

> myplot <- editGrob(myplot, gPath = "xaxis::labels", label = round(1:10/11,



2))
myplot <- editGrob(myplot, gPath = "xaxis::labels", y = unit(-1,
"lines"))
grid.newpage ()
pushViewport (viewport(w = 0.5, h
grid.draw(myplot)

0.5))

vV V.V + Vv +

The API for accessing children of a gTree or any drawn grob has been cleaned
up considerably. The following example demonstrates the use of the getGrob ()
and grid.get () (along with gPaths) to access grobs.

myplot <- gTree(name = "myplot", children = gList (rectGrob(name = "box",
gp = gpar(col = "grey")), xaxisGrob(name = "xaxis")))

getGrob(myplot, "xaxis")

myplot <- editGrob(myplot, gPath

getGrob(myplot, "xaxis::labels")

grid.newpage ()

pushViewport (viewport(w = 0.5, h

grid.draw(myplot)

grid.get ("myplot")

grid.get ("myplot: :xaxis")

grid.get ("myplot: :xaxis::labels")

"xaxis", at = 1:10/11)

0.5))

VVVVVVVVYV + YV

There is also now an API for (re)setting children of a gTree or any drawn
grob. This is not intended for general user use, but provides a simple way
for developers to perform modifications to the structure of a gTree by doing
something like ...

grob <- getGrob(<spec>)
<modify grob>
setGrob(<spec>, grob)

This approach is used in the new implementation of packing and placing grobs.
The following example shows some simple usage of the setGrob() and grid.set ()
functions to replace children of a gTree with different grobs. NOTE that cur-
rently such replacement can only occur if the name of the new grob is the same
as the name of the old grob.

myplot <- gTree(name = "myplot", children = gList(rectGrob(name = "box",
gp = gpar(col = "grey")), xaxisGrob(name = "xaxis")))

myplot <- setGrob(myplot, "xaxis", rectGrob(name = "xaxis"))

grid.newpage ()

pushViewport (viewport(w = 0.5, h = 0.5))

grid.draw(myplot)

grid.set("myplot: :xaxis", xaxisGrob(name = "xaxis", at = 1:3/4))

grid.set("myplot: :xaxis::labels", textGrob(name = "labels", x = unit(1:3/4,
"native"), y = unit(-1, "lines"), label = letters[1:3]))

myplot <- setGrob(grid.get("myplot"), "xaxis::labels", circleGrob(name = "labels"))

V + VVVVVYV + YV



> grid.newpage ()
> pushViewport (viewport(w = 0.5, h = 0.5))
> grid.draw(myplot)

This next example just shows more complex use of the add/remove facilities
for modifying grobs. Again, addGrob() and removeGrob() are for constructing
descriptions of graphical objects and grid.add() and grid.remove() are for
modifying drawn output. Of particular note are the last two lines involving
grid.remove (). The first point is that there are multiple grobs on the display
list with the same name. The example only affects the first one it finds; this
could easily be extended to affect the display list “globally” (for children of
gTrees, there cannot be multiple children with the same name so the issue does
not arise). The last line is interesting because it actually erases the grob named
"plotl" from the display list altogether (well, the first instance on the display
list of a grob called "plotl" anyway).

drawIt <- function(row, col) {
pushViewport (viewport (layout.pos.col = col, layout.pos.row = row))
grid.rect(gp = gpar(col = "grey"))
grid.draw(gplot)

upViewport ()
}
gplot <- gTree(name = "plotl", childrenvp = vpTree(plotViewport(c(5,
4, 4, 2), name = "plotRegion"), vpList(viewport(name = "dataRegion"))),
children = gList(xaxisGrob(name = "xaxis", vp = "plotRegion::dataRegion"),
yaxisGrob(name = "yaxis", vp = "plotRegion::dataRegion"),

rectGrob(name = "box", vp = "plotRegion")))
grid.newpage ()
pushViewport (viewport (layout = grid.layout(2, 2)))
drawIt(1, 1)
grid.add("plot1", pointsGrob(0.5, 0.5, name = "datal", vp = "plotRegion::dataRegion"))
grid.add("plotl::xaxis", textGrob("X Axis", y = unit(-2, "lines"),
name = "xlab"))
grid.edit("plotl::xaxis::xlab", y = unit(-3, "lines"))
gplot <- grid.get("plotl")
gplot <- addGrob(gplot, gPath = "yaxis", textGrob("Y Axis", x = unit(-3,
"lines"), rot = 90, name = "ylab"))
drawIt(1, 2)
gplot <- removeGrob(gplot, "xaxis::xlab")
drawIt(2, 1)
grid.remove ("plotl::datal")
grid.remove("plot1")

VVVVYV+VVVHEVVVVYV+4+++V+++ 4+ +V

The next example is just a grid.place() and grid.pack() equivalent of an
earlier example involving placeGrob() and packGrob(). The interesting feature
is that each action is reflected in the output as it occurs.

> grid.newpage ()
> grid.frame(name = "myframe", layout = grid.layout(1l, 2))



grid.place("myframe", textGrob("Hi there"), col = 1)
grid.place("myframe", rectGrob(), col = 2)

grid.newpage ()

grid.frame(name = "frame2")

grid.pack("frame2", textGrob("Hi there"))
grid.place("frame2", rectGrob())

grid.pack("frame2", textGrob("Hello again"), side = "right")
grid.pack("frame2", rectGrob(), side = "right")

V VVVVYVVYV

One concern about the new implementation is the speed penalty that will in-
curred due to extra copying. The next two examples provide a couple of very
simple test cases in case the effect is obviously unacceptable. The code is slower,
in some cases by up to 50This is not especially noticeable for a single plot, but
may become a bit painful in a batch job and it makes dynamic graphics even
less conceivable. On the other hand, this new design is the way I want to go so
my approach is: wait to see if people complain and if they do, try to make this
design go faster.

The first example involves a plot with a large number of points and the second
is just a benchmarking of the standard example output.

> myplot <- gTree(name = "myplot", children = gList(rectGrob(name = "box",
+ gp = gpar(col = "grey")), xaxisGrob(name = "xaxis")))

> myplot <- addGrob(myplot, pointsGrob(name = "data", x = runif (10000),

+ y = runif (10000)))

> grid.newpage ()

> pushViewport (viewport(w = 0.5, h = 0.5))

> grid.draw(myplot)

> grid.edit ("myplot::xaxis", at = 1:3/4)

> grid.edit("myplot::data", pch = ".")

> system.time(for (i in 1:10) example(Grid))

That’s all for now! :)



