
Rotated Viewports

Paul Murrell

April 13, 2004

It is possible to specify an angle of rotation for a Grid viewport. For example, the following
code draws the example multipanel plot at an angle of 15◦.

> pushViewport(viewport(h = 0.8, w = 0.8, angle = 15))

> grid.multipanel(newpage = FALSE)

> popViewport()

whatever

●
●

●

●

●

●
●

●

●

●

●

●
●

0

0.2

0.4

0.6

0.8

whatever
00.2 0.6 1

●

●
●

●

●

●

●

●

●

●●
●

whatever

●●
●

●

●

●

●

●
●

●
●

●

●

whatever
00.2 0.6 1

●
●

●

●

●

●●

●

whatever

●

●

●

●

●
●

●●
●

whatever

●
●

●

●
●

●

●

●

0.6 1

whatever

●

●
●

●

●

●

●

●
●

●

●

●

whatever

●

●●
●●

●

●
●

●

●

00.2 0.6 1

whatever

●

●

●

●

●
0

0.2

0.4

0.6

0.8

1

N
O

x
(m

ic
ro

gr
am

s/
J)

1

A more complicated example is now developed. First of all we generate some data to plot;
an x and a y with an obvious correlation.

> x <- rnorm(50)

> y <- x + rnorm(50, 1, 2)

Next we generate some statistics from the data.

> rx <- range(x)

> dx <- diff(rx)

> ry <- range(y)

> dy <- diff(ry)

> max <- max(rx, ry)

> min <- min(rx, ry)

> r <- c(min(rx, ry), max(rx, ry))

> d <- diff(r)

> scale <- r + c(-1, 1) * d * 0.05

> extscale <- c(min(scale), max(scale) + diff(scale) *

+ 1/3)

Now generate a layout of regions: a 3” by 3” region for a scatterplot, inside a 4” by 4” region.

> lay <- grid.layout(2, 2, widths = unit(c(3, 1),

+ "inches"), heights = unit(c(1, 3), "inches"))

> vp1 <- viewport(w = unit(4, "inches"), h = unit(4,

+ "inches"), layout = lay, xscale = extscale,

+ yscale = extscale)

We draw a box around the outside and axes on the entire region.

> grid.newpage()

> pushViewport(vp1)

> grid.rect()

> grid.xaxis()

> grid.text("Test", y = unit(-3, "lines"))

> grid.yaxis()

> grid.text("Retest", x = unit(-3, "lines"), rot = 90)

We draw points within the interior region.

> vp2 <- viewport(layout.pos.row = 2, layout.pos.col = 1,

+ xscale = scale, yscale = scale)

> pushViewport(vp2)

> grid.lines()

> grid.points(x, y, gp = gpar(col = "blue"))

> popViewport()

2

Now we use a rotated viewport to draw a boxplot which indicates the distribution of the
distances between the points in the scatterplot and the line y = x1.

The final output is shown on the last page.

> diffs <- (y - x)

> rdiffs <- range(diffs)

> ddiffs <- diff(rdiffs)

> bxp <- boxplot(diffs, plot = FALSE)

> vp3 <- viewport(x = unit(3, "inches"), y = unit(3,

+ "inches"), w = unit(0.5, "inches"), h = unit(ddiffs *

+ sin(pi/4)/diff(scale) * 3, "inches"), just = c("centre",

+ "center"), angle = 45, gp = gpar(col = "red"),

+ yscale = c(-ddiffs/2, ddiffs/2))

> pushViewport(vp3)

> left <- -0.3

> width <- 0.8

> middle <- left + width/2

> grid.rect(x = left, y = unit(bxp$conf[1, 1], "native"),

+ w = width, h = unit(diff(bxp$conf[, 1]), "native"),

+ just = c("left", "bottom"), gp = gpar(col = NULL,

+ fill = "orange"))

> grid.rect(x = left, y = unit(bxp$stats[4, 1],

+ "native"), w = width, h = unit(diff(bxp$stats[4:3,

+ 1]), "native"), just = c("left", "bottom"))

> grid.rect(x = left, y = unit(bxp$stats[3, 1],

+ "native"), w = width, h = unit(diff(bxp$stats[3:2,

+ 1]), "native"), just = c("left", "bottom"))

> grid.lines(x = c(middle, middle), y = unit(bxp$stats[1:2,

+ 1], "native"))

> grid.lines(x = c(middle, middle), y = unit(bxp$stats[4:5,

+ 1], "native"))

> grid.lines(x = c(middle - 0.1, middle + 0.1),

+ y = unit(bxp$stats[1, 1], "native"))

> grid.lines(x = c(middle - 0.1, middle + 0.1),

+ y = unit(bxp$stats[5, 1], "native"))

> np <- length(bxp$out)

> if (np > 0) grid.points(x = rep(middle, np), y = unit(bxp$out,

+ "native"))

> grid.yaxis(main = FALSE)

> popViewport(2)

1This may look like a large amount of code, but that’s mostly because its doing a boxplot by hand rather
than using a predefined high-level function.

3

0 5 10

Test

0

5

10

R
et

es
t

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●●

●

●

●●

●
●

●

●

●

●

●● ●

●

●●

●
●

●●

●

●
●

●

−4
−2

0

2

4

Problems

1. Data symbols will not be affected by the angle of rotation. For round data symbols
this does not matter, but it will make just about everything else look pretty odd.

4

