
Paul Murrell Introduction to grid Graphics

Introduction to grid Graphics

Paul Murrell

The University of Auckland

July 2011

Paul Murrell Introduction to grid Graphics

Entrée

Entrée

Paul Murrell Introduction to grid Graphics

Entrée

� Why do we not draw statistical plots by hand with a drawing
program like Inkscape or Gimp?

Paul Murrell Introduction to grid Graphics

Entrée

� A plot is just a bunch of shapes, but the arrangement of
those shapes is critical.

� grid provides tools to draw basic shapes plus tools that assist
in the arrangement of basic shapes.

� Plus it provides a way to produce graphical scenes
programmatically.

Paul Murrell Introduction to grid Graphics

Entrée

� Viewports create a context for drawing.

> library(grid)

> plotvp <- viewport(x=unit(5, "lines"),

y=unit(5, "lines"),

width=unit(1, "npc") -

unit(8, "lines"),

height=unit(1, "npc") -

unit(8, "lines"),

just=c("left", "bottom"),

xscale=c(0, 4),

yscale=c(0, 4),

name="plotRegion")

> pushViewport(plotvp)

Paul Murrell Introduction to grid Graphics

Entrée

plotRegion

Paul Murrell Introduction to grid Graphics

Entrée

� Graphical shapes are drawn within that context.

> grid.points(1:3, 1:3, default.units="native")

> grid.rect(x=0.5, y=0.5, width=1, height=1)

> grid.xaxis(at=0:4)

> grid.yaxis(at=0:4)

Paul Murrell Introduction to grid Graphics

Entrée

plotRegion

●

●

●

0 1 2 3 4

0

1

2

3

4

Paul Murrell Introduction to grid Graphics

Entrée

� This is what lattice is doing ...

> library(lattice)

> xyplot(1:3 ~ 1:3 | 1)

1:3

1:
3

1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0

●

●

●

1

Paul Murrell Introduction to grid Graphics

Entrée

� ... creating viewports ...

Paul Murrell Introduction to grid Graphics

Entrée

� ... and drawing shapes in the viewports.

1:3

1:
3

1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0

●

●

●

1

Paul Murrell Introduction to grid Graphics

Review

Review

Paul Murrell Introduction to grid Graphics

Review

� Drawing with grid involves defining contexts for drawing
(viewports) and drawing basic shapes in those contexts.

� We need to know what shapes grid can draw and how to
position and size those shapes.

� We need to know how to create viewports.

Paul Murrell Introduction to grid Graphics

Main Course

Main Course

Paul Murrell Introduction to grid Graphics

Basic Shapes

The following basic shapes can be drawn using grid:

circles grid.circle(x, y, r)

lines grid.lines(x, y)
grid.segments(x0, y0, x1, y1)
grid.polylines(x, y, id)

rectangles grid.rect(x, y, width, height)
grid.roundrect(x, y, width, height, r)

text grid.text(label, x, y)

Paul Murrell Introduction to grid Graphics

Basic Shapes

The following basic shapes can be drawn using grid:

polygons grid.polygon(x, y, id)
grid.path(x, y, id)

curves grid.xspline(x, y, shape)
grid.curve(x1, y1, x2, y2)

raster images grid.raster(image, x, y, width, height)

data symbols grid.points(x, y, pch)

Paul Murrell Introduction to grid Graphics

Basic Shapes

> t <- seq(90, 0, -30)

> x <- .2 + cos(t/180*pi)*.6

> y <- .8 - sin(t/180*pi)*.6

●

●

●

●

1

2

3

4

Paul Murrell Introduction to grid Graphics

Basic Shapes

Locations and dimensions are vectors so multiple shapes can be
drawn at once.

> grid.circle(x, y, r=1:4/30)

●

●

●

●

Paul Murrell Introduction to grid Graphics

Basic Shapes

Some shapes require multiple locations to describe a single shape.

> grid.lines(x, y)

●

●

●

●

Paul Murrell Introduction to grid Graphics

Basic Shapes

Any line or curve shape can have arrows at either end.

> grid.segments(.2, .8, x, y,

arrow=arrow())

●

●

●

●

Paul Murrell Introduction to grid Graphics

Basic Shapes

Some functions have an id argument to allow multiple shapes
from a single call.

> grid.polyline(c(x, x - .1), c(y, y + .1),

id=rep(1:2, each=4))

●

●

●

●

Paul Murrell Introduction to grid Graphics

Basic Shapes

Rectangles are“justified” relative to the x and y locations.

> grid.rect(x, y, width=.2, height=.1,

just="bottom")

●

●

●

●

Paul Murrell Introduction to grid Graphics

Basic Shapes

Only one rounded rect can be drawn at a time.

> grid.roundrect(x[1], y[1], width=.4, height=.3,

just=c("left", "bottom"))

●

●

●

●

Paul Murrell Introduction to grid Graphics

Basic Shapes

Text can also be justified relative to x and y.

> LETTERS[1:4]

[1] "A" "B" "C" "D"

> grid.text(LETTERS[1:4], x, y,

just=c("left", "bottom"))

●

●

●

●

A

B

C

D

Paul Murrell Introduction to grid Graphics

Basic Shapes

Polygons are automatically “closed”.

> grid.polygon(x, y)

●

●

●

●

Paul Murrell Introduction to grid Graphics

Basic Shapes

Paths describe a single shape from multiple disjoint pieces.

> grid.path(c(x, x - .1), c(y, y + .1),

id=rep(1:2, each=4))

●

●

●

●

Paul Murrell Introduction to grid Graphics

Basic Shapes

Xsplines describe a smooth curve relative to control points.

> grid.xspline(x, y, shape=1)

●

●

●

●

Paul Murrell Introduction to grid Graphics

Basic Shapes

Curves describe a smooth curve between two end points.

> grid.curve(.2, .8, x, y, square=FALSE,

curvature=.5, shape=1)

●

●

●

●

Paul Murrell Introduction to grid Graphics

Basic Shapes

Raster images can be vectors or matrices or (with help from an
extension package) external files.

> grid.raster(t(1:10/11), x, y, width=.2,

interpolate=FALSE, just="bottom")

●

●

●

●

Paul Murrell Introduction to grid Graphics

Basic Shapes

A predefined set of data symbols is available.

> grid.points(x, y, pch=1:4)

●

●

●

●

●

Paul Murrell Introduction to grid Graphics

Axes

grid also provides functions for drawing basic axes.

> grid.xaxis()

> grid.yaxis()

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Paul Murrell Introduction to grid Graphics

EXERCISES

EXERCISE

Paul Murrell Introduction to grid Graphics

EXERCISES

� The ultimate goal of the exercises in the first half of this
course is to produce a complete plot with a novel style.

V1 V2 V3 V4 V5 V6
0

0.2

0.4

0.6

0.8

1

Paul Murrell Introduction to grid Graphics

EXERCISE

� We will develop the plot in separate stages that will allow us to
experiment with the various grid concepts that we encounter.

� At each stage, a code skeleton is provided to perform ancillary
tasks such as data preparation, so that you just have to add
code to do the drawing.

Paul Murrell Introduction to grid Graphics

EXERCISES

� The goal of this exercise is to draw a series of line segments as
shown below.

Paul Murrell Introduction to grid Graphics

EXERCISES

� The raw data consist of two vectors of values.

> y1 <- 1:10

> y2 <- 10:1

� A function is provided to generate cumulative proportions
from a vector.

> cprop <- function(x) {

prop <- x/sum(x)

cumsum(prop)

}

� Each vector is converted into a set of cumulative proportions,
which provide the start and end y-values for the line segments.

> cp1 <- cprop(y1)

> cp2 <- cprop(y2)

Paul Murrell Introduction to grid Graphics

Main Course

Main Course

Paul Murrell Introduction to grid Graphics

Units and Coordinate Systems

� The locations and dimensions of shapes are units, which
consist of a value plus a coordinate system.

� The main coordinate systems are:

"npc" Normalised Parent Coordinates
"native" Relative to the current x-scale/y-scale
"in" or "cm" Inches or centimetres
"lines" Lines of text

Paul Murrell Introduction to grid Graphics

Units and Coordinate Systems

� The unit() function is used to create unit objects.

> unit(1, "in")

[1] 1in

> unit(.2, "npc")

[1] 0.2npc

> grid.rect(width=unit(1, "in"),

height=unit(.2, "npc"))

Paul Murrell Introduction to grid Graphics

Units and Coordinate Systems

� Simple operations on units are possible, including basic
arithmetic.

> unit(1, "npc") - unit(1, "cm")

[1] 1npc-1cm

> grid.text("Label",

x=unit(1, "npc") - unit(1, "cm"),

y=unit(1, "npc") - unit(1, "cm"),

just=c("right", "top"))

Label

Paul Murrell Introduction to grid Graphics

Graphical Parameters

� Every basic shape has a gp argument that allows graphical
parameters to be specified.

� The main graphical parameters are:

col colour (for borders)
fill colour (for interiors)
lwd line width
lty line type
cex text size multiplier

Paul Murrell Introduction to grid Graphics

Graphical Parameters

� The gpar() function creates a list of graphical parameter
settings.

> grid.circle(r=.3,

gp=gpar(col="red", fill="pink",

lwd=3, lty="dashed"))

Paul Murrell Introduction to grid Graphics

Graphical Parameters

� When drawing multiple shapes with a single function call,
graphical parameter settings can be vectors so that different
shapes can have different appearances.

> hcl(1:3/2*180, 60, 60)

[1] "#90972B" "#00A698" "#9188D1"

> grid.circle(x=1:3/4, r=.3,

gp=gpar(lwd=3,

col=hcl(1:3/2*180, 60, 60),

fill=hcl(1:3/2*180, 80, 80)))

Paul Murrell Introduction to grid Graphics

EXERCISES

EXERCISE

Paul Murrell Introduction to grid Graphics

EXERCISES

� The goal of this exercise is to draw a vertical stack of
rectangles as shown below.

� The rectangles are exactly one inch wide and each rectangle
has a specific colour.

Paul Murrell Introduction to grid Graphics

EXERCISES

� The raw data come from the first vector from the previous
exercise (y1).

� A function is provided to generate proportions from a vector.

> prop <- function(x) {

x/sum(x)

}

� The proportions, p1, provide the heights of the rectangles in
the stack and the cumulative proportions, cp1, provide the
locations of the tops of the rectangles.

> p1 <- prop(y1)

� The colours for the rectangle fills are also provided.

> fills <- hcl(240, 60, seq(10, 100, 10))

Paul Murrell Introduction to grid Graphics

Main Course

Main Course

Paul Murrell Introduction to grid Graphics

Viewports

� A viewport is a description of a rectangular region on the page.

� The viewport() function creates viewports.

� Viewports have a location and size, both of which can be
specified in any coordinate system.

� The viewport can be justified relative to its location.

> vp <- viewport(x=.5, y=.5,

width=.5, height=.5,

just=c("left", "bottom"))

Paul Murrell Introduction to grid Graphics

Viewports

� The pushViewport() function creates a rectangular region
on the page.

� All drawing occurs within the current viewport.

> pushViewport(vp)

> grid.rect(gp=gpar(fill="grey"))

Paul Murrell Introduction to grid Graphics

Viewports

� Pushing of viewports also occurs within the current viewport.

> pushViewport(vp)

> grid.rect(gp=gpar(fill="black"))

Paul Murrell Introduction to grid Graphics

Viewports

� The popViewport() function removes the rectangular region
from the page.

> popViewport(2)

> pushViewport(viewport(width=.5, height=.5,

just=c("right", "top")))

> grid.rect(gp=gpar(fill="grey"))

Paul Murrell Introduction to grid Graphics

Viewports

� A viewport has an x-scale and a y-scale and these provide
context for the "native" coordinate system.

� The grid.newpage() function starts a fresh page.

> grid.newpage()

> pushViewport(viewport(xscale=c(0, 4),

yscale=c(0, 4)))

> grid.points(unit(1:3, "native"),

unit(1:3, "native"))

●

●

●

Paul Murrell Introduction to grid Graphics

Viewports

� A viewport has a gp argument for setting graphical
parameters.

� These settings provide default values for all drawing within the
viewport.

> pushViewport(viewport(x=.5, y=.5,

width=.5, height=.5,

just=c("left", "bottom"),

gp=gpar(lwd=3, col="green")))

> grid.rect(gp=gpar(fill="grey"))

Paul Murrell Introduction to grid Graphics

Viewports

� There are two convenience functions that create viewports for
a simple plot.

� The plotViewport() function creates a viewport with
margins around the outside.

� The dataViewport() function creates a viewport with the
x-scale and y-scale based on data values.

> x <- 1:10

> y <- 1:10

> grid.newpage()

> pushViewport(plotViewport(c(4, 4, 2, 2)),

dataViewport(x, y))

> grid.points(x, y)

> grid.xaxis()

> grid.yaxis()

> grid.rect()

Paul Murrell Introduction to grid Graphics

Viewports

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2

4

6

8

10

Paul Murrell Introduction to grid Graphics

EXERCISES

EXERCISE

Paul Murrell Introduction to grid Graphics

EXERCISES

� The goal of this exercise is to draw two vertical stacks of
rectangles, with a set of line segments in between, as below.

Paul Murrell Introduction to grid Graphics

EXERCISES

� The raw data are the two vectors from the previous exercises.

� Two functions are provided: spine() to generate a stack of
rectangles and connector() to generate a set of line
segments.

> spine <- function(x) {

px <- prop(x)

cpx <- cprop(x)

grid.rect(y=cpx, height=px, just="top")

}

> connector <- function(x1, x2) {

cp1 <- cprop(x1)

cp2 <- cprop(x2)

grid.segments(0, cp1, 1, cp2)

}

Paul Murrell Introduction to grid Graphics

EXERCISES

� You need to create three viewports: one occupying the left
third of the page, one occupying the central third, and one
occupying the right third.

� Draw a stack of rectangles based on the data in y1 in the left
viewport, a stack of rectangles based on y2 in the right
viewport, and a set of line segments in the central viewport.

Paul Murrell Introduction to grid Graphics

Main Course

Main Course

Paul Murrell Introduction to grid Graphics

Layouts

� A layout divides a viewport into rows and columns.

� The height of each row in a layout can be specified in any
coordinate system, plus the special "null" coordinate
system, which is just for layouts. Column widths are similar.

> lyt <- grid.layout(1, 3,

widths=unit(c(1, 1, 1),

c("null", "in", "null")))

(1, 1)1null

1null

1null

(1, 2)

1in

1in

(1, 3)

1null

1null

1null

Paul Murrell Introduction to grid Graphics

Layouts

� Viewports can be located and sized using a layout (rather
than via an explicit location and size).

� A parent viewport can have a layout and then any viewports
pushed within that parent can occupy particular rows/columns
of the layout.

> pushViewport(viewport(layout=lyt))

> pushViewport(viewport(layout.pos.col=3))

> grid.rect(gp=gpar(fill="grey"))

Paul Murrell Introduction to grid Graphics

EXERCISES

EXERCISE

Paul Murrell Introduction to grid Graphics

EXERCISES

� The goal of this exercise is to produce the same result as the
previous exercise, except using a layout to position the
components of the picture.

Paul Murrell Introduction to grid Graphics

EXERCISES

� The raw data are the same two vectors from the previous
exercise.

� The spine() and connector() functions to draw the stack
of rectangles and the line segments are the same as in the
previous exercise.

Paul Murrell Introduction to grid Graphics

Review

Review

Paul Murrell Introduction to grid Graphics

Review

grid provides the following tools to facilitate drawing statistical
plots (among other things):

� basic shapes

� units (coordinate systems) for locating and sizing shapes

� graphical parameters for controlling the appearance of shapes

� viewports and layouts for creating local drawing contexts

Paul Murrell Introduction to grid Graphics

EXERCISES

EXERCISE

Paul Murrell Introduction to grid Graphics

EXERCISES

� The goal of this exercise is to produce a plot composed of
stacks of rectangles and sets of line segments.

V1 V2
0

0.2

0.4

0.6

0.8

1

Paul Murrell Introduction to grid Graphics

Main Course

Main Course

Paul Murrell Introduction to grid Graphics

Reusing Viewports

� Viewports can have names and a record is kept of all
viewports on the page.

� The upViewport() function reverts to the parent viewport
context, but leaves the current viewport on the page.

� The current.viewport() function shows the current
viewport.

� The current.vpTree() function shows all viewports on a
page.

� The downViewport() function can be used to return to an
existing viewport on the page.

Paul Murrell Introduction to grid Graphics

Reusing Viewports

> vp <- viewport(x=.5, y=.5,

width=.5, height=.5,

just=c("left", "bottom"),

name="top-right-vp")

> pushViewport(vp)

> grid.rect(gp=gpar(fill="grey"))

Paul Murrell Introduction to grid Graphics

Reusing Viewports

> upViewport()

> grid.rect(gp=gpar(col="red", lwd=3))

> current.viewport()

viewport[ROOT]

> current.vpTree()

viewport[ROOT]->(viewport[top-right-vp])

Paul Murrell Introduction to grid Graphics

Reusing Viewports

> downViewport("top-right-vp")

> grid.text("back again", gp=gpar(col="red"))

back again

Paul Murrell Introduction to grid Graphics

EXERCISES

EXERCISE

Paul Murrell Introduction to grid Graphics

EXERCISES

� The goal of this exercise is to modify a lattice plot by reusing
viewports.

� The modification involves adding the x-axes on the top strips.

disp

m
pg

2.
5

3.
0

3.
5

5.0 5.5 6.0

●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●●

●

●

automatic

lo
gg

ed

4.5 5.0 5.5

●●

●

●
●

●

●
●

●

●

●

●

●

manual

lo
gg

ed

10
15

20
25

30
35

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

automatic

un
tr

an
sf

or
m

ed

●●

●

●

●

●

●
●

●

●

●

●

●

manual

un
tr

an
sf

or
m

ed

100 150 200 250 300 350100 200 300 400

Paul Murrell Introduction to grid Graphics

EXERCISES

� The data are based on the mtcars data frame.

> mtcarsExp <- rbind(apply(mtcars[c("mpg", "disp")], 2, log),

mtcars[c("mpg", "disp")])

> mtcarsExp$am <- rep(ifelse(mtcars$am, "manual", "automatic"), 2)

> mtcarsExp$logged <- rep(c("logged", "untransformed"),

each=nrow(mtcars))

� The original plot is produced by the following code.

> library(lattice)

> plot <- xyplot(mpg ~ disp | am*logged, mtcarsExp,

scales=list(relation="free",

x=list(at=list(TRUE, TRUE, NULL, NULL)),

y=list(limits=list(c(2.2, 3.6), c(2.2, 3.6),

c(10, 35), c(10, 35)),

at=list(TRUE, NULL, TRUE, NULL))),

par.settings=list(layout.heights=list(axis.panel=c(1, 0),

top.padding=3),

layout.widths=list(axis.panel=c(1, 0))))

> library(latticeExtra)

> print(useOuterStrips(plot))

Paul Murrell Introduction to grid Graphics

EXERCISES

� The viewports that lattice created to draw the top two strips
on this plot are called "plot_01.strip.2.2.off.vp" and
"plot_01.strip.1.2.off.vp".

plot_01.strip.1.2.off.vp plot_01.strip.2.2.off.vp

Paul Murrell Introduction to grid Graphics

EXERCISES

� You need to downViewport() to the appropriate viewport
and call grid.xaxis() to add the x-axis (the strip viewports
have an appropriate x-scale).

� The grid.xaxis() function has an argument main; set that
to FALSE to draw the axis at the top of the viewport rather
than the bottom.

� Use upViewport() to navigate back to the ROOT viewport;
downViewport() returns the number of viewports that it
went down.

Paul Murrell Introduction to grid Graphics

Main Course

Main Course

Paul Murrell Introduction to grid Graphics

Grobs

� Drawing a basic shape with grid is a two-step process.
� First, a graphical object, or grob, is created, which contains a

description of the shape.
� Second, the shape is drawn on the page.

� Grobs can have names and a record is kept of all grobs on the
page.

� The grid.ls() function lists the grobs that have been drawn
on the current page.

� The grid.edit() function can be used to access a grob, by
name, and modify it.

Paul Murrell Introduction to grid Graphics

Grobs

> vp <- viewport(x=.5, y=.5,

width=.5, height=.5,

just=c("left", "bottom"),

name="top-right-vp")

> pushViewport(vp)

> grid.rect(gp=gpar(fill="grey"), name="top-right-rect")

> grid.ls()

top-right-rect

Paul Murrell Introduction to grid Graphics

Grobs

> upViewport()

> grid.edit("top-right-rect",

gp=gpar(col="red", lwd=3, fill="pink"))

Paul Murrell Introduction to grid Graphics

Viewports

� The grid.ls() function can also lists viewports.

> vp <- viewport(x=.5, y=.5,

width=.5, height=.5,

just=c("left", "bottom"),

name="top-right-vp")

> pushViewport(vp)

> grid.rect(gp=gpar(fill="grey"), name="top-right-rect")

> grid.ls(viewports=TRUE, fullNames=TRUE)

viewport[ROOT]
viewport[top-right-vp]
rect[top-right-rect]

Paul Murrell Introduction to grid Graphics

Grobs and Viewports

In addition to grid.ls() ...

� The showViewport() function draws semitransparent
rectangles and labels to represent the locations of viewports
on the page.

> showViewport()

top−right−vp

Paul Murrell Introduction to grid Graphics

Grobs and Viewports

In addition to grid.ls() ...

� The showGrob() function draws semitransparent rectangles
and labels to represent the locations of grobs on the page.

> showGrob()

top−right−rect

Paul Murrell Introduction to grid Graphics

EXERCISES

EXERCISE

Paul Murrell Introduction to grid Graphics

EXERCISES

� The goal of this exercise is to modify a lattice plot by editing
grobs.

� The modification involves changing the background colour of
a single strip.

weight

D
en

si
ty

0.0

0.2

0.4

0.6

0.8

1.0

3 4 5 6 7

● ●● ●● ● ●● ●●

ctrl
0.0

0.2

0.4

0.6

0.8

1.0

●● ●● ●● ●●● ●

trt1
0.0

0.2

0.4

0.6

0.8

1.0

●● ●●●●● ●●●

trt2

Paul Murrell Introduction to grid Graphics

EXERCISES

� The original plot is produced by the following code.

> print(

densityplot(~ weight | group, PlantGrowth,

layout=c(1, 3))

)

� Use grid.ls() and/or showGrob() to inspect the grobs that
lattice has created to find the one that corresponds to the
bottom strip region.

� You need to grid.edit() the appropriate grob and set its
fill to be "pink".

Paul Murrell Introduction to grid Graphics

Review

Review

Paul Murrell Introduction to grid Graphics

Review

� A record is kept of the viewports and grobs that are drawn on
a page.

� Viewports and grobs can have names.

� If other people name their viewports and grobs, it is easier for
you to make modifications.

� If you name your viewports and grobs, it is easier for others to
make modifications.

Paul Murrell Introduction to grid Graphics

Dessert

Dessert

Paul Murrell Introduction to grid Graphics

Modular Graphics

� Do NOT assume that you have the whole page to draw into.

� Name any viewports that you create.

� Use upViewport() so that the viewports remain available for
others.

� Always end up in the viewport where you started.

Paul Murrell Introduction to grid Graphics

Modular Graphics

� A connector() function that draws line segments.

> connector <- function(x1, x2,

gp=gpar(),

name=NULL) {

cp1 <- cprop(x1)

cp2 <- cprop(x2)

grid.segments(0, cp1, 1, cp2,

gp=gp, name=name)

}

Paul Murrell Introduction to grid Graphics

Modular Graphics

> connector(1:10, 10:1,

gp=gpar(col=grey(1:10/11), lwd=3),

name="connectorDemo")

Paul Murrell Introduction to grid Graphics

Modular Graphics

� A spine() function that draws rectangles.

> spine <- function(x,

gp=gpar(),

name=NULL) {

px <- prop(x)

cpx <- cprop(x)

grid.rect(y=cpx, height=px, just="top",

gp=gp, name=name)

}

Paul Murrell Introduction to grid Graphics

Modular Graphics

> spine(1:10,

gp=gpar(fill=grey(1:10/11)),

name="spineDemo")

Paul Murrell Introduction to grid Graphics

Modular Graphics

� A cplot() function that draws a series of line segments and
rectangles based on the columns of a data frame.

� The width argument controls the widths of the spines.

> cplot <- function(df, gp=gpar(), name="cplot") {

for (i in 1:length(df)) {

spineName <- paste(name, "spine", i, sep="-")

pushViewport(viewport(x=unit(i, "native"),

width=unit(0.5, "native"),

name=spineName))

spine(df[[i]], gp=gp, name=spineName)

upViewport()

if (i > 1) {

conName <- paste(name, "con", i, sep="-")

pushViewport(viewport(x=unit(i - 0.5, "native"),

width=unit(0.5, "native"),

name=conName))

connector(df[[i - 1]], df[[i]], gp=gp, name=conName)

upViewport()

}

}

}

Paul Murrell Introduction to grid Graphics

Modular Graphics

Some data preparation ...

> barley1931 <- subset(barley, year == 1931)

> barley1931$variety <- reorder(barley1931$variety,

barley1931$yield,

FUN=function(x) {

prop(x)[1]

})

> barley1931 <- barley1931[order(barley1931$variety),]

> col <- hcl(seq(0, 300, 60), 70, 50)

> fill <- hcl(seq(0, 300, 60), 70, 70)

Paul Murrell Introduction to grid Graphics

Modular Graphics

> grid.newpage()

> pushViewport(plotViewport(c(5, 4, 2, 2),

xscale=c(0, 11),

yscale=0:1),

viewport(clip=TRUE,

xscale=c(0, 11),

yscale=0:1))

> df <- as.data.frame(split(barley1931$yield,

barley1931$variety))

> cplot(df, gp=gpar(col=col, fill=fill))

> popViewport()

> grid.text(colnames(df),

x=unit(1:10, "native"),

y=unit(-0.5 ,"lines"),

rot=30, just="right")

> grid.yaxis()

> grid.rect()

> popViewport()

Paul Murrell Introduction to grid Graphics

Modular Graphics

No..475

Manchuria Trebi

Peatland

No..462

Wisconsin.No..38

Svansota

No..457

Glabron
Velve

t
0

0.2

0.4

0.6

0.8

1

Paul Murrell Introduction to grid Graphics

Modular Graphics

> grid.ls(viewports=TRUE, fullNames=TRUE)
viewport[ROOT]

viewport[GRID.VP.114]

viewport[GRID.VP.115]

viewport[cplot-spine-1]

rect[cplot-spine-1]

upViewport[1]

viewport[cplot-spine-2]

rect[cplot-spine-2]

upViewport[1]

viewport[cplot-con-2]

segments[cplot-con-2]

upViewport[1]

viewport[cplot-spine-3]

rect[cplot-spine-3]

upViewport[1]

viewport[cplot-con-3]

segments[cplot-con-3]

upViewport[1]

viewport[cplot-spine-4]

rect[cplot-spine-4]

upViewport[1]

viewport[cplot-con-4]

segments[cplot-con-4]

upViewport[1]

viewport[cplot-spine-5]

rect[cplot-spine-5]

upViewport[1]

viewport[cplot-con-5]

segments[cplot-con-5]

upViewport[1]

viewport[cplot-spine-6]

rect[cplot-spine-6]

upViewport[1]

viewport[cplot-con-6]

segments[cplot-con-6]

upViewport[1]

viewport[cplot-spine-7]

rect[cplot-spine-7]

upViewport[1]

viewport[cplot-con-7]

segments[cplot-con-7]

upViewport[1]

viewport[cplot-spine-8]

rect[cplot-spine-8]

upViewport[1]

viewport[cplot-con-8]

segments[cplot-con-8]

upViewport[1]

viewport[cplot-spine-9]

rect[cplot-spine-9]

upViewport[1]

viewport[cplot-con-9]

segments[cplot-con-9]

upViewport[1]

viewport[cplot-spine-10]

rect[cplot-spine-10]

upViewport[1]

viewport[cplot-con-10]

segments[cplot-con-10]

upViewport[1]

popViewport[1]

text[GRID.text.304]

yaxis[GRID.yaxis.305]

rect[GRID.rect.306]

popViewport[1]

Paul Murrell Introduction to grid Graphics

Modular Graphics

> grid.edit("con", grep=TRUE, global=TRUE,

gp=gpar(lwd=3))

No..475

Manchuria Trebi

Peatland

No..462

Wisconsin.No..38

Svansota

No..457

Glabron
Velve

t
0

0.2

0.4

0.6

0.8

1

Paul Murrell Introduction to grid Graphics

Modular Graphics

> barley$variety <- factor(barley$variety,

levels=levels(barley1931$variety))

> panel.cplot <- function(x, y, groups, subscripts, ...) {

cplot(as.data.frame(split(y, x)),

gp=gpar(col=col, fill=fill))

}

> print(

xyplot(yield ~ variety | year, barley,

groups=site, layout=c(1, 2),

scales=list(x=list(rot=20), y=list(limits=0:1)),

panel=panel.cplot)

)

Paul Murrell Introduction to grid Graphics

Modular Graphics

variety

yi
el

d

0.2

0.4

0.6

0.8

No. 475
Manchuria Trebi

Peatland
No. 462

Wisconsin No. 38
Svansota

No. 457
Glabron

Velvet

1932

0.2

0.4

0.6

0.8

1931

Paul Murrell Introduction to grid Graphics

Coffee & Cigars

Coffee & Cigars

Paul Murrell Introduction to grid Graphics

Editing ggplot2

� ggplot2 creates viewports and grobs when it draws a plot,
BUT ...

� ... the viewport for the plot region has a 0-to-1 scale AND ...

� ... the grobs that it creates a more complex, hierarchical
objects SO ...

� ... some grid changes are not as easy to make compared to
editing lattice.

Paul Murrell Introduction to grid Graphics

Editing ggplot2

> library(ggplot2)

> qplot(disp, mpg, data=mtcars)

> downViewport("panel-3-3")

> grid.text("n=32",

x=unit(1, "npc") - unit(2, "mm"),

y=unit(1, "npc") - unit(2, "mm"),

just=c("right", "top"))

disp

m
pg

15

20

25

30

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

100 200 300 400

n=32

Paul Murrell Introduction to grid Graphics

Clipping

� It is possible to set a rectangular clipping region so that
drawing can only occur inside that region.

� Viewports have a clip argument to indicate whether drawing
should be clipped to the viewport.

� The grid.clip() function sets the clipping region within a
viewport.

Paul Murrell Introduction to grid Graphics

Clipping

> grid.text("Clipping")

> pushViewport(viewport(width=0.5, clip=TRUE))

> grid.rect(gp=gpar(fill="black"))

> grid.text("Clipping", gp=gpar(col="white"))

> grid.clip(width=0.5)

> grid.rect(gp=gpar(fill="grey80"))

> grid.text("Clipping", gp=gpar(col="grey60"))

ClippingClippingClipping

Paul Murrell Introduction to grid Graphics

Querying Grobs

� It is possible to ask a grob about its location and size.

� The grobWidth() function returns the width of a grob.
There is also grobHeight().

� The grobX() function returns an x-location on the boundary
of a grob. There is also grobY().

Paul Murrell Introduction to grid Graphics

Querying Grobs

> ggplot(aes(x=disp, y=mpg), data=mtcars) +

geom_point() +

geom_smooth(method="lm")

> downViewport("panel-3-3")

> sline <- grid.get(gPath("smooths", "polyline"),

grep=TRUE)

> grid.segments(.7, .8,

grobX(sline, 45), grobY(sline, 45),

arrow=arrow(angle=10, type="closed"),

gp=gpar(fill="black"))

> grid.text("line of best fit",

x=unit(.7, "npc") + unit(2, "mm"),

y=unit(.8, "npc") + unit(2, "mm"),

just=c("left", "bottom"))

Paul Murrell Introduction to grid Graphics

Querying Grobs

disp

m
pg

10

15

20

25

30

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

100 200 300 400

line of best fit

Paul Murrell Introduction to grid Graphics

Finis!

Finis!

