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Abstract: Suppose that X is a random variable (a “survival time”) with distribution func-
tion F and Y is an independent random variable (an “observation time”) with distribution
function G. Suppose that we can only observe (Y, ∆) where ∆ = 1[X≤Y ], and our goal is to
estimate the distribution function F of the random variable X. The Nonparametric Max-
imum Likelihood Estimator (NPMLE) F̂n of F was described in 1955 in papers by H. D.
Brunk (and four co-authors), and by C. van Eeden.

A further problem involves inference about the function F at a fixed point, say t0. If
we consider testing H : F (t0) = θ0, then one interesting test statistic is the likelihood ratio
statistic

λn =
supF Ln(F )

supF :F (t0)=θ0
Ln(F )

=
Ln(F̂n)

Ln(F̂ 0
n)

.

This involves the additional problem of constrained estimation: we need to find the NPMLE
F̂ 0

n of F subject to the constraint F (t0) = θ0. Inversion of the likelihood ratio tests leads to
natural confidence intervals for F (t0).

Even though the problem of estimating F is non-regular, with associated rate of con-
vergence n−1/3 rather than the usual n−1/2, the likelihood ratio statistic λn has a limiting
distribution analogous to the usual χ2

1 distribution for regular problems which is free of
all nuisance parameters in the problem, and this leads to especially appealing tests and
confidence intervals for F (t0).

In this talk I will describe the estimator F̂n and its constrained counterpart F̂ 0
n , discuss

the asymptotic behavior of these estimators and the log-likelihood ratio statistic 2 log λn,
and briefly describe the inversion of the tests to obtain confidence intervals. Some open
problems concerned with generalizations in several directions will also be mentioned.


