
S4 Classes in 15 pages, more or less

February 12, 2003

Overview

The preferred mechanism for object–oriented programming in R is described
in Chambers (1998). The actual implementation is slightly different (in some
parts influenced by Dylan, (Shalit, 1996)). This document provides a short
introduction to programming using these classes and methods. It is worth
noting that R also supports an older class system (as described in Chambers
and Hastie (1992) but we recommend developing all new programs using the
new system and will not refer to the older system further.

The object system is class–based with multiple inheritance and generic
functions that can dispatch on any set of arguments (signature). In some
sense the concepts of classes and methods are distinct and we will deal
with them separately. The final section of this document will deal with
documenting classes and methods.

Classes

A class is defined using setClass.

setClass(Class, representation, prototype,
contains=character(), validity, access, where=1, version=FALSE)

Where the arguments are:

Class character string; the name of the class

representation the slots that the new class should have and/or other
classes that this class extends. Usually a call to the ‘representation’
function.

1

prototype An object providing default data for the slots. New instances
will pick up these values unless explicitly overridden at time of con-
struction.

contains The classes that this class extends. All slots of parent classes will
be propagated to new instances of the extending class.

validity, access, version Control arguments included for compatibility with
S-Plus.

where The environment to use to store or remove the definition as meta-
data.

Once a class has been defined instances of that class can be created using
the function new. The class defines the structure of an object. The instances
of that class represent the objects themselves.

Classes can provide an abstraction of complex objects that helps to sim-
plify programming with them. Appropriate design is essential and this is
where much of the programming effort (rather than in actual coding) should
be focused.

A class can extend one or more other classes. We can think of the class
hierarchy as being a directed graph (or tree). The extended classes are
considered to be parents of the class that extends them. The graph must be
acyclic – no class can be a parent of itself. Extension means that the new
class will contain all of the slots that the parent classes have. It is an error
to create a class with duplicate slot names (either by inclusion or directly).

> library(methods)

> setClass("foo", representation(a = "character", b = "numeric"))

[1] "foo"

> setClass("bar", representation(d = "numeric", c = "numeric"))

[1] "bar"

> setClass("baz", contains = c("foo", "bar"))

[1] "baz"

> getClass("baz")

2

Slots:

Name: a b d c
Class: character numeric numeric numeric

Extends:
Class "foo", directly.
Class "bar", directly.

Now we can create an instance of baz. You do not need instances of foo
or bar to do so, baz objects can be instantiated directly.

Access to the values in a slot is through a special operator, the @ symbol.
There are many advantages to not accessing the values in slots directly but
rather to define and use special methods for accessing the values. We will
discuss some of these issues in the next section when methods are discussed.

> x <- new("baz", a = "xxx", b = 5, c = 10)

> x

An object of class "baz"
Slot "a":
[1] "xxx"

Slot "b":
[1] 5

Slot "d":
numeric(0)

Slot "c":
[1] 10

> x@a

[1] "xxx"

Virtual Classes

Virtual classes are classes for which no instances will be (can be) created.
Rather, they are used to link together classes which may have distinct rep-
resentations (and hence cannot inherit from each other) but for which we

3

want to provide similar functionality. A fairly standard mechanism is to
create a virtual class and to then have several other classes extend it.

In practice the virtual classes are then used in different ways:

1. Methods for the virtual class will apply to any of the classes that
extend the virtual class.

2. A slot in a new class can have as its type the virtual class. This allows
slots to be polymorphic.

3. If a virtual class has slots they will be common to all classes that
extend the virtual class.

Suppose that we want to define a class that represents a dendrogram.
Each node in a dendrogram has three values associated with it. The height,
the left node and the right node. Terminal nodes are different they have a
height and a value (possibly an instance of a yet another class).

One way to implement this structure is to use a virtual class called
dendNode, say. Then there are two classes that we can define that extend
this virtual class; terminal and non-terminal nodes.

> setClass("dendNode")

[1] "dendNode"

> setClass("dnode", representation(left = "dendNode", right = "dendNode",

+ height = "numeric"), contains = "dendNode")

[1] "dnode"

> setClass("tnode", representation(height = "numeric", value = "numeric",

+ label = "character"), contains = "dendNode")

[1] "tnode"

Now we can create dendrograms whose nodes are either terminal or non–
terminal. The virtual class dendNode has been used to allow two different
classes of objects as the left and right nodes of a dendrogram. This design
makes recursive manipulation of dendrograms somewhat simpler.

A situation that seems to arise frequently is the desire to allow a slot in
an object to either contain a list or to be NULL(). Since the object NULL()
is not itself a list these cannot ordinarily share a slot. To overcome this

4

we could create a new virtual class that extends both the list class and the
NULL() class.

As described on page 294 of Chambers (1998) we can operationalize these
ideas with the following code:

> setClass("listOrNULL")

[1] "listOrNULL"

> setIs("list", "listOrNULL")

> setIs("NULL", "listOrNULL")

Now if we define an object with a slot that is of type listOrNULL it should
accomodate either.

> setClass("c1", representation(value = "listOrNULL"))

[1] "c1"

> y <- new("c1", value = NULL)

> y

An object of class "c1"
Slot "value":
NULL

> y2 <- new("c1", value = list(a = 10))

> y2

An object of class "c1"
Slot "value":
$a
[1] 10

One can create a virtual class in two different ways. First, as shown
above, if the call to setClass has no representation then the class will be a
virtual class. Otherwise, include the class VIRTUAL in the representation.

> setClass("myVclass", representation(a = "character", "VIRTUAL"))

[1] "myVclass"

> getClass("myVclass")

5

Virtual Class

Slots:

Name: a
Class: character

And we see that myVclass is indeed a virtual class with a single slot, a.

Initialization and prototyping

In some situations it is desireable to control the creation of new instances
of a class. In some cases we might want to perform some computations or
other initialization processes.

There are two different mechansims for doing this. The first is to use
the prototype argument of setClass. Using this argument any of the slots
can be provided with initial values.

> setClass("xx", representation(a = "numeric", b = "character"),

+ prototype(a = 3, b = "hi there"))

[1] "xx"

> new("xx")

An object of class "xx"
Slot "a":
[1] 3

Slot "b":
[1] "hi there"

And we see that new instances of the class xx will all have the values 3 and
"hi there" associated with the slots a and b, respectively.

In some cases this is not sufficiently general and we might, for example
want more control and flexibility. To achieve this we define an initialize
method for our class. This method, if defined will be applied after the
prototype, if one was defined.

> setMethod("initialize", "xx", function(.Object, b) {

+ .Object@b <- b

6

+ .Object@a <- nchar(b)

+ .Object

+ })

[1] "initialize"

> new("xx", b = "yowser")

An object of class "xx"
Slot "a":
[1] 6

Slot "b":
[1] "yowser"

Note that the last statement in the initialize method must return the
object. This is required because of the pass–by–value semantics of R. While
initialize gives the appearance of changing the values of the slots of its
arguments it does not do so. Rather it creates a whole new object sets the
values of its slots and returns that new object.

Generics and Methods

An equally important aspect of object oriented programming is the use of
generic functions and methods. A generic function is essentially a dispatch-
ing mechanism. The methods are specialized functions that perform the
required task on a specific type of input. The job of the generic function is
to determine which of the methods is most applicable for a given set of ar-
guments. Once this decision has been made the method selected is invoked
with the appropriate arguments.

Much of the S language already uses generic functions and methods. The
new system is a big improvement for several reasons

• Dispatching can be done on multiple arguments.

• Methods should not be called directly but only via the generic.

• The old style of dispatching made it virtually impossible to distinguish
the appropriate dispatching for a function named foo.bar.baz.

7

When creating methods you usually need to first determine whether a
generic function exists. If there is no generic function you must create one.
An issue that may arise is the signature of the generic. The signature of the
generic function limits the signatures of all methods defined for that generic
function.

Once the signature for the generic has been specified methods can imple-
ment some or all of the arguments of the generic function but they cannot
add any new arguments. This implies that the construction of the argu-
ment list for the generic is especially important. All potentially relevant
arguments should be included.

Accessor Functions

Slots can always be accessed directly using the @ operator. This practice is
not recommended (for Bioconductor) since it produces code that depends
on the actual class representation. Should that representation change, for
example some slots dropped in favour of them being computed or renamed
for some reason, then all of the code that uses the @ operator must be
identified and modified. Instead we recommend using the convention of
accessing the slots via methods (while this produces a lot of generic functions
the abstraction gained more than offsets this).

Suppose that the class foo has a slot named a. To create an accessor
function for this slot you can proceed as shown below.

> setClass("foo", representation(a = "ANY"))

[1] "foo"

> if (!isGeneric("a")) {

+ if (is.function("a"))

+ fun <- a

+ else fun <- function(object) standardGeneric("a")

+ setGeneric("a", fun)

+ }

[1] "a"

> setMethod("a", "foo", function(object) object@a)

[1] "a"

8

> b <- new("foo", a = 10)

> a(b)

[1] 10

0.1 Replacement Methods

As noted previously one of the conceptual hurdles (and hence a real one)
is dealing with the pass-by-value semantics of the S language. One of the
reasons for object oriented programming is to use the computer representa-
tion to mimic real-world objects. Since real-world objects are mutable and
their behavior depends on their history we would like to mimic that in the
computer representation.

However, R has pass-by-value semantics and so every function operates
on a copy of its arguments. Thus, change can not occur through func-
tion calls in a straightforward manner. The replacement methods are one
mechansim that can be used to provide the appearance of pass-by-reference
semantics.

Basically a replacement method silently replaces the whole object with
a suitably modified copy of itself. For example, in x[1]<-10, it appears to
the user that the 1st element of x has had its value changed to 10. But that
is not what happens. First an analysis is done to determine that the symbol
being operated on is x(). Then a copy of x() is made, the first value of the
copy is changed, and finally the binding for x() is changed to the new value.

This process is automatic and most users are not aware of the true un-
derlying semantics. The procedure is largely conventional. One of the re-
quirements is that the last statement in any replacement method (function)
is the whole object. A second requirement is that the last argument must
be named value. This is to ensure that S can always identify the value that
is going to be assigned.

We continue the example given above.

> setGeneric("a<-", function(x, value) standardGeneric("a<-"))

[1] "a<-"

> setReplaceMethod("a", "foo", function(x, value) {

+ x@a <- value

+ x

+ })

[1] "a<-"

9

> a(b) <- 32

We also had to define an appropriate generic function. In this case
the name of the generic is a<- since that is the traditional expression for
assignment functions, the name of the function for which an assignment
version is being defined concatenated with the assignment operator.

Finally, note that the value in the a slot of the object b has been changed
(as noted really the whole object has been changed).

Documentation

Documentation of S4 classes and methods is aided by two functions in the
methods package. They are promptClass and promptMethods both create
documentation templates in the .Rd markup dialect.

First consider the top of the file iter-methods.Rd in the Biobase pack-
age.

\name{iter-methods}
\docType{methods}
\title{ Methods for the generic iter.}
\alias{iter-methods}
\alias{iter}

Here we have the name of the file, the documentation type (not sure just
how it works yet), the title and some aliases. The aliases are used by R’s
help system to find the correct documentation. From the help man page,

help(topic, offline = FALSE, package = .packages(),
lib.loc = NULL, verbose = getOption("verbose"),
try.all.packages = getOption("help.try.all.packages"),
htmlhelp = getOption("htmlhelp"),
pager = getOption("pager"))

?topic
type?topic

We can see how the ? operator works. It is either monadic or dyadic. In
the dyadic form it constructs calls to help for the string topic-type.

Consider the aggregator class in the Biobase package. When R receives
the command promptClass("aggregator"), it will dump the following text
to the file aggregator-class.Rd:

10

\name{aggregator-class}
\docType{class}
\alias{aggregator-class}
\title{Class aggregator, ~~class for ... ~~ }
\description{ ~~ A concise (1-5 lines) description of what the class is ~~}
\section{Creating Objects}{
\code{ new(’aggregator’,}\cr
\code{ aggenv =, # Object of class environment}\cr
\code{ initfun =, # Object of class function}\cr
\code{ aggfun =, # Object of class function}\cr
\code{)}}
\section{Slots}{
\describe{
\item{\code{aggenv}:}{Object of class "environment" ~~ }
\item{\code{initfun}:}{Object of class "function" ~~ }
\item{\code{aggfun}:}{Object of class "function" ~~ }

}
}

\section{Prototype}{
\describe{
\item{environment aggenv}{<environment> }
\item{function initfun}{function (name, val) 1 }
\item{function aggfun}{function (name, current, val) current + 1 }

}
}
\section{Methods}{
\describe{
\item{aggenv}{(aggregator): ... }
\item{aggfun}{(aggregator): ... }
\item{initfun}{(aggregator): ... }

}
}
\keyword{methods}

The developer should add narrative content to this skeleton, and copy
the final file to the man section of the package implementing the class.
See Biobase/man/aggregator-class.Rd for an example. Note that the
xyz-class naming convention permits use of the binary version of ?. Thus

11

class?aggregator is the command that retrieves the manual page for class
aggregator.

Using methods in R packages

S4 methods and classes depend on the availability of metadata. For this
reason suppling class definitions and methods in R packages requires a little
more programming than what is needed for developing standard R packages
(as described in the R Extensions Manual).

We will consider building a small package that will provide the class
definitions defined earlier in this document. The first thing to do is to
collect these functions into a single file. A relatively standard mechanism is
to place all class, generic and method definitions inside of a function. In the
example below the function is called .initFoo. The reason it has a name
that starts with a dot is so that the user will not see it and inadvertantly
call it.

.initFoo <- function(where) {
setClass("foo", representation(a="character", b="numeric"),where=where)
setClass("bar", representation(d="numeric", c="numeric"), where=where)
setClass("baz", contains=c("foo", "bar"), where=where)

}

We then create a second file, this contains certain startup code needed
when loading the R package. This file is traditionally named zzz.R.

.First.lib <- function(libname, pkgname, where) {
if(!require(methods)) stop("we require methods for package Foo")
where <- match(paste("package:", pkgname, sep=""), search())
.initFoo(where)

}

When a packages is loaded in R one of the initialization mechanisms
is to search for a function called .First.lib. If such a function is found
it is evaluated. In the case described above one of the actions taken is to
evaluate the function .initFoo. That creates the class definitions and stores
the appropriate metadata with the Foo package.

12

References

Chambers, J. M. (1998). Programming with Data: A Guide to the S Lan-
guage. Springer-Verlag New York.

Chambers, J. M. and Hastie, T. (1992). Statistical Models in S. Wadsworth
& Brooks/Cole.

Shalit, A. (1996). The Dylan Reference Manual. Apple Press.

13

	Replacement Methods

