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The S Language

• The S language has been developed since the late 1970s
by John Chambers and his collaborators at Bell
Laboratories.

• The language has been through major evolutionary
changes, but has been relatively stable since the mid
1990s.

• The language combines ideas from a number of sources
(e.g.APL, Lisp, Awk, . . . ) and provides an environment
for quantitative computations.
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S Implementations

• S-PLUS– a commercialised version of Chambers’ work
which is marketed byInsightful.

• R– an independent free-software implementation which
was created at the University of Auckland and is now
developed by an international collaboration of
researchers.

• Each of these versions has advantages and problems.

• What I will talk about in this workshop will generally
apply to both implementations. Where there are
differences I will try to point them out.
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The Nature of Programming

The task of writing a program has two sub-tasks:

1. Describing precisely what is to be done.

2. Describing the data to be used.

These tasks can’t be done separately. The choices made in
either of the sub-tasks influence the choices made in the other.

algorithms+ data structures= programs
– Niklaus Wirth
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Data Structures

• S possesses a rich set ofself-describingdata structures.

• These structures describe the data to be manipulated by
the language and also the language itself.

• The fact that the structures are self-describing means
that there is no need for a use to declare the types of
variables.

• It is possible that in futureoptionaltype declarations
will be introduced to help compile the S language into
efficient byte or machine code.
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Atomic Data Structures

• The most basic data type in S is theatomic vector.

• Such vectors contain an indexed set of values which are
all of the same type:

– logical

– numeric

– complex

– character

• The numeric type can be further broken down into
integer, singleanddoubletypes (but this is only
important when making calls to C or Fortran.)
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Creating Vectors

• Many S functions create vectors to hold the results they
compute.

• There are also functions which can be used to create
“empty” vectors.

> vector("numeric",10)
[1] 0 0 0 0 0 0 0 0 0 0

> numeric(10)
[1] 0 0 0 0 0 0 0 0 0 0

> vector("logical", 0)
logical(0)
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Patterned Vectors

• The functionsrep andseq can be used to create
vectors containing patterns of values.

• Simple replication.

> rep(1:2, 3)
[1] 1 2 1 2 1 2

• More complex replication.

> rep(c("A", "B"), c(2, 3))
[1] "A" "A" "B" "B" "B"

> rep(c("A", "B"), each=3)
[1] "A" "A" "A" "B" "B" "B"
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Vector Structures

• S retains the notion ofvector structuresfrom its earliest
implementation.

• A vector structure is a vector with some additional
information attached to it as anattribute list.

• Most uses of vector structures have been deprecated in
favour of object-oriented alternatives.

• The major remaining use of vector structures is as the
representation of arrays.
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Attributes

• Attributes can be accessed with theattr function.

> attr(x, "foo")
> attr(x, "foo") <- value

• It is possible to implement special functions for
accessing attributes.

foo <- function(x) attr(x, "foo")

"foo<-" <- function(x, value) {
attr(x, "foo") <- value
x

}
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Arrays

• S regards an array as consisting of a vector containing
the array’s elements together with a dimension (ordim )
attribute.

• A vector can be given dimensions by using the
functionsarray or matrix , or by directly attaching
them with thedim function.

• The elements in the underlying vector correspond to the
elements of the array with earlier subscripts moving
faster.
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Examples

• Direct array creation.

> x <- 1:10
> dim(x) <- c(2, 5)
> x

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

• Array creation usingmatrix .

> x = matrix(1:10, nrow = 2)
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Naming

• The elements of a vector can be given names by using
thenames function.

> x = c(10, 20)
> names(x) = c("First", "Second")
> x

First Second
10 20

• Array extents can be named by using thedimnames

function or thedimnames argument tomatrix or
array . Extent names are given as alist , with each
list element being a vector of names for the
corresponding extent.
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Example

> x <- array(1:8, dim=c(2,2,2))
> dimnames(x) <- list(c("A", "B"), NULL,
+ c("X", "Y"))
> x

, , X
[,1] [,2]

A 1 3
B 2 4

, , Y
[,1] [,2]

A 5 7
B 6 8
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Subsetting

• One of the most powerful features of S, is its ability to
manipulate subsets of vectors and arrays.

• The S subsetting facility is derived from and extends
that ofAPL.

• Subsetting is indicated by[ ] .
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Subsetting With Positive Indexes

• A subscript consisting of a vector of positive integer
values is taken to indicate a set of indexes to be
extracted.

> x <- 1:10
> x[1:3]
[1] 1 2 3

• A subscript which is larger than the length of the vector
being subsetted produces anNA in the returned value.

> x[9:11]
[1] 9 10 NA
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Subsetting With Positive Indexes

• Subscripts which are zero are ignored and produce no
corresponding values in the result.

> x[0:1]
[1] 1

• Subscripts which areNAproduce anNA in the result.

> x[c(1, 2, NA)]
[1] 1 2 NA
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Assignments With Positive Indexes

• Subset expressions can appear on the left side of an
assignment. In this case the given subset is assigned the
values on the right (recycling the values if necessary).

> x[1:3] <- 10
> x

[1] 10 10 10 4 5 6 7 8 9 10

• If a zero orNAoccurs as a subscript in this situation, it
is ignored.
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Subsetting With Negative Indexes

• A subscript consisting of a vector of negative integer
values is taken to indicate the indexes which are not to
be extracted.

> x[-(1:3)]
[1] 4 5 6 7 8 9 10

• Subscripts which are zero are ignored and produce no
corresponding values in the result.

• NAsubscripts are not allowed.

• Positive and negative subscripts cannot be mixed.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Assignments With Negative Indexes

• Negative subscripts can appear on the left side of an
assignment. In this case the given subset is assigned the
values on the right (recycling the values if necessary).

> x <- 1:10
> x[-(1:3)] <- 10
> x

[1] 1 2 3 10 10 10 10 10 10 10

• Zero subscripts are ignored.

• NAsubscripts are not permitted.
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Subsetting By Logical Predicates
• Vector subsets can also be specified by a logical vector

of trues and falses.

> x <- 1:10
> x[x > 5]
[1] 6 7 8 9 10

• NAvalues used as logical subscripts produceNAvalues
in the output.

• The subscript vector can be shorter than the vector
being subsetted. The subscripts are recycled in this case.

• The subscript vector can be longer than the vector being
subsetted. Values selected beyond the end of the vector
produceNAs.
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Subsetting By Name

• If a vector has named elements, it is possible to extract
subsets by specifying the names of the desired
elements.

> x <- 1:10
> names(x) <- LETTERS[1:10]
> x[c("A","B")]

A B
1 2

• If several elements have the same name, only the first of
them will be returned.

• Specifying a non-existent name produces anNA in the
result.
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Exercises

1. Determine (precisely) how S handles non-integer
subscripts (e.g.1.2 ). How might this produce
problems?

2. What value do the following expressions produce?

> x <- 1:10
> x[-11]

3. How could you choose all elements of a vector which
have odd subscripts? Even subscripts?

4. How are complex subscripts treated?
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Subsetting Arrays
• Rectangular subsets of arrays obey similar rules to

those which apply to vectors.

• One point to note is that arrays can be treated as either
matrices or vectors. This can be quite useful.

> x <- matrix(1:9, ncol = 3)
> x[x > 6]
[1] 7 8 9

> x[row(x) > col(x)] <- 0
> x

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 0 5 8
[3,] 0 0 9
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Mode and Storage Mode

• The functionsmode andstorage.mode return
information about thetypesof vectors.

> mode(1:10)
[1] "numeric"
> storage.mode(1:10)
[1] "integer"

> mode("a string")
[1] "character"

> mode(TRUE)
[1] "logical"
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Automatic Type Coercion

• S will automatically coerce data to the appropriate type
when this is necessary.

> 1 + T
[1] 2

Here the logical valueT has been coerced to the
numeric value1 so that addition can take place.

• Some common coercions are

logical→ numeric
logical, numeric→ complex
logical, numeric, complex→ character
numeric, complex→ logical
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Type Coercion and NA Values

• Logical values can be coerced to any other atomic
mode. Because of this, the constantNAhas been made a
logical value.

> mode(NA)
[1] "logical"

• WhenNA is used in an expression, the mode of the
result is usually determined by the mode of the other
operands.

> 1 + NA
[1] NA
> mode(1 + NA)
[1] "numeric"
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An R / S-PLUS Difference

• S-PLUS does not have anNA indicator for character
strings. It coercesNAvalues to the character string
"NA" . There are potential problems with this approach.

> is.na(as.character(NA))
[1] F

• R does have a specialNAvalue for character strings and
so does differentiateNAand"NA" .

> is.na(as.character(NA))
[1] TRUE
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Explicit Type-Coercion

• The functionas.logical , as.integer , etc., return a
copy of values passed to them, coerced to the specified
type.

> as.numeric(c("1","10.5","text"))
[1] 1.0 10.5 NA

• Warning : These functions discard all labelling and
dimensioning information.

> x <- 1:5
> names(x) <- LETTERS[1:5]
> as.character(x)
[1] "1" "2" "3" "4" "5"
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Explicit Type-Coercion

• The functionsmode andstorage.mode (or more
preciselymode<- andstorage.mode<- ) can be used
to alter the storage mode of a variable.

> x <- 1:5
> names(x) <- LETTERS[1:5]
> x

A B C D E
1 2 3 4 5

> storage.mode(x) <- "character"
> x

A B C D E
"1" "2" "3" "4" "5"

• These functions preserve attributes like labelling and
dimensioning.
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Lists

• In addition to atomic vectors, S has a number of
recursivedata structures. The most important of these is
the list.

• A list is a vector which can contain vectors and other
lists as its elements.

> lst <- list(a = 1:3, b = "a list")
> lst
$a:
[1] 1 2 3

$b:
[1] "a list"
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Subsetting and Lists

• Lists are useful as containers for grouping related things
together (many S functions return lists as their values).

• Because lists are a recursive structure it is useful to have
two ways of extracting subsets.

• The [ ] form of subsetting produces a sub-list of the
list being subsetted.

• The [[ ]] form of subsetting can be used to extract a
single element from a list.
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List Subsetting Examples

• Using the[ ] operator to extract a sublist.

> lst[1]
$a:
[1] 1 2 3

• Using the[[ ]] operator to extract a list element.

> lst[[1]]
[1] 1 2 3

• As with vectors, indexing using logical expressions and
names are also possible.
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List Subsetting Syntactic Sugar

• The dollar operator provides a short-hand way of
accessing list elements by name. The expression

> lst[["a"]]

is completely equivalent to the expression

> lst$a

• The abbreviation is provided because accessing list
elements by name is a very common operation in S.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Data Frames

• Data frames are a special S structure used to hold a set
of related variables. They are the S representation for a
statisticaldata matrix.

• Data frames can be treated like a matrix, and indexed
with two subscripts. The first subscript refers to the
observation, the second to the variable.

• In fact, this is an illusion maintained by the S object
system. Data frames are really lists, and list subsetting
can also be used on them.
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Control-Flow

• S has a number of special control-flow structures which
make it possible to express quite complex computations
in the S language.

• Iteration is provided by thefor , while andrepeat

statements.

• Conditional evaluation is provided by theif statement
and theswitch function.

• Of these capabilities,for andif are by far the most
commonly used.
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For Statements

• For statements have the basic form:

for( var in vector) {
statements

}

The effect of this is to set the value of the variablevar
successively to each of the elements invectorand then
evaluatingstatements.

• This looks similar to thefor statement found in
languages such asC andC++ , but it is closer to the
foreachstatement ofPerl.
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Examples

• Summing the values in a vector (C style).

sum <- 0
for(i in 1:length(x)) {

sum <- sum + x[i]
}

• Summing the values in a vector (Perl style).

sum <- 0
for(elt in x) {

sum <- sum + elt
}

• The second of these is more efficient.
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If Statements

• If statements have the basic form

if( test) {
statements

} else {
statements

}

• If the first element oftestis true, the first group of
statements is executed, otherwise, the second group of
statements is executed.

• Theelse clause is optional.
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Examples

• Here is a typical use ofif .

if (any(x < 0))
stop("negative values encountered")

• Here is a choice between actions.

r <- if (all(x >= 0))
sqrt(x) else
sqrt(x + 0i)

The layout here is important. Theelse must fall on the
same line as the preceding statement (assuming the
code above is not enclosed within{ and} ).
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The Switch Function

• Theswitch function uses the value its first argument
to determine which of its remaining arguments to
evaluate and return. The first argument can be either an
integer index, or a character string to be used in
matching one of the following arguments.

centre <- function(x, type) {
switch(type,

mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}

• Calling centre with type=1 or type="mean"

produces the same result.
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Efficiency Issues

• S provides a full set of control-flow statements but they
execute very slowly because S is (currently) an
interpreted language.

• R is somewhat faster thanS-PLUSat looping, but it is
still two orders of magnitude slower than compiledC or
Fortran.

• For time-critical applications, it can be useful to obtain
measures of how fast a particular piece of code runs as a
guide choosing a good computational method.

• The functionsdos.time , unix.time (in S-PLUS) and
system.time (in R) provide a way of timing how long
it takes to evaluate a given expression.
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Timing Experiments

• Timing experiments can be a good way of checking
alternative ways of carrying out computations.

> sum <- 0
> x <- rnorm(10000)
> unix.time( {s <- 0
+ for(i in 1:length(x))
+ s <- s + x[i] })
[1] 0.50 0.00 0.52 0.00 0.00

> unix.time( {s <- 0
+ for(v in x)
+ s <- s + v })
[1] 0.19 0.00 0.19 0.00 0.00



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The “Apply” Family

• Because looping tends to be slow in S, there is a family
of functions which can be used to avoid explicit
looping.

• The members of the family differ in the types of data
structure they work on and in the degree to which they
simplify the answers returned.

• The members are:

– apply for arrays

– tapply for ragged arrays

– lapply andsapply for lists
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Using Apply

• apply applies a function over the margins of an array.

• For example, the call:

> apply(x, 2, mean)

computes the column means of a matrixx , while

> apply(x, 1, median)

computes the row medians.

• apply is implemented in a way which avoids the
overhead associated with explicit looping.
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An Additive Table Decomposition

• Given data in a matrixx , this code carries out anoverall
+ row + columndecomposition.

overall <- mean(x)
row <- apply(x, 1, mean) - overall
col <- apply(x, 2, mean) - overall
res <- x - outer(row, col, "+") - overall

• The generalised outer product functionouter is used
here to produce a matrix, the same shape asx ,
containing the appropriate sums of row and column
effects.

• Something similar can be used to produce a simple
implementation of median polish.
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Writing Functions

• Writing S functions provide a means of adding new
functionality to the language.

• Functions that a user writes have the same status as
those which are provided with S.

• Reading the functions provided with the S system
provides a good way of learning how to write functions.

• If a user chooses, she/he can make modifications to the
functions provided by the system and use the modified
versions in preference to the system ones.
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A Simple Function

• Here is function which squares its argument.

> square <- function(x) x * x

> square(10)
[1] 100

• Because the underlying arithmetic in S is vectorised, so
is this function.

> square(1:4)
[1] 1 4 9 16
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Composition of Functions

• Once a function is defined, it is possible to call it from
other functions.

> sumsq <- function(x) sum(square(x))
> sumsq(1:10)
[1] 385



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example: Factorials

• Iteration.

fac <- function(n) {
ans <- 1
for(i in seq(n)) ans <- ans * i
ans

}

• Recursion.

fac <- function(n)
if (n <= 0) 1 else n * fac(n - 1)
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Example: Factorials

• Vectorised arithmetic.

fac <- function(n) prod(seq(n))

• Using special functions.

fac <- function(n) gamma(n+1)

• The version offac based on the gamma function is one
of the fastest and is the most flexible.
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Exercise

Time each of the four factorial functions shown above. This is
a little trickier than it sounds.
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General Functions

• In general, as S function has the form:

function( arglist ) body

wherearglist is a comma-separated list of formal
parameters andbodyis an S expression which computes
the value of the function.

• Functions are evaluated by associating the values of the
arguments with the names of the formal parameters and
then evaluating the body of the function using these
associations.
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The Evaluation Process

If the functionhypot defined by:

hypot <- function(a, b)
sqrt(aˆ2 + bˆ2)

the S expressionhypot(3, 4) is evaluated as follows.

• Temporarily create variablesa andb, which have the
values3 and4.

• Use these variable definitions to evaluate the expression
sqrt(aˆ2 +bˆ2) to obtain the value5.

• When the evaluation is complete remove the temporary
definitions ofa andb.
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Optional Arguments

• S has a notion of default argument values.

• These make it possible for arguments to take on
reasonable default values if no value was specified in a
call to the function.

• In the following function, the second argument takes on
the value0 if no argument is specified.

sumsq <- function(x, about=0)
sum((x - about)ˆ2)

• This means that the expressionssumsq(1:10, 0) and
sumsq(1:10) will return the same value.
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Optional Arguments

• The default values for arguments can be specified by an
S expression involving the variables available inside the
body of the function.

sumsq <- function(x, about=mean(x))
sum((x - about)ˆ2)

• Recursive references within default arguments are not
permitted. E.g. At least one argument must be provided
to the following function.

silly <- function(a=b, b=a) a + b
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Argument Matching

• Because it is not necessary to specify all the arguments
to S functions, it is important to be clear about which
argument corresponds to which formal parameter of the
function.

• The solution is to indicate which formal parameter is
associated with an argument by providing a (partial)
name for the argument.

• In the case of thesumsq function, the following are
equivalent specifications.

sumsq(1:10, mean(1:10))
sumsq(1:10, about=mean(1:10))
sumsq(1:10, a=mean(1:10))
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Lazy Evaluation

• S differs from many computer languages because the
evaluation of function arguments islazy.

• In other words, arguments are not actually evaluated
until they are required.

• It can even be the case that arguments arenever
evaluated.
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Example

• Here is a variation of thesumsq function.

sumsq <- function(x, about=mean(x)) {
x <- x[!is.na(x)]
sum((x - about)ˆ2)

}

• This function first removes anyNAvalues fromx before
computing its answer.

• Lazy evaluation means that theabout value is
computed from the cleanedx .
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Exercises

1. Modify the sumsq function so that the removal ofNA

values is optional.

2. Write a new function which computes the deviations of
the values inx aboutabout . The value returned by the
function should be “just like”x . How should missing
values be handled?
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Reading System Functions

• The built-in functions supplied with S form a valuable
resource for learning about S programming.

• In many cases you may be surprised by the complexity
of what appear to be trivial functions (tryfactorial

or choose ). Such complexity is usually introduced
over time as a result of user feedback.

• Be warned that there can still be bugs in system
functions.
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Example: The Ifelse Function

> ifelse
function(test, yes, no)
{

answer <- test
test <- as.logical(test)
n <- length(answer)
if(length(na <- which.na(test)))

test[na] <- F
answer[test] <- rep(yes, length = n)[test]
if(length(na))

test[na] <- T
answer[!test] <- rep(no, length = n)[!test]
answer

}
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Exercise

Look at these results from the S-PLUSifelse function
(the results from R are identical).

> ifelse("TRUE", 1, 0)
[1] "1"
> ifelse("FALSE", 1, 0)
[1] "0"

What is causing this problem and how can it be fixed?
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Computing on the Language

• Because of argument evaluation is lazy, S allows
programmers to get access to the unevaluated
arguments.

• This is made possible by thesubstitute function.

> g <- function(x) substitute(x)
> g(x[1]+y*2)
x[1] + y * 2

• substitute is used conjunction withdeparse to
obtain a character string representation of an argument.

> g <- function(x) deparse(substitute(x))
> g(x[1]+y*2)
"x[1] + y * 2"
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Computing on the Language

• The substitute function can take a call and substitute the
symbolic representation of several arguments.

> g <- function(a, b) substitute(a+b)
> g(x*x, y*y)
x * x + y * y

• One particularly useful trick is to use the... argument
in a substitute expression.

> g <- function(...) substitute(list(...))
> g(a=10, b=11)
list(a = 10, b = 11)
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Manipulating Language Calls

• The objects returned bysubstitute are vectors of
modecall .

• Calls are similar to lists in their behaviour and can be
subscripted in the same way.

• The calla+b has three elements which are in order+, a

andb (i.e. a lisp-like representation is used).

• The variable names appearing in calls are special S
objects of modename. They can be created from
character strings with the functionas.name .
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Creating Calls

• Calls can be created with the functionvector .

> u = vector("call" 3)
> u
(, )
> u[[1]] <- as.name("f")
> u[[2]] <- as.name("x")
> u[[3]] <- as.name("y")
> u
f(x, y)

but usually manipulations are carried out existing calls.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Evaluating Calls

• Given a call it can beveryuseful to evaluate that call.
This is done with theeval function.

• eval takes the call, together with values for any
variables present in the call and produces the value that
this defines.

> u <- substitute(a+b)
> eval(u, list(a=10, b=20))
[1] 30

• A third argument to eval can be used to supply
additional places which can be used to find values for
variables.
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Example: Transforming Data Frames

• Peter Dalgaard has written a small function to make it
easy to manipulate the variables in a data frame.

• This function will transform and replace existing
variables or create new ones to be added.

• Here is an example of applying this function to the S
data setair , which gives information about air
pollution.

> new.air <- transform(air,
+ new = -ozone,
+ temperature = (temperature-32)/1.8)
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Example: The Transform Function

transform <- function (x, ...) {
e <- eval(substitute(list(...)), x,

sys.frame(sys.parent()))
tags <- names(e)
inx <- match(tags, names(x))
matched <- !is.na(inx)
if (any(matched)) {

x[inx[matched]] <- e[matched]
x <- data.frame(x)

}
if (!all(matched))

data.frame(x, e[!matched])
else x

}
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Scoping

• We’ve seen that evaluation is the process of determining
the value of a symbolic expression.

• In order for evaluation to take place, values must be
determined for the variables in the expression.

• The scope of a variable is that portion of a program
where that variable refers to the same value.

• The two dialects of S differ in their scoping rules.
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Example

• In the following fragment:

x <- 10
y <- 20

f <- function(y) {
x + y

}

• There is global variable calledx .

• There is global variable calledy and a local variable
calledy .
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Scoping In S-PLUS

• The scoping rules in S-PLUS are simple.

• Variables are either local to the function they are
defined in or they are global.

• The process of determining the value of a variable is as
follows.

1. Look for a local variable – if there is one, use its
value.

2. If there is no local variable, use the value of the
global variable.

• There are some effects of these scoping rules which are
counter-intuitive.
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Scoping Problems

• The follow implementation of binomial coefficients
does not work in S-PLUS.

choose <- function(n, k) {

fac <- function(n)
if(n <= 1) 1
else n * fac(n - 1)

fac(n) / (fac(k) * fac(n - k))

}

• Why does the function fail?
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Consequences of S-PLUS Scoping

• The scoping rules of S-PLUS encourage the use of
many globally defined functions, even when those
functions are never called directly.

• This is because it is difficult to hide related helper
functions inside “wrapper” functions.

• The use of this style producesnamespace clutterand
effects like the accidental masking of functions.

• Object-oriented programming extensions help a little.
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Scoping in R

• R uses what is called static or lexical scoping (another
term is block structure).

• Variables defined in outer blocks are visible inside inner
blocks.

• This is a natural extension to the S-PLUS way of
scoping.

• The hiding of helper functions within wrappers is
encouraged.

• This promotes better software design and alleviates
namespace clutter.

• It also has some more “interesting” consequences.
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Example: Gaussian Likelihoods

mkNegLogLik <- function(x) {

function(mu, sigma) {
sum(sigma + 0.5 * ((x - mu)/sigma)ˆ2)

}

}

q <- mkNegLogLik(rnorm(100))


