
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

S Programming Techniques

Ross Ihaka

S Programming Workshop
University of Auckland
February 13–14, 2003

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The S Language

• The S language has been developed since the late 1970s
by John Chambers and his collaborators at Bell
Laboratories.

• The language has been through major evolutionary
changes, but has been relatively stable since the mid
1990s.

• The language combines ideas from a number of sources
(e.g.APL, Lisp, Awk, . . .) and provides an environment
for quantitative computations.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

S Implementations

• S-PLUS– a commercialised version of Chambers’ work
which is marketed byInsightful.

• R– an independent free-software implementation which
was created at the University of Auckland and is now
developed by an international collaboration of
researchers.

• Each of these versions has advantages and problems.

• What I will talk about in this workshop will generally
apply to both implementations. Where there are
differences I will try to point them out.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

References

• The New S Language. (The “Blue” Book.)
R. Becker, J. Chambers and A. Wilks.

• Statistical Models in S. (The “White” Book.)
J. Chambers and T. Hastie Eds.

• Programming With Data. (The “Green” Book.)
J. Chambers.

• Modern Applied Statistics with S-PLUS.
W. Venables and B. Ripley.

• S Programming.
W. Venables and B. Ripley.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The Nature of Programming

The task of writing a program has two sub-tasks:

1. Describing precisely what is to be done.

2. Describing the data to be used.

These tasks can’t be done separately. The choices made in
either of the sub-tasks influence the choices made in the other.

algorithms+ data structures= programs
– Niklaus Wirth

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Data Structures

• S possesses a rich set ofself-describingdata structures.

• These structures describe the data to be manipulated by
the language and also the language itself.

• The fact that the structures are self-describing means
that there is no need for a use to declare the types of
variables.

• It is possible that in futureoptionaltype declarations
will be introduced to help compile the S language into
efficient byte or machine code.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Atomic Data Structures

• The most basic data type in S is theatomic vector.

• Such vectors contain an indexed set of values which are
all of the same type:

– logical

– numeric

– complex

– character

• The numeric type can be further broken down into
integer, singleanddoubletypes (but this is only
important when making calls to C or Fortran.)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Creating Vectors

• Many S functions create vectors to hold the results they
compute.

• There are also functions which can be used to create
“empty” vectors.

> vector("numeric",10)
[1] 0 0 0 0 0 0 0 0 0 0

> numeric(10)
[1] 0 0 0 0 0 0 0 0 0 0

> vector("logical", 0)
logical(0)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Patterned Vectors

• The functionsrep andseq can be used to create
vectors containing patterns of values.

• Simple replication.

> rep(1:2, 3)
[1] 1 2 1 2 1 2

• More complex replication.

> rep(c("A", "B"), c(2, 3))
[1] "A" "A" "B" "B" "B"

> rep(c("A", "B"), each=3)
[1] "A" "A" "A" "B" "B" "B"

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Vector Structures

• S retains the notion ofvector structuresfrom its earliest
implementation.

• A vector structure is a vector with some additional
information attached to it as anattribute list.

• Most uses of vector structures have been deprecated in
favour of object-oriented alternatives.

• The major remaining use of vector structures is as the
representation of arrays.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Attributes

• Attributes can be accessed with theattr function.

> attr(x, "foo")
> attr(x, "foo") <- value

• It is possible to implement special functions for
accessing attributes.

foo <- function(x) attr(x, "foo")

"foo<-" <- function(x, value) {
attr(x, "foo") <- value
x

}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Arrays

• S regards an array as consisting of a vector containing
the array’s elements together with a dimension (ordim)
attribute.

• A vector can be given dimensions by using the
functionsarray or matrix , or by directly attaching
them with thedim function.

• The elements in the underlying vector correspond to the
elements of the array with earlier subscripts moving
faster.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Examples

• Direct array creation.

> x <- 1:10
> dim(x) <- c(2, 5)
> x

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

• Array creation usingmatrix .

> x = matrix(1:10, nrow = 2)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Naming

• The elements of a vector can be given names by using
thenames function.

> x = c(10, 20)
> names(x) = c("First", "Second")
> x

First Second
10 20

• Array extents can be named by using thedimnames

function or thedimnames argument tomatrix or
array . Extent names are given as alist , with each
list element being a vector of names for the
corresponding extent.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example

> x <- array(1:8, dim=c(2,2,2))
> dimnames(x) <- list(c("A", "B"), NULL,
+ c("X", "Y"))
> x

, , X
[,1] [,2]

A 1 3
B 2 4

, , Y
[,1] [,2]

A 5 7
B 6 8

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Subsetting

• One of the most powerful features of S, is its ability to
manipulate subsets of vectors and arrays.

• The S subsetting facility is derived from and extends
that ofAPL.

• Subsetting is indicated by[] .

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Subsetting With Positive Indexes

• A subscript consisting of a vector of positive integer
values is taken to indicate a set of indexes to be
extracted.

> x <- 1:10
> x[1:3]
[1] 1 2 3

• A subscript which is larger than the length of the vector
being subsetted produces anNA in the returned value.

> x[9:11]
[1] 9 10 NA

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Subsetting With Positive Indexes

• Subscripts which are zero are ignored and produce no
corresponding values in the result.

> x[0:1]
[1] 1

• Subscripts which areNAproduce anNA in the result.

> x[c(1, 2, NA)]
[1] 1 2 NA

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Assignments With Positive Indexes

• Subset expressions can appear on the left side of an
assignment. In this case the given subset is assigned the
values on the right (recycling the values if necessary).

> x[1:3] <- 10
> x

[1] 10 10 10 4 5 6 7 8 9 10

• If a zero orNAoccurs as a subscript in this situation, it
is ignored.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Subsetting With Negative Indexes

• A subscript consisting of a vector of negative integer
values is taken to indicate the indexes which are not to
be extracted.

> x[-(1:3)]
[1] 4 5 6 7 8 9 10

• Subscripts which are zero are ignored and produce no
corresponding values in the result.

• NAsubscripts are not allowed.

• Positive and negative subscripts cannot be mixed.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Assignments With Negative Indexes

• Negative subscripts can appear on the left side of an
assignment. In this case the given subset is assigned the
values on the right (recycling the values if necessary).

> x <- 1:10
> x[-(1:3)] <- 10
> x

[1] 1 2 3 10 10 10 10 10 10 10

• Zero subscripts are ignored.

• NAsubscripts are not permitted.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Subsetting By Logical Predicates
• Vector subsets can also be specified by a logical vector

of trues and falses.

> x <- 1:10
> x[x > 5]
[1] 6 7 8 9 10

• NAvalues used as logical subscripts produceNAvalues
in the output.

• The subscript vector can be shorter than the vector
being subsetted. The subscripts are recycled in this case.

• The subscript vector can be longer than the vector being
subsetted. Values selected beyond the end of the vector
produceNAs.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Subsetting By Name

• If a vector has named elements, it is possible to extract
subsets by specifying the names of the desired
elements.

> x <- 1:10
> names(x) <- LETTERS[1:10]
> x[c("A","B")]

A B
1 2

• If several elements have the same name, only the first of
them will be returned.

• Specifying a non-existent name produces anNA in the
result.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Exercises

1. Determine (precisely) how S handles non-integer
subscripts (e.g.1.2). How might this produce
problems?

2. What value do the following expressions produce?

> x <- 1:10
> x[-11]

3. How could you choose all elements of a vector which
have odd subscripts? Even subscripts?

4. How are complex subscripts treated?

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Subsetting Arrays
• Rectangular subsets of arrays obey similar rules to

those which apply to vectors.

• One point to note is that arrays can be treated as either
matrices or vectors. This can be quite useful.

> x <- matrix(1:9, ncol = 3)
> x[x > 6]
[1] 7 8 9

> x[row(x) > col(x)] <- 0
> x

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 0 5 8
[3,] 0 0 9

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Mode and Storage Mode

• The functionsmode andstorage.mode return
information about thetypesof vectors.

> mode(1:10)
[1] "numeric"
> storage.mode(1:10)
[1] "integer"

> mode("a string")
[1] "character"

> mode(TRUE)
[1] "logical"

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Automatic Type Coercion

• S will automatically coerce data to the appropriate type
when this is necessary.

> 1 + T
[1] 2

Here the logical valueT has been coerced to the
numeric value1 so that addition can take place.

• Some common coercions are

logical→ numeric
logical, numeric→ complex
logical, numeric, complex→ character
numeric, complex→ logical

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Type Coercion and NA Values

• Logical values can be coerced to any other atomic
mode. Because of this, the constantNAhas been made a
logical value.

> mode(NA)
[1] "logical"

• WhenNA is used in an expression, the mode of the
result is usually determined by the mode of the other
operands.

> 1 + NA
[1] NA
> mode(1 + NA)
[1] "numeric"

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

An R / S-PLUS Difference

• S-PLUS does not have anNA indicator for character
strings. It coercesNAvalues to the character string
"NA" . There are potential problems with this approach.

> is.na(as.character(NA))
[1] F

• R does have a specialNAvalue for character strings and
so does differentiateNAand"NA" .

> is.na(as.character(NA))
[1] TRUE

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Explicit Type-Coercion

• The functionas.logical , as.integer , etc., return a
copy of values passed to them, coerced to the specified
type.

> as.numeric(c("1","10.5","text"))
[1] 1.0 10.5 NA

• Warning : These functions discard all labelling and
dimensioning information.

> x <- 1:5
> names(x) <- LETTERS[1:5]
> as.character(x)
[1] "1" "2" "3" "4" "5"

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Explicit Type-Coercion

• The functionsmode andstorage.mode (or more
preciselymode<- andstorage.mode<-) can be used
to alter the storage mode of a variable.

> x <- 1:5
> names(x) <- LETTERS[1:5]
> x

A B C D E
1 2 3 4 5

> storage.mode(x) <- "character"
> x

A B C D E
"1" "2" "3" "4" "5"

• These functions preserve attributes like labelling and
dimensioning.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Lists

• In addition to atomic vectors, S has a number of
recursivedata structures. The most important of these is
the list.

• A list is a vector which can contain vectors and other
lists as its elements.

> lst <- list(a = 1:3, b = "a list")
> lst
$a:
[1] 1 2 3

$b:
[1] "a list"

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Subsetting and Lists

• Lists are useful as containers for grouping related things
together (many S functions return lists as their values).

• Because lists are a recursive structure it is useful to have
two ways of extracting subsets.

• The [] form of subsetting produces a sub-list of the
list being subsetted.

• The [[]] form of subsetting can be used to extract a
single element from a list.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

List Subsetting Examples

• Using the[] operator to extract a sublist.

> lst[1]
$a:
[1] 1 2 3

• Using the[[]] operator to extract a list element.

> lst[[1]]
[1] 1 2 3

• As with vectors, indexing using logical expressions and
names are also possible.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

List Subsetting Syntactic Sugar

• The dollar operator provides a short-hand way of
accessing list elements by name. The expression

> lst[["a"]]

is completely equivalent to the expression

> lst$a

• The abbreviation is provided because accessing list
elements by name is a very common operation in S.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Data Frames

• Data frames are a special S structure used to hold a set
of related variables. They are the S representation for a
statisticaldata matrix.

• Data frames can be treated like a matrix, and indexed
with two subscripts. The first subscript refers to the
observation, the second to the variable.

• In fact, this is an illusion maintained by the S object
system. Data frames are really lists, and list subsetting
can also be used on them.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Control-Flow

• S has a number of special control-flow structures which
make it possible to express quite complex computations
in the S language.

• Iteration is provided by thefor , while andrepeat

statements.

• Conditional evaluation is provided by theif statement
and theswitch function.

• Of these capabilities,for andif are by far the most
commonly used.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

For Statements

• For statements have the basic form:

for(var in vector) {
statements

}

The effect of this is to set the value of the variablevar
successively to each of the elements invectorand then
evaluatingstatements.

• This looks similar to thefor statement found in
languages such asC andC++ , but it is closer to the
foreachstatement ofPerl.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Examples

• Summing the values in a vector (C style).

sum <- 0
for(i in 1:length(x)) {

sum <- sum + x[i]
}

• Summing the values in a vector (Perl style).

sum <- 0
for(elt in x) {

sum <- sum + elt
}

• The second of these is more efficient.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

If Statements

• If statements have the basic form

if(test) {
statements

} else {
statements

}

• If the first element oftestis true, the first group of
statements is executed, otherwise, the second group of
statements is executed.

• Theelse clause is optional.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Examples

• Here is a typical use ofif .

if (any(x < 0))
stop("negative values encountered")

• Here is a choice between actions.

r <- if (all(x >= 0))
sqrt(x) else
sqrt(x + 0i)

The layout here is important. Theelse must fall on the
same line as the preceding statement (assuming the
code above is not enclosed within{ and}).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The Switch Function

• Theswitch function uses the value its first argument
to determine which of its remaining arguments to
evaluate and return. The first argument can be either an
integer index, or a character string to be used in
matching one of the following arguments.

centre <- function(x, type) {
switch(type,

mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}

• Calling centre with type=1 or type="mean"

produces the same result.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Efficiency Issues

• S provides a full set of control-flow statements but they
execute very slowly because S is (currently) an
interpreted language.

• R is somewhat faster thanS-PLUSat looping, but it is
still two orders of magnitude slower than compiledC or
Fortran.

• For time-critical applications, it can be useful to obtain
measures of how fast a particular piece of code runs as a
guide choosing a good computational method.

• The functionsdos.time , unix.time (in S-PLUS) and
system.time (in R) provide a way of timing how long
it takes to evaluate a given expression.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Timing Experiments

• Timing experiments can be a good way of checking
alternative ways of carrying out computations.

> sum <- 0
> x <- rnorm(10000)
> unix.time({s <- 0
+ for(i in 1:length(x))
+ s <- s + x[i] })
[1] 0.50 0.00 0.52 0.00 0.00

> unix.time({s <- 0
+ for(v in x)
+ s <- s + v })
[1] 0.19 0.00 0.19 0.00 0.00

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The “Apply” Family

• Because looping tends to be slow in S, there is a family
of functions which can be used to avoid explicit
looping.

• The members of the family differ in the types of data
structure they work on and in the degree to which they
simplify the answers returned.

• The members are:

– apply for arrays

– tapply for ragged arrays

– lapply andsapply for lists

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Using Apply

• apply applies a function over the margins of an array.

• For example, the call:

> apply(x, 2, mean)

computes the column means of a matrixx , while

> apply(x, 1, median)

computes the row medians.

• apply is implemented in a way which avoids the
overhead associated with explicit looping.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

An Additive Table Decomposition

• Given data in a matrixx , this code carries out anoverall
+ row + columndecomposition.

overall <- mean(x)
row <- apply(x, 1, mean) - overall
col <- apply(x, 2, mean) - overall
res <- x - outer(row, col, "+") - overall

• The generalised outer product functionouter is used
here to produce a matrix, the same shape asx ,
containing the appropriate sums of row and column
effects.

• Something similar can be used to produce a simple
implementation of median polish.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Writing Functions

• Writing S functions provide a means of adding new
functionality to the language.

• Functions that a user writes have the same status as
those which are provided with S.

• Reading the functions provided with the S system
provides a good way of learning how to write functions.

• If a user chooses, she/he can make modifications to the
functions provided by the system and use the modified
versions in preference to the system ones.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A Simple Function

• Here is function which squares its argument.

> square <- function(x) x * x

> square(10)
[1] 100

• Because the underlying arithmetic in S is vectorised, so
is this function.

> square(1:4)
[1] 1 4 9 16

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Composition of Functions

• Once a function is defined, it is possible to call it from
other functions.

> sumsq <- function(x) sum(square(x))
> sumsq(1:10)
[1] 385

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example: Factorials

• Iteration.

fac <- function(n) {
ans <- 1
for(i in seq(n)) ans <- ans * i
ans

}

• Recursion.

fac <- function(n)
if (n <= 0) 1 else n * fac(n - 1)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example: Factorials

• Vectorised arithmetic.

fac <- function(n) prod(seq(n))

• Using special functions.

fac <- function(n) gamma(n+1)

• The version offac based on the gamma function is one
of the fastest and is the most flexible.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Exercise

Time each of the four factorial functions shown above. This is
a little trickier than it sounds.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

General Functions

• In general, as S function has the form:

function(arglist) body

wherearglist is a comma-separated list of formal
parameters andbodyis an S expression which computes
the value of the function.

• Functions are evaluated by associating the values of the
arguments with the names of the formal parameters and
then evaluating the body of the function using these
associations.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The Evaluation Process

If the functionhypot defined by:

hypot <- function(a, b)
sqrt(aˆ2 + bˆ2)

the S expressionhypot(3, 4) is evaluated as follows.

• Temporarily create variablesa andb, which have the
values3 and4.

• Use these variable definitions to evaluate the expression
sqrt(aˆ2 +bˆ2) to obtain the value5.

• When the evaluation is complete remove the temporary
definitions ofa andb.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Optional Arguments

• S has a notion of default argument values.

• These make it possible for arguments to take on
reasonable default values if no value was specified in a
call to the function.

• In the following function, the second argument takes on
the value0 if no argument is specified.

sumsq <- function(x, about=0)
sum((x - about)ˆ2)

• This means that the expressionssumsq(1:10, 0) and
sumsq(1:10) will return the same value.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Optional Arguments

• The default values for arguments can be specified by an
S expression involving the variables available inside the
body of the function.

sumsq <- function(x, about=mean(x))
sum((x - about)ˆ2)

• Recursive references within default arguments are not
permitted. E.g. At least one argument must be provided
to the following function.

silly <- function(a=b, b=a) a + b

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Argument Matching

• Because it is not necessary to specify all the arguments
to S functions, it is important to be clear about which
argument corresponds to which formal parameter of the
function.

• The solution is to indicate which formal parameter is
associated with an argument by providing a (partial)
name for the argument.

• In the case of thesumsq function, the following are
equivalent specifications.

sumsq(1:10, mean(1:10))
sumsq(1:10, about=mean(1:10))
sumsq(1:10, a=mean(1:10))

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Lazy Evaluation

• S differs from many computer languages because the
evaluation of function arguments islazy.

• In other words, arguments are not actually evaluated
until they are required.

• It can even be the case that arguments arenever
evaluated.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example

• Here is a variation of thesumsq function.

sumsq <- function(x, about=mean(x)) {
x <- x[!is.na(x)]
sum((x - about)ˆ2)

}

• This function first removes anyNAvalues fromx before
computing its answer.

• Lazy evaluation means that theabout value is
computed from the cleanedx .

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Exercises

1. Modify the sumsq function so that the removal ofNA

values is optional.

2. Write a new function which computes the deviations of
the values inx aboutabout . The value returned by the
function should be “just like”x . How should missing
values be handled?

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Reading System Functions

• The built-in functions supplied with S form a valuable
resource for learning about S programming.

• In many cases you may be surprised by the complexity
of what appear to be trivial functions (tryfactorial

or choose). Such complexity is usually introduced
over time as a result of user feedback.

• Be warned that there can still be bugs in system
functions.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example: The Ifelse Function

> ifelse
function(test, yes, no)
{

answer <- test
test <- as.logical(test)
n <- length(answer)
if(length(na <- which.na(test)))

test[na] <- F
answer[test] <- rep(yes, length = n)[test]
if(length(na))

test[na] <- T
answer[!test] <- rep(no, length = n)[!test]
answer

}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Exercise

Look at these results from the S-PLUSifelse function
(the results from R are identical).

> ifelse("TRUE", 1, 0)
[1] "1"
> ifelse("FALSE", 1, 0)
[1] "0"

What is causing this problem and how can it be fixed?

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Computing on the Language

• Because of argument evaluation is lazy, S allows
programmers to get access to the unevaluated
arguments.

• This is made possible by thesubstitute function.

> g <- function(x) substitute(x)
> g(x[1]+y*2)
x[1] + y * 2

• substitute is used conjunction withdeparse to
obtain a character string representation of an argument.

> g <- function(x) deparse(substitute(x))
> g(x[1]+y*2)
"x[1] + y * 2"

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Computing on the Language

• The substitute function can take a call and substitute the
symbolic representation of several arguments.

> g <- function(a, b) substitute(a+b)
> g(x*x, y*y)
x * x + y * y

• One particularly useful trick is to use the... argument
in a substitute expression.

> g <- function(...) substitute(list(...))
> g(a=10, b=11)
list(a = 10, b = 11)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Manipulating Language Calls

• The objects returned bysubstitute are vectors of
modecall .

• Calls are similar to lists in their behaviour and can be
subscripted in the same way.

• The calla+b has three elements which are in order+, a

andb (i.e. a lisp-like representation is used).

• The variable names appearing in calls are special S
objects of modename. They can be created from
character strings with the functionas.name .

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Creating Calls

• Calls can be created with the functionvector .

> u = vector("call" 3)
> u
(,)
> u[[1]] <- as.name("f")
> u[[2]] <- as.name("x")
> u[[3]] <- as.name("y")
> u
f(x, y)

but usually manipulations are carried out existing calls.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Evaluating Calls

• Given a call it can beveryuseful to evaluate that call.
This is done with theeval function.

• eval takes the call, together with values for any
variables present in the call and produces the value that
this defines.

> u <- substitute(a+b)
> eval(u, list(a=10, b=20))
[1] 30

• A third argument to eval can be used to supply
additional places which can be used to find values for
variables.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example: Transforming Data Frames

• Peter Dalgaard has written a small function to make it
easy to manipulate the variables in a data frame.

• This function will transform and replace existing
variables or create new ones to be added.

• Here is an example of applying this function to the S
data setair , which gives information about air
pollution.

> new.air <- transform(air,
+ new = -ozone,
+ temperature = (temperature-32)/1.8)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example: The Transform Function

transform <- function (x, ...) {
e <- eval(substitute(list(...)), x,

sys.frame(sys.parent()))
tags <- names(e)
inx <- match(tags, names(x))
matched <- !is.na(inx)
if (any(matched)) {

x[inx[matched]] <- e[matched]
x <- data.frame(x)

}
if (!all(matched))

data.frame(x, e[!matched])
else x

}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Scoping

• We’ve seen that evaluation is the process of determining
the value of a symbolic expression.

• In order for evaluation to take place, values must be
determined for the variables in the expression.

• The scope of a variable is that portion of a program
where that variable refers to the same value.

• The two dialects of S differ in their scoping rules.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example

• In the following fragment:

x <- 10
y <- 20

f <- function(y) {
x + y

}

• There is global variable calledx .

• There is global variable calledy and a local variable
calledy .

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Scoping In S-PLUS

• The scoping rules in S-PLUS are simple.

• Variables are either local to the function they are
defined in or they are global.

• The process of determining the value of a variable is as
follows.

1. Look for a local variable – if there is one, use its
value.

2. If there is no local variable, use the value of the
global variable.

• There are some effects of these scoping rules which are
counter-intuitive.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Scoping Problems

• The follow implementation of binomial coefficients
does not work in S-PLUS.

choose <- function(n, k) {

fac <- function(n)
if(n <= 1) 1
else n * fac(n - 1)

fac(n) / (fac(k) * fac(n - k))

}

• Why does the function fail?

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Consequences of S-PLUS Scoping

• The scoping rules of S-PLUS encourage the use of
many globally defined functions, even when those
functions are never called directly.

• This is because it is difficult to hide related helper
functions inside “wrapper” functions.

• The use of this style producesnamespace clutterand
effects like the accidental masking of functions.

• Object-oriented programming extensions help a little.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Scoping in R

• R uses what is called static or lexical scoping (another
term is block structure).

• Variables defined in outer blocks are visible inside inner
blocks.

• This is a natural extension to the S-PLUS way of
scoping.

• The hiding of helper functions within wrappers is
encouraged.

• This promotes better software design and alleviates
namespace clutter.

• It also has some more “interesting” consequences.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example: Gaussian Likelihoods

mkNegLogLik <- function(x) {

function(mu, sigma) {
sum(sigma + 0.5 * ((x - mu)/sigma)ˆ2)

}

}

q <- mkNegLogLik(rnorm(100))

