
vgam Family Functions for Reduced-Rank
Regression and Constrained Ordination

T. W. Yee

November 21, 2006

Beta Version 0.6-5

© Thomas W. Yee

Department of Statistics,
University of Auckland,
New Zealand
yee@stat.auckland.ac.nz
http://www.stat.auckland.ac.nz/∼yee

Contents

1 Introduction 3
1.1 Some Notation . 4

2 What are RR-VGLMs? 4
2.1 VGLMs and VGAMs . 4
2.2 (Partial) RR-VGLMs . 5
2.3 Why Reduced-Rank Regression? . 6
2.4 Normalizations . 6
2.5 Reduced-Rank Multinomial Logit Model (RR-MLM) 7

3 Summary of RR-VGLM Functions Written 7
3.1 valt.control() . 7
3.2 optim.control() and nlminbcontrol() 8

1

4 Other RR-VGLM Topics 8
4.1 Normalizations . 8
4.2 Output . 8
4.3 Implementation Details . 9
4.4 Convergence . 9
4.5 Latent Variable Plots and Biplots . 9
4.6 Miscellaneous Notes . 9

5 RR-VGLM Tutorial Examples 10
5.1 Stereotype model . 10
5.2 Goodman’s RC Association Model . 15
5.3 Some advice . 21
5.4 A Goodman’s RC Numerical Example . 21
5.5 Other Reduced-Rank Regression work . 25

6 Quadratic RR-VGLMs for CQO 26
6.1 Normalizations for QRR-VGLMs . 27
6.2 Fitting QRR-VGLMs with vgam . 27

6.2.1 Initial Values . 28
6.2.2 Some Tricks and Advice . 28
6.2.3 Timings . 30
6.2.4 Arguments ITolerances and EqualTolerances 31
6.2.5 The isdlv argument . 31

6.3 After Fitting a QRR-VGLM . 34
6.3.1 The Three Cases . 34
6.3.2 Latent variable plots . 35
6.3.3 Perspective Plots . 35
6.3.4 Trajectory plots . 36

6.4 Negative Binomial and Gamma Data . 37
6.5 A Summary . 37
6.6 CQO Examples . 38
6.7 Example 1 . 38
6.8 Example 2 . 41
6.9 Example 3 . 44
6.10 Calibration . 45
6.11 Miscellaneous Notes . 45

7 Unconstrained Quadratic Ordination (UQO) 46

8 Constrained Additive Ordination (CAO) 47
8.1 Controlling Function Flexibility . 47
8.2 CAO Example . 48

2

9 Ordinal Ordination 49
9.1 Example . 51

10 Not Yet Been Implemented 55

Exercises 55

References 56

[Important note: This document and code is not yet finished, but should be completed one
day . . .]

1 Introduction

This document describes three classes of models that are variants or extensions of the VGLM and
VGAM classes. These variants are summarized in Table 1. Their primary defining characteristic
is that they operate on latent variables ν. The word “latent variable” has several shades of
meaning in statistics but here it is defined as a linear combination of some explanatory variables
x2, i.e., ν = CT x2 for some matrix of coefficients C is a vector of latent variables. This
document does not explain all the technicalities behind each model in Table 1, therefore the
interested reader is referred to the primary references for further details. Instead, this document
focusses on the practical aspects of using the vgam package to fit the models.

The three central functions in this document are quite similar to vglm() but with additional
features. The vglm() function is similar in spirit to glm(), which is described in Chambers and
Hastie (1993). The document “vgam Family Functions for Categorical Data” is also relevant
to this one, as regression models for categorical responses naturally produce a large number of
parameters, therefore are good candidates for reduced-rank modelling.

Table 1: A summary of the models described in this document. The latent variables ν =
CT x2, or ν = cT x2 if R = 1. These models compare with VGLMs where η = BT

1 x1+BT
2 x2.

Abbreviations: A = additive, C = constrained (preferred) or canonical, L = linear, O =
ordination, Q = quadratic, RR = reduced-rank, VGLM = vector generalized linear model.

η Model Purpose S function Reference

BT
1 x1 + Aν RR-VGLM CLO rrvglm() Yee and Hastie (2003)

BT
1 x1 + Aν +

M∑
j=1

(νTDjν)ej QRR-VGLM CQO cqo() Yee (2004)

BT
1 x1 +

R∑
r=1

f r(νr) RR-VGAM CAO cao() Yee (2006a)

3

1.1 Some Notation

Our data set comprises of the matrices Y and X which are n× q and n× p respectively. Y is
the response and X is explanatory. There are n individuals (e.g., people or sites) under study,
and i is used to index them. For each individual, a q-dimensional response vector y (q ≥ 1) and
a p-dimensional covariate vector x = (x1, . . . , xp)

T is observed, e.g., p environmental variables.
It is convenient to partition x into (xT

1 , xT
2)T later. In this document, often q = M = S, where

S is the total number of species. The number of linear/additive predictors is always M . The
index s = 1, . . . , S indexes species.

We have ν = CT x2 = (ν1, . . . , νR)T . If R = 1 then we sometimes write ν = cT x2. For
models with an intercept term it is assumed that x1 = 1, i.e., that of the first element of
x. The vector ei is a vector of zeros but with a 1 in the ith position. The dimension of the
reduced-rank regression is called the rank, R, and is usually 1 or 2 here. It is the number of
axes in an ordination. The matrix C contains the canonical (or constrained) coefficients and
are highly interpretable. They are sometimes called the weights or loadings.

2 What are RR-VGLMs?

To find out what RR-VGLMs are, we need to recall what VGLMs and VGAMs are.

2.1 VGLMs and VGAMs

VGLMs are defined as a model for which the conditional distribution of Y given x is of the
form

f(y|x;B) = h(y, η1, . . . , ηM , φ)

for some known function h(·), where B = (β1 β2 · · · βM) is p×M , φ is a dispersion parameter,
and

ηj = ηj(x) = βT
j x = β(j)1 x1 + · · ·+ β(j)p xp (1)

is the jth linear predictor. GLMs (McCullagh and Nelder, 1989) are a special case having only
M = 1 linear predictor, and frequently M does not coincide with the dimension of y. We have

η(xi) =

η1(xi)

...
ηM(xi)

 = ηi = BT xi. (2)

Let η0 = (β(1)1, · · · , β(M)1)
T be the vector of intercepts.

VGAMs provide additive-model extensions to VGLMs, that is, (1) is generalized to

ηj(x) = β(j)1 + f(j)2(x2) + · · ·+ f(j)p(xp), j = 1, . . . ,M, (3)

a sum of smooth functions of the individual covariates, just as with ordinary GAMs (Hastie and
Tibshirani, 1990). The ηj in (3) are referred to as additive predictors. For identifiability, each
component function is centered, i.e., E[f(j)k] = 0.

In practice, it is very useful to consider constraints-on-the-functions. For VGAMs, we have

η(x) = η0 + f 2(x2) + · · ·+ f p(xp)

= H1 β∗
1 + H2 f ∗

2(x2) + · · ·+ Hp f ∗
p(xp) (4)

4

where H1,H2, . . . ,Hp are known full-column rank constraint matrices, f ∗
k is a vector containing

a possibly reduced set of component functions and β∗
1 is a vector of unknown intercepts. With

no constraints at all, H1 = H2 = · · · = Hp = IM and β∗
1 = η0. Like the fk, the f ∗

k are
centered. For VGLMs, the fk are linear so that

BT =
(
H1β

∗
1 · · · Hpβ

∗
p

)
. (5)

VGLMs are usually estimated by maximum likelihood estimation by Fisher scoring or Newton-
Raphson.

2.2 (Partial) RR-VGLMs

Partition x into (xT
1 , xT

2)T and B = (BT
1 BT

2)T . In general, B is a dense matrix of full rank, i.e.,
rank min(M, p). Thus there are M × p regression coefficients to estimate. For some data sets
both M and p are“too” large. For example, in a classification problem of the letters“A”to“Z”
and“0”to“9”using a 16× 16 grey-scale character digitization, we have M + 1 = 26 + 10 = 36
and p = 1 + 162 = 257 in a multinomial logit model. Then there would be M × p = 9252
coefficients! Unless the data set was huge this would mean that the standard errors of each
coefficient would be very large and some simplification would be necessary. Additionally, fitting
the model in the first case would require a super computer because of massive memory and
computational requirements.

One solution is based on a simple and elegant idea: replace B2 by a reduced-rank regression.
This will cut down the number of regression coefficients enormously if the rank R is kept low.
Ideally, the problem can be reduced down to one or two dimensions—a successful application of
dimension reduction—and therefore can be plotted. The reduced-rank regression is applied to
B2 because we want to make provision for some variables x1 that we want to leave alone. This
means B1 remains unchanged. In practice, we often let x1 = 1 for the intercept term only.

The idea of reduced-rank regression was first proposed by Anderson (1951) and since then
almost all applications of it has been to continuous responses (normal errors)—this is one reason
why reduced-rank regression has never become as popular as it should be. In more detail, the
new class, called RR-VGLMs has

η = BT
1 x1 + ACT x2 = BT

1 x1 + Aν, (6)

where C = (c(1) c(2) · · · c(R)) is p2 × R, A = (a(1) a(2) · · ·a(R)) = (a1, . . . ,aM)T is M × R.
Both A and C are of full-column rank. The effect is that it replaces the dense matrix B2 by
the product of two thin matrices C and AT . Of course, R ≤ min(M, p2) but ideally we want
R � min(M, p2). One can think of (6) as a reduced-rank regression of the coefficients of x2

after having adjusted for the variables in x1.
Strictly speaking, we call models given by (6) partial RR-VGLMs because only a part of the

regressors have a reduced-rank representation. But we drop the “partial” for convenience. Let
dim(x1) = p1 and dim(x2) = p2 so that p1+p2 = p. To distinguish between variables belonging
to x1 and x2, the argument Norrr receives a formula with terms that are left untouched by
reduced-rank regression, i.e., those for x1. By default, Norrr ∼ 1 for x1 = 1. Here’s another
example.

rrvglm(y ~ x2 + x3 + x4 + x5, family = famfun(parallel = TRUE ~ x2 - 1),

Norrr = ~ x2 + x3)

This means that only variables x4 and x5 are represented by reduced-rank regression; that is,
x2 = (X4, X5)

T , and x1 = (1, X2, X3)
T are left alone. The variable X2 receives a parallelism

constraint.

5

2.3 Why Reduced-Rank Regression?

There are a number of reasons why reduced-rank regression is a good idea:

1. If R � min(M, p2) then a more parsimonious model results. The resulting number of
parameters is often much less than the full model (the difference is (M − R)(p2 − R),
which is substantial when R � min(M, p2)).

2. The reduced-rank approximation provides a vehicle for a low dimensional view of the data,
e.g., the biplot. This is illustrated later.

3. It allows for a flexible nonparametric generalization—called RR-VGAMs. These are de-
scribed in Section 8.

4. It is readily interpretable. One can think of ν as a vector of R latent variables—linear
combinations of the original predictor variables that give more explanatory power. They
often can be thought of as a proxy for some underlying variable behind the mechanism
of the process generating the data. For some models, such as the cumulative logit model
(McCullagh, 1980), this argument is natural and well-known. In fields such as plant
ecology the idea is an important one.

Unfortunately, much of the standard theory of reduced-rank regression (see, for example, Reinsel
and Velu (1998)) and its ramifications are not applicable to RR-VGLMs in general. This is due
to technical reasons. Another complication in inference of RR-VGLMs is that the solution to a
lower rank problem is not nested within a higher rank problem.

2.4 Normalizations

The factorization (6) is not unique because ηi = BT
1 x1 + AMM−1 νi for any nonsingular

matrix M. The following lists some common uniqueness constraints.

1. Restrict A to the form

A =

(
IR

Ã

)
, say. (7)

(Actually, it may be necessary to represent IR in rows other than the first R.) This is
used when derivatives are used to fit the model. This type of constraint is called a Corner
constraint and corresponds to Corner=TRUE in rrvglm().

2. Another normalization of A, which makes direct comparisons with other statistical meth-
ods possible, is based on the singular value decomposition (SVD)

ACT = (UDα)(D1−αVT) (8)

for some specified 0 ≤ α ≤ 1. For the alternating method of estimation, α = 1
2

is
the default as it scales both sides symmetrically. The parameter α is Alpha=0.5 in
rrvglm.control().

3. It is often possible to choose M so that V̂ar(M−1 ν̂) is diagonal and its trace is 1.

4. For the stereotype model described in the next section, we could choose M so that
the columns of C, c(r), r = 1, . . . , R, are orthogonal with respect to the within-group
covariance matrix W—this type of normalization is similar to linear discriminant analysis.

5. Sometimes we want to choose M so that the latent variables are uncorrelated, i.e.,
V̂ar(ν̂i) is diagonal.

6

2.5 Reduced-Rank Multinomial Logit Model (RR-MLM)

The multinomial logit model (MLM) is a popular regression model for categorical data. It
appears under other names, such as the multiple logistic regression model or polytomous logistic
regression model. The MLM is given by

pj = P (Y = j|x) =
exp{ηj(x)}

M+1∑
`=1

exp{η`(x)}
, j = 1, . . . ,M + 1,

where ηj(x) = βT
j x. and yi is a (M + 1)-vector of counts for a categorical response variable

taking levels 1, 2, . . . ,M +1. The MLM is used for a nominal response and is particularly useful
for exploring how the relative chances of falling into the response categories depend upon the
covariates: pj(x)/pk(x) = exp {ηj(x)− ηk(x)}. Identifiability constraints, e.g., ηM+1(x) ≡ 0,
are required by the model. This implies

log

(
pj

pM+1

)
= ηj, j = 1, . . . ,M.

vgam fits the multinomial logit model using the family function multinomial(). It uses the
last column of the response matrix as baseline, or if the response is a factor, the last level. The
special case of M = 1 corresponds to logistic regression. For further details, see the article
“vgam Family Functions for Categorical Data”.

The reduced-rank version of the MLM, the RR-MLM, was proposed by Anderson (1984). He
called it the stereotype model. Note that Anderson (1984) defined his rank-1 stereotype model
to have ordered constraints on the parameters of the A matrix; vgam ignores this as it would
be very difficult to estimate the model with such a constraint. Greenland (1994) attempted to
popularize the 1-dimensional stereotype model.

A typical RR-MLM can be fitted like

fit = rrvglm(cbind(y1,y2,y3,y4) ~ x2 + x3 + x4 + x5, family = multinomial,

data = mydata, Norrr = ~ 1 + x2, Rank = 2)

3 Summary of RR-VGLM Functions Written

The function rrvglm() should operate on all vgam family functions with M > 2, although
reduced-rank regression does not make sense for many of them. It returns an object with class
"rrvglm" which is, not surprisingly, related to a "vglm" object.

Table 2 gives the current list of S functions that have been written. The function rrvglm.control()
is the control function for rrvglm(). It calls either valt.control(), optim.control() for
R or nlminbcontrol() for S-PLUS, which are the control functions of valt(), optim(), and
nlminb().

Table 5 lists generic functions which are also applicable to RR-VGLMs.

3.1 valt.control()

valt() implements the alternating algorithm. This algorithm (see (6)) fixes C and solves for
A and B1, and then fixes C and solves for A and B1; this can be iterated until convergence.
The most important arguments to valt.control() are Linesearch and Maxit.

7

3.2 optim.control() and nlminbcontrol()

In R, optim() is used for the derivative-based algorithm, while in S-PLUS, nlminb() is used.
The functions optim.control() and nlminbcontrol() pass on parameters to the optimizing
functions.

Table 2: A summary of vgam functions and code for RR-VGLMs. See also Table 5 for
several functions that are applicable to RR-VGLMs too.

Function Purpose
rrvglm() Fits RR-VGLMs.
rrar() RR-autoregressive model (for vglm() only) family function
grc() Goodman’s RC association model (for two-way tables)
biplot.rrvglm() Biplot for RR-VGLMs (R = 2 only)
lvplot.rrvglm() Same as biplot.rrvglm().
printsummary.rrvglm() Prints the summary
summary.rrvglm() Summary function for ‘all’ RR-VGLMs
nlminbcontrol() Control function for nlminb() in S-PLUS
rrvglm.optim.control() Control function for optim() in R
rrvglm.control() Control function for rrvglm()
valt.control() Control function for valt()
valt() Alternating algorithm
rrr.init.expression Setup expression
rrr.end.expression Cleanup expression
rrr.alternating.expression Implements the alternating algorithm
rrr.derivative.expression Implements the derivative algorithm
rrr.normalize() Implements the various normalizations

4 Other RR-VGLM Topics

4.1 Normalizations

Currently rrr.normalize() implements the various normalizations. This is actually not good
because the code is not modular.

vgam family functions based on the alternating method have the arguments Corner=TRUE,
Svd=FALSE, Uncor=FALSE. If set true, they apply the corner, SVD and uncorrelated normal-
izations described in Section 2.4. Note that if Svd=TRUE is set then Corner=FALSE is set
internally. For corner constraints Index.corner=1:Rank is the default, which is (7); these
give the rows for which IR occupy. The argument Alpha=0.5 is the α parameter for the SVD
method in (8).

For the derivative-based algorithm only corner constraints are supported.

4.2 Output

Suppose fit is an "rrvglm" object. Then, using a combination of (5) and (6),

(i) fit@constraints holds the Hk and Â (these are better extracted with constraints(fit)),

8

(ii) coef(fit) holds the β̂
∗
k and vec(Ĉ

T
),

(iii) coef(fit, matrix=TRUE) is the estimate of B = (BT
1 ACT)T ,

(iv) Coef(fit) returns Â, Ĉ, B̂1 etc.

The function lv.rrvglm() returns a n × R matrix of latent variables with the ith row
equalling ν̂T

i . These are plotted in lvplot.rrvglm() (rank-2 only), which is equivalent to
biplot.rrvglm().

4.3 Implementation Details

The S expression rrr.init.expression contains essential code that is inserted into vglm.fit()
to give rrvglm.fit(). Furthermore, one of rrr.alternating.expression and rrr.derivative.expression
is also used: these perform, e.g., an alternating algorithm iteration between successive Newton-
Raphson/Fisher scoring iterations.

The function valt.control() allows a RR-VGLM family function to have arguments that
affect valt(). It has the same type of effect that vglm.control() has on vglm(). Sim-
ilarly, rrvglm.optim.control() and nlminbcontrol() for the derivative based algorithm.
Arguments usually start with an uppercase letter to avoid conflict with the control parameters
associated with those of vglm().

4.4 Convergence

The alternating algorithm can be very slow at converging but vgam allows a line search
in the alternating method which may improve convergence substantially. It is invoked by
Linesearch=TRUE.

Unknown elements in C are chosen randomly using rnorm(). One should use set.seed()

before calling rrvglm() to control this if reproducibility is required.

4.5 Latent Variable Plots and Biplots

Biplots are available for RR-VGLMs and provide a graphical summary of the rank-2 approxi-
mation to B2. These are based on Equation (6), and show that the k-j element of B2 is the
inner-product of the kth row of C and the jth row of A. The rows of C are usually repre-
sented by arrows, and the rows of A by points (labelled by object@misc$predictors.names).
Currently, lvplot.rrvglm() is equivalent to biplot.rrvglm().

If fit2 is a rank-2 RR-VGLM, then lvplot(fit2) will produce a scatter plot of the fitted
latent variables ν̂i2 versus ν̂i1 (see (6)). A convex hull can be overlaid on each group. By
default, all the observations belong to one group.

4.6 Miscellaneous Notes

1. summary.rrvglm() computes asymptotic standard errors. If the matrix @cov.unscaled
is not positive-definite (this would indicate an ill-posed model, e.g., one where the in-
tercepts are part of x2 rather than x1), then a warning is given. In such cases the user
should try

(a) numerical=TRUE to use numerical derivatives,

(b) fitting another model,

9

(c) increasing the rank.

Alternatively, there are the options omit13 and kill.all in summary.rrvglm() that
allow an ‘inferior’ @cov.unscaled to be returned, for example, one where A is fixed or
one where C is fixed. Then the standard errors are too small.

2. summary.rrvglm() only works with corner constraints (7), i.e., if object@control$Corner=TRUE.
In the output, the elements of Ã in (7) come first. They are labelled with the prefix
"I(lv.mat)" or something similar. The elements are enumerated going down each col-
umn starting from the first column, i.e., vec(Ã). Then comes the fitted coefficients β̂

∗
k

corresponding to B1, followed by vec(CT). Actually, B1 and vec(CT) are intermingled,
depending on the order of the original formula.

3. φ is estimated if summary(..., dispersion=0) is invoked. Then

φ̂ =
1

nM − p∗

n∑
i=1

(
zi − B̂

T

1 x1i − Â Ĉ
T
x2i

)T
Wi

(
zi − B̂

T

1 x1i − Â Ĉ
T
x2i

)
(9)

where p∗ = dim(β̂
∗T
1 , . . . , β̂

∗T
p1

, vec(Ã)T)T is the total number of parameters to be esti-
mated.

4. For an example of a reduced-rank autoregressive model for time-series data see Ahn and
Reinsel (1988).

5 RR-VGLM Tutorial Examples

In this section we illustrate some of the models available.

5.1 Stereotype model

The data frame car.all is available in S-PLUS (type data(car.all) in R) We first preprocess
the data.

> data(car.all)

> cars = car.all

> y = cars[["Country"]]

> cars = cars[y == "USA" | y == "Japan" | y == "Germany" |

+ y == "Japan/USA",]

> cars = cars[, c("Country", "Length", "Width", "Weight",

+ "HP", "Disp.", "Price")]

> cars = na.omit(cars)

> cars[, -1] = scale(cars[, -1])

> temp = as.character(cars[, 1])

> temp[temp == "Germany"] = "G"

> temp[temp == "Japan"] = "J"

> temp[temp == "Japan/USA"] = "T"

> temp[temp == "USA"] = "U"

> cars[, 1] = as.factor(temp)

> cars[1:5,]

10

Country Length Width Weight HP

Acura Integra J -0.3090048 -0.54606484 -0.5694623 -0.1047130

Acura Legend J 0.6535452 0.05765902 0.4535964 0.6271814

Audi 100 G 0.7910523 0.66138288 -0.1439423 -0.1047130

Audi 80 G -0.3777584 -0.54606484 -0.6237840 -0.6414355

BMW 325i G -0.4465120 -1.14978870 -0.2163713 0.8223532

Disp. Price

Acura Integra -0.80031904 -0.5102931

Acura Legend 0.02117533 1.0068293

Audi 100 -0.33319479 1.2602752

Audi 80 -0.65534945 0.3128139

BMW 325i -0.15600973 0.9938017

Now we can fit a rank-1 model.

> set.seed(301)

> cars[, -1] = scale(cars[, -1])

> fit1 = rrvglm(Country ~ Length + Width + Weight + HP +

+ Disp. + Price, multinomial, Svd = TRUE, Uncor = TRUE,

+ data = cars)

> fit1

Call:

rrvglm(formula = Country ~ Length + Width + Weight + HP + Disp. +

Price, family = multinomial, data = cars, Svd = TRUE, Uncor = TRUE)

Coefficients:

Residual Deviance: 114.9055

Log-likelihood: -57.45273

Now look at some of the constraint matrices.

> constraints(fit1)[1:2]

$`(Intercept)`

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

$Length

[,1]

[1,] 9.570348

[2,] 7.417516

[3,] 5.190612

The intercept constraint matrix is often IM and the rest are Â. Now B̂ = (η̂0, B̂
T

2)T is:

> coef(fit1, matrix = TRUE)

11

log(mu[,1]/mu[,4]) log(mu[,2]/mu[,4]) log(mu[,3]/mu[,4])

(Intercept) -2.673038 0.3338085 -0.2982763

Length -3.570319 -2.7671825 -1.9364125

Width -1.910480 -1.4807207 -1.0361753

Weight 2.417909 1.8740050 1.3113869

HP 1.032084 0.7999188 0.5597653

Disp. -9.053950 -7.0172804 -4.9105362

Price 8.661599 6.7131882 4.6977393

Biplots are available for rank-2 models. Running

> fit2 = rrvglm(Country ~ Length + Width + Weight + HP +

+ Disp. + Price, multinomial, Rank = 2, Svd = TRUE, Uncor = TRUE,

+ Linesearch = TRUE, data = cars)

first, we can obtain the two plots in Figure 1 easily.

12

> par(mfrow = c(2, 1), mar = c(5, 4, 1, 1) + 0.1)

> grps = unclass(ordered(cars$Country))

> lvplot(fit2, scores = TRUE, spch = grps, C = FALSE, A = FALSE,

+ scol = grps)

> biplot(fit2, gap = 0.1, scale = 0.5, xlim = c(-3, 5), ylim = c(-4,

+ 4))

−3 −2 −1 0 1 2

−1

0

1

2

3

4

Latent Variable 1

La
te

nt
 V

ar
ia

bl
e

2

●
●

●

● ●

●

●

●

●

●

−2 0 2 4

−4

−2

0

2

4

Latent Variable 1

La
te

nt
 V

ar
ia

bl
e

2

log(mu[,1]/mu[,4])log(mu[,2]/mu[,4])

log(mu[,3]/mu[,4])Length

Width

WeightHP

Disp. Price

Figure 1: Car data: latent variable plots (biplots) of fit2.

13

Now corner constraints are the default, and these are necessary for a summary of the object.

> fit3 = rrvglm(Country ~ Length + Width + Weight + HP +

+ Disp. + Price, multinomial, Rank = 1, cars)

> print(summary(fit3))

Call:

rrvglm(formula = Country ~ Length + Width + Weight + HP + Disp. +

Price, family = multinomial, data = cars, Rank = 1)

Pearson Residuals:

Min 1Q Median 3Q Max

log(mu[,1]/mu[,4]) -3.5445 -0.16507 -0.035991 -0.0053429 4.8180

log(mu[,2]/mu[,4]) -4.6939 -0.49349 -0.066701 0.5011074 2.1657

log(mu[,3]/mu[,4]) -3.7784 -0.25807 -0.197650 -0.0539636 1.9870

Coefficients:

Value Std. Error t value

I(lv.mat):1 0.77505 0.084341 9.18949

I(lv.mat):2 0.54236 0.126586 4.28457

(Intercept):1 -2.67306 1.047357 -2.55219

(Intercept):2 0.33381 0.562960 0.59295

(Intercept):3 -0.29828 0.575931 -0.51791

Length -3.57030 1.519037 -2.35037

Width -1.91048 1.554015 -1.22938

Weight 2.41791 1.657847 1.45846

HP 1.03207 1.218558 0.84696

Disp. -9.05395 2.424809 -3.73388

Price 8.66159 1.929831 4.48826

Number of linear predictors: 3

Names of linear predictors:

log(mu[,1]/mu[,4]), log(mu[,2]/mu[,4]), log(mu[,3]/mu[,4])

Dispersion Parameter for multinomial family: 1

Residual Deviance: 114.9055 on 256 degrees of freedom

Log-likelihood: -57.45273 on 256 degrees of freedom

Number of Iterations: 6

Just to show that prediction works, one can try

> index = 1:4

> max(abs(predict(fit3, cars[index,]) - predictors(fit3)[index,

+]))

[1] 1.598721e-14

14

5.2 Goodman’s RC Association Model

Suppose Y = [(yij)] is a n × M matrix of counts. Goodman’s RC(R) association model
(Goodman, 1981) fits a reduced-rank type model to Y by firstly assuming that Yij has a
Poisson distribution, and that

log µij = µ + αi + γj +
R∑

r=1

cir ajr, i = 1, . . . , n; j = 1, . . . ,M, (10)

where µij = E(Yij) is the mean of the i-j cell. Here, R is the rank, which is usually chosen
so that R � min(n, M). Note that (10) is saturated when R = min(n, M). Note that
Equation (4.3) in Yee and Hastie (2003) is wrong; it is corrected by (10).

In (10) the parameters αi and γj are called the row and column scores respectively. Iden-
tifiability constraints are needed for these, such as corner constraints, e.g., α1 = γ1 = 0. The
parameters air and cjr also need constraints, e.g., a1r = c1r = 0 for r = 1, . . . , R. We can
write (10) as

log µij = µ + αi + γj + δij,

where the n×M matrix ∆ = [(δij)] of interaction terms is approximated by the reduced rank
quantity

∑R
r=1 cir ajr.

Goodman’s RC(R) association model fits within the VGLM framework by letting

ηi = log µi (11)

where µi = E(Y i) is the mean of the ith row of Y. Then Goodman’s RC(R) association
model models the matrix (η1, . . . ,ηn)T using reduced-rank regression; Yee and Hastie (2003)
gives details on how (10) fits into the reduced-rank VGLM framework (6). To save a long story,
vgam can fit (10), but requires a considerable amount of setting up of indicator variables
etc. before calling rrvglm(). For this reason, the function grc() has been written to fit
Goodman’s RC model easily. It accepts a matrix as its first argument, and any other argument
(except summary; see below) is fed into rrvglm.control(). This means, for example, that
the default rank is R = 1.

We now present a numerical example with the artificial data set given in Table 3. We use
corner constraints α1 = γ1 = 0 and fit a rank-2 model.

> y = matrix(c(4, 6, 4, 2, 1, 6, 5, 7, 1, 1, 4, 8, 9, 4,

+ 3, 2, 2, 5, 7, 6), 4, 5, byrow = TRUE)

> dimnames(y) = list(letters[1:nrow(y)], LETTERS[1:ncol(y)])

> y

A B C D E

a 4 6 4 2 1

Table 3: An artificial 4× 5 table of data.

A B C D E
a 4 6 4 2 1
b 6 5 7 1 1
c 4 8 9 4 3
d 2 2 5 7 6

15

b 6 5 7 1 1

c 4 8 9 4 3

d 2 2 5 7 6

> options(contrasts = c("contr.treatment", "contr.poly"))

> g2 = grc(y, Rank = 2)

Before looking at the estimates, we can look at the model matrices.

> cbind(g2@x)

(Intercept) Row2 Row3 Row4 Col2 Col3 Col4 Col5 b c d

a 1 0 0 0 1 1 1 1 0 0 0

b 1 1 0 0 1 1 1 1 1 0 0

c 1 0 1 0 1 1 1 1 0 1 0

d 1 0 0 1 1 1 1 1 0 0 1

> cbind(model.matrix(g2))

(Intercept) Row2 Row3 Row4 Col2 Col3 Col4 Col5 b:1 b:2

a:1 1 0 0 0 0 0 0 0 0.0000000 0.000000

a:2 1 0 0 0 1 0 0 0 0.0000000 0.000000

a:3 1 0 0 0 0 1 0 0 0.0000000 0.000000

a:4 1 0 0 0 0 0 1 0 0.0000000 0.000000

a:5 1 0 0 0 0 0 0 1 0.0000000 0.000000

b:1 1 1 0 0 0 0 0 0 0.0000000 0.000000

b:2 1 1 0 0 1 0 0 0 1.0000000 0.000000

b:3 1 1 0 0 0 1 0 0 0.0000000 1.000000

b:4 1 1 0 0 0 0 1 0 0.9455561 3.040363

b:5 1 1 0 0 0 0 0 1 0.2457475 3.144984

c:1 1 0 1 0 0 0 0 0 0.0000000 0.000000

c:2 1 0 1 0 1 0 0 0 0.0000000 0.000000

c:3 1 0 1 0 0 1 0 0 0.0000000 0.000000

c:4 1 0 1 0 0 0 1 0 0.0000000 0.000000

c:5 1 0 1 0 0 0 0 1 0.0000000 0.000000

d:1 1 0 0 1 0 0 0 0 0.0000000 0.000000

d:2 1 0 0 1 1 0 0 0 0.0000000 0.000000

d:3 1 0 0 1 0 1 0 0 0.0000000 0.000000

d:4 1 0 0 1 0 0 1 0 0.0000000 0.000000

d:5 1 0 0 1 0 0 0 1 0.0000000 0.000000

c:1 c:2 d:1 d:2

a:1 0.0000000 0.000000 0.0000000 0.000000

a:2 0.0000000 0.000000 0.0000000 0.000000

a:3 0.0000000 0.000000 0.0000000 0.000000

a:4 0.0000000 0.000000 0.0000000 0.000000

a:5 0.0000000 0.000000 0.0000000 0.000000

b:1 0.0000000 0.000000 0.0000000 0.000000

b:2 0.0000000 0.000000 0.0000000 0.000000

b:3 0.0000000 0.000000 0.0000000 0.000000

b:4 0.0000000 0.000000 0.0000000 0.000000

16

b:5 0.0000000 0.000000 0.0000000 0.000000

c:1 0.0000000 0.000000 0.0000000 0.000000

c:2 1.0000000 0.000000 0.0000000 0.000000

c:3 0.0000000 1.000000 0.0000000 0.000000

c:4 0.9455561 3.040363 0.0000000 0.000000

c:5 0.2457475 3.144984 0.0000000 0.000000

d:1 0.0000000 0.000000 0.0000000 0.000000

d:2 0.0000000 0.000000 1.0000000 0.000000

d:3 0.0000000 0.000000 0.0000000 1.000000

d:4 0.0000000 0.000000 0.9455561 3.040363

d:5 0.0000000 0.000000 0.2457475 3.144984

The first one, g2@x, is the model matrix corresponding to the lm-type, whereas model.matrix(g2)
is the ‘large’ model matrix corresponding to the vlm-type. Now the estimates are as follows.

> print(g2)

Call:

rrvglm(formula = as.formula(str2), family = poissonff, data = .grc.df,

control = myrrcontrol, constraints = cms)

Coefficients:

Residual Deviance: 0.5504491

Log-likelihood: -31.99336

> coef(g2, matrix = TRUE)

log(E[A]) log(E[B]) log(E[C]) log(E[D]) log(E[E])

(Intercept) 1.2254942 1.2254942 1.2254942 1.2254942 1.2254942

Row2 0.5622138 0.5622138 0.5622138 0.5622138 0.5622138

Row3 0.3565643 0.3565643 0.3565643 0.3565643 0.3565643

Row4 -0.6639087 -0.6639087 -0.6639087 -0.6639087 -0.6639087

Col2 0.0000000 0.6011756 0.0000000 0.0000000 0.0000000

Col3 0.0000000 0.0000000 0.2940680 0.0000000 0.0000000

Col4 0.0000000 0.0000000 0.0000000 -0.6591283 0.0000000

Col5 0.0000000 0.0000000 0.0000000 0.0000000 -1.1777399

b 0.0000000 -0.7777065 -0.1325454 -1.1383513 -0.6079725

c 0.0000000 -0.1433544 0.2243264 0.5464841 0.6702738

d 0.0000000 -0.4263387 0.8000238 2.0292357 2.4112899

From the output, it can be seen that µ̂ = 1.2255, α̂2 = 0.5622, γ̂2 = 0.6012 etc. By default,
grc() has the first row of A consisting of structural zeros, which has the effect of zeroing the
first column of ∆. One can see this here by looking at, e.g.,

> constraints(g2)[["b"]]

[,1] [,2]

[1,] 0.0000000 0.000000

[2,] 1.0000000 0.000000

[3,] 0.0000000 1.000000

[4,] 0.9455561 3.040363

[5,] 0.2457475 3.144984

17

which is Â. Also,

Ĉ =

0.0000 0.0000

−0.7777 −0.1326
−0.1433 0.2243
−0.4264 0.8000

 .

The fitted values can be obtained by

> fitted(g2)

A B C D E

a 3.405849 6.213161 4.570224 1.761853 1.048913

b 5.975741 5.008704 7.023282 0.990276 1.001998

c 4.864960 7.689684 8.169869 4.346688 2.928799

d 1.753450 2.088450 5.236625 6.901183 6.020291

Note that the function biplot() can return quantities such the estimated A and C:

> i = Coef(g2)

> rbind(A = 0, i@C) %*% t(i@A)

log(E[A]) log(E[B]) log(E[C]) log(E[D]) log(E[E])

A 0 0.0000000 0.0000000 0.0000000 0.0000000

b 0 -0.7777065 -0.1325454 -1.1383513 -0.6079725

c 0 -0.1433544 0.2243264 0.5464841 0.6702738

d 0 -0.4263387 0.8000238 2.0292357 2.4112899

The latter is ∆̂, which is the bottom portion of coef(g2, matrix=TRUE) above. Now

> svd(rbind(0, i@C) %*% t(i@A))

$d

[1] 3.584733e+00 1.005117e+00 1.283493e-16 0.000000e+00

$u

[,1] [,2] [,3] [,4]

[1,] 0.0000000 0.0000000 0.00000000 1

[2,] 0.3285847 -0.9440891 0.02698058 0

[3,] -0.2503684 -0.1146129 -0.96134256 0

[4,] -0.9106853 -0.3091273 0.27403016 0

$v

[,1] [,2] [,3] [,4]

[1,] 0.00000000 0.0000000 0.0000000 1

[2,] 0.04703541 0.8779550 0.2559655 0

[3,] -0.23105945 -0.1471324 -0.6144152 0

[4,] -0.65803005 0.3828198 -0.4293540 0

[5,] -0.71511933 -0.2469737 0.6104348 0

which verifies that ∆̂ is of rank 2. One idea of determining the rank R is to fit a high rank
model and plot the singular values as in a scree plot. A sharp dropoff is a suggested way of
guessing the best R.

Here is a summary.

18

> print(summary(g2))

Call:

rrvglm(formula = as.formula(str2), family = poissonff, data = .grc.df,

control = myrrcontrol, constraints = cms)

Pearson Residuals:

log(E[A]) log(E[B]) log(E[C]) log(E[D]) log(E[E])

a 0.321947 -0.085517 -0.2667330 0.1794159 -0.0477589

b 0.009924 -0.003889 -0.0087852 0.0097716 -0.0019956

c -0.392154 0.111905 0.2904285 -0.1662876 0.0416047

d 0.186191 -0.061205 -0.1034035 0.0376157 -0.0082696

Coefficients:

Value Std. Error t value

I(lv.mat)1:1 0.94557 4.82952 0.195790

I(lv.mat)1:2 0.24574 3.85305 0.063779

I(lv.mat)2:1 3.04036 3.77775 0.804809

I(lv.mat)2:2 3.14499 3.20025 0.982732

(Intercept) 1.22549 0.48190 2.543028

Row2 0.56221 0.64964 0.865424

Row3 0.35656 0.53060 0.672000

Row4 -0.66391 0.99316 -0.668482

Col2 0.60118 0.56856 1.057368

Col3 0.29407 0.68741 0.427790

Col4 -0.65913 0.90481 -0.728468

Col5 -1.17774 0.98394 -1.196963

b:1 -0.77771 0.82623 -0.941271

b:2 -0.13255 1.00334 -0.132104

c:1 -0.14335 0.74182 -0.193247

c:2 0.22433 0.49299 0.455036

d:1 -0.42634 1.32336 -0.322164

d:2 0.80002 1.29461 0.617963

Number of linear predictors: 5

Names of linear predictors:

log(E[A]), log(E[B]), log(E[C]), log(E[D]), log(E[E])

(Default) Dispersion Parameter for poissonff family: 1

Residual Deviance: 0.55045 on 2 degrees of freedom

Log-likelihood: -31.99336 on 2 degrees of freedom

Number of Iterations: 6

The standard errors are ‘correct’ because it treats the elements of Ã as unknown parameters.
Finally, a biplot can be obtained (see Figure 2.)

19

> biplot(g2, xlim = c(-1.5, 1.5))

−1.5 −0.5 0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Latent Variable 1

La
te

nt
 V

ar
ia

bl
e

2

log(E[A]) log(E[B])

log(E[C])

log(E[D])log(E[E])

b

c

d

Figure 2: Biplot of a Goodman’s RC(2) association model.

20

5.3 Some advice

Sometimes a summary() of a "grc" object fails because the estimated covariance matrix is
not positive-definite. This is often due to numerical ill-conditioning: the position of the corner
contraint for IR in A causes the elements of Ã to be very large or small. The easiest fix is to
try choose different values for the Index.corner argument in grc(). For example, if

fit = grc(y, Rank=2, Index.corner=2:3)

sfit = summary(fit)

fails, try something like

fit = grc(y, Rank=2, Index.corner=c(3,4))

sfit = summary(fit)

5.4 A Goodman’s RC Numerical Example

Here we fit another Goodman’s RC association model, but to the data in Table 4 and explicitly
setting up indicator variables etc. Yee and Hastie (2003) gives the details on how Goodman’s RC
model is a partial RR-VGLM, with the need for only some setting up of indicator variables and
constraint matrices. For simplicity we fit a rank-1 model (a rank-2 model simply requires Rank=2
below.) The vgam family function poissonff() accepts a matrix response and has (11) as
the default. The variable y contains the 4× 5 matrix of counts.

> ei = function(i, n) diag(n)[, i, drop = FALSE]

> Col2 = Col3 = Col4 = Col5 = rep(1, nrow(y))

> Row2 = x22 = ei(2, nrow(y))

> Row3 = x23 = ei(3, nrow(y))

> Row4 = x24 = ei(4, nrow(y))

> cms = list("(Intercept)" = matrix(1, ncol(y), 1), Col2 = ei(2,

+ ncol(y)), Col3 = ei(3, ncol(y)), Col4 = ei(4, ncol(y)),

+ Col5 = diag(ncol(y)))

> cms$Row2 = cms$Row3 = cms$Row4 = matrix(1, ncol(y), 1)

> cms$x22 = cms$x23 = cms$x24 = diag(ncol(y))

> g1 = rrvglm(y ~ Row2 + Row3 + Row4 + Col2 + Col3 + Col4 +

+ Col5 + x22 + x23 + x24, Rank = 1, family = poissonff,

+ constraints = cms, Structural.zero = 1, Norrr = ~Row2 +

+ Row3 + Row4 + Row5 + Col2 + Col3 + Col4)

Table 4: Some undergraduate student enrolments at the University of Auckland in 1990.
Each student is cross-classified by their colleges (Science and Engineering have been com-
bined) and the socio-economic status (SES) of their fathers (1 =highest, 4 =lowest). Data:
Dr Tony Morrison.

SES Commerce Arts SciEng Law Medicine
1 446 895 496 170 184
2 937 1834 994 246 198
3 311 805 430 95 48
4 49 157 62 15 9

21

The omission of a variable called x21 causes ∆ to have a zero first row. Before looking at the
estimates, let’s check the model matrices.

> cbind(g1@x)

(Intercept) Row2 Row3 Row4 Col2 Col3 Col4 Col5 x22 x23 x24

a 1 0 0 0 1 1 1 1 0 0 0

b 1 1 0 0 1 1 1 1 1 0 0

c 1 0 1 0 1 1 1 1 0 1 0

d 1 0 0 1 1 1 1 1 0 0 1

> cbind(model.matrix(g1))

(Intercept) Row2 Row3 Row4 Col2 Col3 Col4 Col5 x22

a:1 1 0 0 0 0 0 0 0.000000 0.000000

a:2 1 0 0 0 1 0 0 1.000000 0.000000

a:3 1 0 0 0 0 1 0 3.131003 0.000000

a:4 1 0 0 0 0 0 1 8.897212 0.000000

a:5 1 0 0 0 0 0 0 9.580658 0.000000

b:1 1 1 0 0 0 0 0 0.000000 0.000000

b:2 1 1 0 0 1 0 0 1.000000 1.000000

b:3 1 1 0 0 0 1 0 3.131003 3.131003

b:4 1 1 0 0 0 0 1 8.897212 8.897212

b:5 1 1 0 0 0 0 0 9.580658 9.580658

c:1 1 0 1 0 0 0 0 0.000000 0.000000

c:2 1 0 1 0 1 0 0 1.000000 0.000000

c:3 1 0 1 0 0 1 0 3.131003 0.000000

c:4 1 0 1 0 0 0 1 8.897212 0.000000

c:5 1 0 1 0 0 0 0 9.580658 0.000000

d:1 1 0 0 1 0 0 0 0.000000 0.000000

d:2 1 0 0 1 1 0 0 1.000000 0.000000

d:3 1 0 0 1 0 1 0 3.131003 0.000000

d:4 1 0 0 1 0 0 1 8.897212 0.000000

d:5 1 0 0 1 0 0 0 9.580658 0.000000

x23 x24

a:1 0.000000 0.000000

a:2 0.000000 0.000000

a:3 0.000000 0.000000

a:4 0.000000 0.000000

a:5 0.000000 0.000000

b:1 0.000000 0.000000

b:2 0.000000 0.000000

b:3 0.000000 0.000000

b:4 0.000000 0.000000

b:5 0.000000 0.000000

c:1 0.000000 0.000000

c:2 1.000000 0.000000

c:3 3.131003 0.000000

c:4 8.897212 0.000000

c:5 9.580658 0.000000

22

d:1 0.000000 0.000000

d:2 0.000000 1.000000

d:3 0.000000 3.131003

d:4 0.000000 8.897212

d:5 0.000000 9.580658

The matrix g1@x corresponds to an ordinary linear model, while model.matrix(g1) is a per-
mutation of the VLM model matrix X∗, with columns corresponding to β∗ = (β∗T

1 , . . . ,β∗T
p)T .

The model matrix has adjustments due to the constraint matrices.
Now the estimates are as follows.

> g1

Call:

rrvglm(formula = y ~ Row2 + Row3 + Row4 + Col2 + Col3 + Col4 +

Col5 + x22 + x23 + x24, family = poissonff, constraints = cms,

Rank = 1, Structural.zero = 1, Norrr = ~Row2 + Row3 + Row4 +

Row5 + Col2 + Col3 + Col4)

Coefficients:

Residual Deviance: 1.969910

Log-likelihood: -32.70309

> round(coef(g1, matrix = TRUE), digits = 4)

log(E[A]) log(E[B]) log(E[C]) log(E[D]) log(E[E])

(Intercept) 1.3872 1.3872 1.3872 1.3872 1.3872

Row2 0.2918 0.2918 0.2918 0.2918 0.2918

Row3 0.2389 0.2389 0.2389 0.2389 0.2389

Row4 -0.9473 -0.9473 -0.9473 -0.9473 -0.9473

Col2 0.0000 0.3672 0.0000 0.0000 0.0000

Col3 0.0000 0.0000 0.7084 0.0000 0.0000

Col4 0.0000 0.0000 0.0000 0.2600 0.0000

Col5 0.0000 -0.1359 -0.4255 -1.2091 -1.3020

x22 0.0000 -0.0522 -0.1635 -0.4645 -0.5002

x23 0.0000 0.0832 0.2606 0.7406 0.7975

x24 0.0000 0.2763 0.8650 2.4579 2.6467

The estimate of A, which uses a corner constraint (7) in the second position and has a structural
zero in the first position, is

> constraints(g1)[["x22"]]

[,1]

[1,] 0.000000

[2,] 1.000000

[3,] 3.131003

[4,] 8.897212

[5,] 9.580658

23

and Ĉ = (0, 0.1393, 0.2740, 0.3144)T . From the output, it can be seen that µ̂ = 6.1651,
α̂2 = 0.6130, γ̂2 = 0.6128 etc. These coefficients can be interpreted quite readily: adjusting
for the row and column totals, as SES decreases, the number of arts students increases relative
to commerce students. In contrast, the numbers of law and medical students decreases as SES
decreases, relative to commerce students—this supports the widespread belief that medical
students tend to come from high SES families.

The fitted values and a summary can be obtained by

> fitted(g1)

A B C D E

a 4.003433 5.045548 5.312429 1.549676 1.0889144

b 5.360124 6.411754 6.040095 1.303917 0.8841101

c 5.084007 6.963610 8.755083 4.127346 3.0699538

d 1.552436 2.579088 4.892393 7.019061 5.9570217

> print(summary(g1))

Call:

rrvglm(formula = y ~ Row2 + Row3 + Row4 + Col2 + Col3 + Col4 +

Col5 + x22 + x23 + x24, family = poissonff, constraints = cms,

Rank = 1, Structural.zero = 1, Norrr = ~Row2 + Row3 + Row4 +

Row5 + Col2 + Col3 + Col4)

Pearson Residuals:

log(E[A]) log(E[B]) log(E[C]) log(E[D]) log(E[E])

a -0.0017155 0.42491 -0.569415 0.3617464 -0.085207

b 0.2763812 -0.55753 0.390577 -0.2661520 0.123252

c -0.4807609 0.39274 0.082773 -0.0626829 -0.039925

d 0.3592096 -0.36059 0.048650 -0.0071946 0.017609

Coefficients:

Value Std. Error t value

I(lv.mat):1 3.131002 9.63990 0.32480

I(lv.mat):2 8.897214 29.56469 0.30094

I(lv.mat):3 9.580653 32.03989 0.29902

(Intercept) 1.387152 0.38890 3.56687

Row2 0.291835 0.47707 0.61173

Row3 0.238948 0.46765 0.51096

Row4 -0.947327 0.79936 -1.18511

Col2 0.367250 0.44920 0.81756

Col3 0.708387 0.35165 2.01449

Col4 0.259987 0.39803 0.65319

Col5 -0.135896 0.45662 -0.29761

x22 -0.052208 0.25010 -0.20875

x23 0.083244 0.30787 0.27038

x24 0.276256 0.96495 0.28629

Number of linear predictors: 5

24

Names of linear predictors:

log(E[A]), log(E[B]), log(E[C]), log(E[D]), log(E[E])

(Default) Dispersion Parameter for poissonff family: 1

Residual Deviance: 1.96991 on 6 degrees of freedom

Log-likelihood: -32.70309 on 6 degrees of freedom

Number of Iterations: 8

Finally, the function biplot() returns quantities such the estimated A and C, which can be
multiplied to obtain ∆̂.

> i = Coef(g1)

> rbind(x21 = 0, i@C) %*% t(i@A)

log(E[A]) log(E[B]) log(E[C]) log(E[D]) log(E[E])

x21 0 0.00000000 0.0000000 0.0000000 0.0000000

Col5 0 -0.13589577 -0.4254901 -1.2090935 -1.3019709

x22 0 -0.05220831 -0.1634644 -0.4645084 -0.5001899

x23 0 0.08324414 0.2606376 0.7406408 0.7975336

x24 0 0.27625619 0.8649590 2.4579100 2.6467160

Because of all the setting up that is required, it is no wonder that a function grc() has been
written! As seen in Section 5.2, it operates on a general matrix of counts by automatically setting
up all the indicator variables and constraint matrices, and allows for different parameterizations
of the row and column scores, e.g.,

∑
i αi =

∑
j γj = 0.

For a class of models called generalized additive main effects and multiplicative ineraction
effects models (GAMMI) see van Eeuwijk (1995).

5.5 Other Reduced-Rank Regression work

Recently, other work has extended reduced-rank regression (RRR) outside the Gaussian family.
For example, Fiocco et al. (2005) extend RRR to survival models, and Heinen and Rengifo
(2005) compare RR-VGLMs with RRR models based on distributions in the multivariate disper-
sion models framework. They call theirs RR-MDM.

25

6 Quadratic RR-VGLMs for CQO

Quadratic RR-VGLMs (QRR-VGLMs) are useful in ecology because they allow symmetric bell-
shaped response curves/surfaces to be fitted to species’ data. Such curves/surfaces are a
tenet in community ecology. The result of a QRR-VGLM is a constrained quadratic ordination
(CQO; formerly called canonical Gaussian ordination or CGO by Yee (2004)). Given species
data Y and environmental data X = (X1 X2), one estimates optimal linear combinations
of the environmental variables x2 and regresses the species data upon these latent variables
using quadratic forms. Here, X2 are the ‘real’ environmental variables one want to use in the
ordination, but we want to do it after adjusting for the explanatory variables X1—which is
usually just an intercept term.

Quadratic (partial) RR-VGLMs extend (6) by adding on a quadratic form in ν. The result
can be written

η = BT
1 x1 + ACT x2 +

M∑
j=1

ej νT Dj ν = BT
1 x1 + Aν +

νTD1ν

...
νTDMν

 , (12)

where Dj are R×R symmetric matrices. The quadratic forms allow for bell-shaped (Gaussian)
response surfaces. Indeed, the jth linear predictor in (12) is bell-shaped in the latent variable
space if and only if Dj is negative-definite. Note that, in general,

ηj =
{

1

2
uT

j T−1
j uj + βT

j x1

}
− 1

2
(ν − uj)

T T−1
j (ν − uj) , j = 1, . . . ,M, (13)

where uj = Tj aj is the optimum of Species j. The function ηj is bell-shaped if and only if
Tj = −1

2
D−1

j is positive-definite. We call the Tj tolerance matrices, which are a measure of
niche width. When the Tj are diagonal they contain the squared tolerances. An important
assumption is the equal-tolerances assumption:

T1 = T2 = · · · = TS, (14)

and this is referred to many times below.
Here’s a simple and important example of a QRR-VGLM: Poisson data with M species.

The rank-1 model for Species j is the Poisson regression

log µj(ν) = ηj(ν) = β(j)1 + β(j)2 ν + β(j)3 ν2

= αj −
1

2

(
ν − uj

tj

)2

, j = 1, . . . ,M, (15)

where ν = cT x2 and µj = E(Yj) is the expected value for species j, i.e., mean abundance
or counts. In the bottom representation of (15), uj is often called Species j’s optimum,
and tj (> 0) its tolerance, a measure of niche width. The quantity µj(uj) is referred to as
the maximum of Species j; it is the maximum expected abundance/count at its optimum
environment.

If we have binary (e.g., presence/absence) data and if the log parameter link in (15) is
replaced by a logit link then the result is known as a Gaussian logit model for each species—
but because the latent variable ν is a common regressor of all species, the result is a constrained
or canonical Gaussian logit ordination model.

Fitting QRR-VGLMs is more difficult than RR-VGLMs for a number of reasons. Firstly,
the log-likelihood may contain local maxima so that a local solution may be obtained instead

26

of the global solution. Thus you need to fit the model several times with different starting
values to increase the chances of obtaining the solution. Consequently, if the solution does
not look right, try fitting the model several more times and/or adjusting some arguments.
The argument Bestof specifies how many different initial values are to be used and should be
assigned a reasonable integer value (e.g., at least 10) to help find the global solution. Secondly,
the estimation is more prone to numerical difficulties. Thirdly, it can be many times more
numerically intensive compared to RR-VGLMs. For this reason trace=TRUE is the default for
QRR-VGLMs; if trace=FALSE many users would think their computer had locked up because
it was taking so long!

Standard errors for Â, Ĉ, B̂1 and Ĉ are presently too difficult to compute for QRR-VGLMs.
However, some time in the near future it is hoped that they will be available.

6.1 Normalizations for QRR-VGLMs

For QRR-VGLMs, it is more convenient to abandon corner constraints. Instead, if ITolerances=FALSE
and EqualTolerances=TRUE then

V̂ar(ν̂i) = IR (16)

is the default during the fitting. This results in uncorrelated latent variables. Uncorrelated
latent variables are a good idea because they can be loosely be thought of as unrelated to each
other. With two ordination axes of uncorrelated latent variables, one can think of the second
axis as being unrelated to the first axis, which represents the dominant gradient.

Equation (16) also means the latent variables have unit variances. With this, two advantages
can be realized:

1. the tolerances of each species can be compared to unity, which is the amount of variability
(measured by the standard deviation) in the data set with respect to each latent variable,

2. the algorithm is more numerically stable.

Furthermore, it is possible to rotate the solution so that at least one of the species has a diagonal
tolerance matrix. For this (lucky) species, the interpretation is particularly nice: the effects of
the latent variables are uncorrelated/independent on that species. The species chosen for this
must be bell-shaped. The argument is reference, and applies to Coef() and lvplot() and
other generic functions. See Section 6.3.1 for details.

When ITolerances=TRUE, (16) is relaxed to being just a diagonal matrix and Ts = IR for
all species s.

6.2 Fitting QRR-VGLMs with vgam

QRR-VGLMs are fitted using cqo(...) and the object returned has class "qrrvglm". Cur-
rently, only FastAlgorithm=TRUE is supported—it uses a new algorithm described in Yee
(2006a) and Yee (2005). In contrast, the slow algorithm described in Yee (2004) has been
withdrawn.

Currently only two distributions (binomial and Poisson) are supported in vgam family func-
tions for QRR-VGLMs. They are poissonff() and binomialff(mv=TRUE), including their
“quasi” versions, quasipoissonff() and quasibinomialff(mv=TRUE). The “mv” argument
stands for “multivariate” and tells the binomial family function that the response is multi-
variate, i.e., comes from S species. This is necessary to retain upward compatability, e.g.,
binomialff() with a 2-column matrix response is interpreted as a matrix of sucesses and

27

failures rather than two species. If mv=TRUE is set then the response (matrix) must contain
0s and 1s only. The Poisson family functions handle multivariate responses automatically. In
the case where one wishes to examine whether the data is overdispersed or underdispersed, the
family functions quasipoissonff() and quasibinomialff(mv=TRUE) can be used.

Once a QRR-VGLM has been fitted, the useful generic functions listed in Table 5 can be
applied to the fit.

Table 5: Methods functions for CQO and CAO objects in the vgam package. Future
modifications and additions are likely.

S function Purpose

Coef() Â, B̂1, Ĉ, D̂, ûs, T̂s, ν̂i, etc.

ccoef() Canonical coefficients Ĉ
is.bell() Are the species’ response curves/surfaces bell-shaped?

lv() Latent variables ν̂i = Ĉ
T
x2i (site scores)

Max() Maxima E[Ys|ûs] = g−1(α̂s)
Opt() Optima ûs (species scores)

Tol() Tolerances T̂s

lvplot() Latent variable plot (ordination diagram; for R = 1 or 2)
persp() Perspective plot (for R = 1 or 2)
trplot() Trajectory plot (for R = 1 only)
calibrate() Calibration: estimate ν from y
predict() Prediction: estimate y from x
resid() Residuals (e.g., working, response, . . .)
summary() Summary of the object

6.2.1 Initial Values

Initial values require some comment. Appendix B of Yee (2005) proposed an efficient method
to obtain an initial C based on an equal-tolerances Poisson model. It is the default because
Use.Init.Poisson.QO=TRUE. The user can bypass this by assigning the Cinit argument a
p2 × R matrix. It is recommended that the elements of Cinit be close to zero because, like
neural networks, large weights often lead to poor solutions. If Use.Init.Poisson.QO=FALSE
and Cinit is not assigned a value then vgam will choose some random normal variates. Users
should use set.seed() with different seeds before fitting the same model and thus try to
ensure the global solution is obtained.

The solution of a rank-R QRR-VGLM is not nested within a lower rank model. An idea is
therefore to use as initial values, C0

R = (ĈR−1, ε) where ε ∼ Np2(0, σ2Ip2), σ ≈ 0. Another
idea is to fit only R species first, and then fit them all using the estimate of C as initial values.

6.2.2 Some Tricks and Advice

CQO models are computationally expensive and prone to numerical difficulties. To help with
these problems, Yee (2004) suggest several ideas such as

1. omitting some species (e.g., rare ones, those with small tolerances)

2. setting EqualTolerances=FALSE and ITolerances=FALSE,

28

3. omitting some environmental variables from the analysis,

4. and choosing good Cinit if Use.Init.Poisson.QO() results in poor initial values.

Other ideas are:

1. If ITolerances=TRUE then careful choice of values for isdlv is important. Note that
setting ITolerances=TRUE is currently the fastest of all algorithm settings.

2. Initially work with a simple random sample of the sites to cut down on the computation.

3. It is a good idea to fit both an equal-tolerances and unequal-tolerances model and compare
them. When R = 2, the ordination diagram of the equal-tolerances model is more easily
interpreted because elliptical contours are required for the unequal-tolerances model—
otherwise it would be susceptible to misinterpretation. See Section 6.3.2 for more details.

29

6.2.3 Timings

To give some idea about the speed of CQO under different options, Table 6 gives the timings
of some models fitted to simulated data (see Appendix A of Yee (2006a)). Here, x1 = 1. The
timings are optimistic in that the data and model coincide and there are no outliers etc. In
practice, the timings on real data would be higher.

For fixed R, S and p2, it can be seen that the fastest is ITolerances=TRUE, followed
by EqualTolerances=FALSE (the default), followed by EqualTolerances=TRUE (times in
parentheses ()). The RR-MLM is one method for ‘fitting’ the equal-tolerances Poisson model,
and seems more expensive than EqualTolerances=FALSE models. However, RR-MLMs only
give an approximation to C and do not provide an estimate of the common tolerance matrix.

Table 6: Speed tests with the fast CQO algorithm. Some of the combinations compare with
Yee (2004)—in brackets []. All times are in seconds, and used Use.Init.Poisson.QO=TRUE

to obtain initial values. The well-conditioned simulated Poisson data were fitted using
R 2.2.0 on a 2.4GHz Pentium 4 machine running Linux. The average times of 10 fits
are given. “Unequal” and “Equal” refer to the species’ tolerances; “Equal” were fitted
using ITolerances=TRUE. Values in parentheses () are times given in Appendix A of Yee
(2006a)—they have EqualTolerances=TRUE. Values in brackets [] are times using the slow
Yee (2004) algorithm.

R n S p2 Time for new CQO algorithm Time for RR-MLM

Unequal Equal

1 500 10 10 9 [117] 3 (19) [89] 6

20 10 11 4 (132) 21

100 10 35 20

1000 10 10 8 3 (53) 9

20 10 30 8 (253) 39

100 10 125 46

2 500 10 10 10 3 (67) 6

20 10 25 12 (599) 23

100 10 143 36

1000 10 10 25 8 (435) 20

20 10 44 20 (2279) 68

100 10 223 62

30

6.2.4 Arguments ITolerances and EqualTolerances

For QRR-VGLMs, an important argument in qrrvglm.control() is EqualTolerances, which
can be assigned TRUE or FALSE. If TRUE, an equal-tolerances model T1 = · · · = TS is
fitted. Another related argument is ITolerances which can have the same effect. However,
their differences should be understood. Choosing between an equal-tolerances and unequal-
tolerances model is a tradeoff between interpretability and quality of fit. In real life, it is
unrealistic assumption. But then it can be argued that bell-shaped curves/surfaces are an
unrealistic assumption too. Certainly for R = 2, equal-tolerances makes interpretation much
easier because elliptical contours are not required. With R = 1 one doesn’t need an equal-
tolerances assumption so much because you can gauge how large the tolerances are by applying
a function such as persp().

So how are the arguments ITolerances and EqualTolerances related? And how are algo-
rithms for fitting the models affected by these? The answers are given in Table 7. The argument
EqualTolerances refers to whether Ts = T for all s = 1, . . . , S, for some order-R matrix
T. Note that T may or may not be positive-definite; ideally it is. In contrast, the argument
ITolerances is more directed at specifying the algorithm, and if TRUE, offsets (GLM jargon)
of the form −1

2
ν2

ir are used in the algorithm because Ts = IR by definition. Note that setting
ITolerances=TRUE forces bell-shaped curves/surfaces on the data regardless of whether this
is appropriate or not. Having ITolerances=TRUE implies EqualTolerances=TRUE but not
vice versa.

Computationally, any offset values which are large will cause numerical problems. Therefore
it is highly recommended that all numerical variables (i.e., all but factors) in x2 be standardized
to mean 0 and unit variance. This is because we want the site scores be centered at 0, and this
is ensured if the x2 have mean 0:

E[ν] = E[CT x2] = CT E[x2] = CT0 = 0.

Standardizing variables can be achieved with scale(), hence something like

cqo(cbind(spp1,spp2,spp3,spp4) ~ scale(temperature) + scale(rainfall) +

scale(lognitrogen), fam = poissonff, data=mydata, ITolerances=TRUE)

is a good idea for count data.
In practice, setting ITolerances=TRUE is the recommended way of fitting an equal-tolerance

model because they are computed very efficiently. Each species can be fitted separately and
the number of parameters is low, for example, with R = 1 there are 2 parameters per species,
and for R = 2 there are 3 parameters per species (In general, there are R + 1 parameters for
a rank R problem). This contrasts with EqualTolerances=FALSE where there are 3 and 6
parameters respectively for R = 1 and 2. Hence, fitting a rank-2 equal-tolerances model is
usually faster than a rank-1 unequal-tolerances model. See Table 6 for some timings.

However, setting ITolerances=TRUE may fail on some data sets because of numerical
problems, so the next best thing to do is to leave ITolerances=FALSE alone and only set
EqualTolerances=TRUE. This will result in a different algorithm being used, which will usually
be be a lot slower but there is less risk of numerical problems.

6.2.5 The isdlv argument

The isdlv argument specifies the initial standard deviation of the latent variable values νi (site
scores). It is used only if ITolerances=TRUE so that all species tolerances are unity, and the
initial sites scores are scaled to a hopefully reasonable spread relative to these response curves.

31

isdlv = 0.5

Latent variable

−0.5 0.0 0.5

isdlv = 1

Latent variable

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

isdlv = 2

Latent variable

−3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5

isdlv = 5

Latent variable

−9.0 −6.5 −4.0 −1.5 1.0 3.0 5.0 7.0 9.0

Figure 3: The effect of the argument isdlv on the site scores. All response curves have
unit tolerances (because Ts = IR), and the optima are located the same relative distance
from each other. The site scores are uniformly distributed over the latent variable space
and have been scaled to have a standard deviation isdlv. The tick marks are at the same
values.

32

Table 7: The relationship between the arguments EqualTolerances and ITolerances. It
is assumed that the constraint matrices of all x1 variables is IS. “Separately” means each
species can be fitted separately, otherwise “Jointly” means fitting one big model involving
all the species. The index s (= 1, . . . , S) indexes species. The significance of the three
cases is discussed in Section 6.3.1.

EqualTolerances=TRUE EqualTolerances=FALSE

ITolerances=TRUE Separately. Error message.
Ts = IR.
Case 1

ITolerances=FALSE Jointly. Separately.
Ts = T but may not Ts unequal and may not
be positive-definite. be positive-definite.
Case 2 Case 3

The effect of several values of isdlv is illustrated in Figure 3. It can be seen that as isdlv

increases, the range of the sites scores increases relative to species’ tolerances. That is, there
is more environmental range in the data as isdlv increases.

In practice, the isdlv values should be set to lie between 0.5 to 10 (approximately). The
argument should actually be of length R and is recycled to this length if necessary. Each
successive value should be less than the previous one, e.g., c(2,1) might be appropriate for
a rank-2 problem. This is because the first ordination axis should have the greatest spread
of site scores. Each successive ordination axis will have less explanatory power compared to
previous axis, hence a decreasing isdlv sequence. If convergence failure occurs, try varying this
argument somewhat, e.g., isdlv=c(5,2) or isdlv=c(0.8,0.6), because good initial values
are usually needed for CQO. Big data sets with a lot of species collected over a wide range of
environments should warrant larger values of isdlv.

A related argument is MUXfactor. If any offset value are greater than MUXfactor *

isdlv[r] in absolute value then the rth ordination axis is scaled so that the standard de-
viation of the site scores is MUXfactor * isdlv[r]. This is why it is a good idea for the site
scores to be centred at 0—and this can be achieved if all the variables in x2 are centred at 0.
The reason for MUXfactor is that optim() may perform a linesearch at a value of C that gives
a very large spread of site scores. If values are too large then numerical difficulties will occur.
Usually a value of MUXfactor between 3 or 4 should be ok. If not, decrease the value slightly.

33

6.3 After Fitting a QRR-VGLM

This section looks at what can be done after a QRR-VGLM is fitted. These include numerical
summaries and plotting. There are several types of plots available and these are described
below. However, it is first necessary to discuss the three cases of CQO fits because a clear
understanding is necessary when using the CQO generic/methods functions.

6.3.1 The Three Cases

Table 7 defines the three cases of CQO fits. These are important because generic/methods
functions such as Coef(), Tol(), lvplot() etc. (see Table 5) treat the three cases differently
by default. In this section we look at each case separately with respect to the two arguments
varlvI=FALSE and reference=NULL which the generic/methods functions have as defaults.

The varlvI argument specifies whether

V̂ar(ν̂i) = IR (17)

or not. If TRUE then the site scores are uncorrelated and have a standard deviation along each
ordination axis equal to unity. With this option, species’ tolerances can be compared with the
amount of variability of the data set. If varlvI=FALSE then the site scores are uncorrelated
but each ordination axis has a different standard deviation of sites scores. The ordination axes
are sorted so that the standard deviation of sites scores never goes up. In other word, V̂ar(ν̂i)
is always a diagonal matrix, and the elements along the diagonal are either all 1s or a decreasing
sequence.

The argument reference specifies which species is to be chosen as the reference species.
The reference species, which only makes a difference in Case 3, could be chosen as the dominant
species or some species that all other species can be compared with. The default value of NULL
means the software searches from the first to the last species until one with a positive-definite
tolerance matrix is found. Alternatively, the user can circumvent this searching procedure by
specifying the reference species, e.g., by giving its column number. This reference species needs
to have a positive-definite tolerance matrix, which is only assured in Case 1.

For all three cases, the general algorithm is:

1. find a reference species if necessary, then

2. if possible, transform it so that its tolerance matrix is IR, then

3. transform the site scores to be uncorrelated (i.e., V̂ar(ν̂i) is diagonal), and

4. if varlvI=TRUE then scale the ordination axes so that the standard deviation of the site
scores are unity (i.e., (17)).

Let’s look at what the general algorithm does in the three individual cases.

Case 1 This is the nicest of all cases. All tolerance matrices are equal and positive-definite
because they are all IR. The general algorithm gives a unique solution, and the
first ordination axis has the greatest spread of the sites scores (as measured by the
standard deviation), followed by the second ordination axis, etc. That is, (17) does
not hold—the matrix is diagonal only. The general algorithm results in an ordination
diagram where distances have their intuitive meanings. If the second ordination axis
has a small standard deviation of sites scores relative to the unit tolerance and the
first axis’ standard deviation of sites scores then this suggests that a rank-1 ordination
should suffice.

34

Case 2 This case is equivalent to Case 1 if the (common) estimated tolerance matrix is
positive-definite. Ideally this is so. If not, then the general algorithm will only return
uncorrelated ordination axes. If varlvI=TRUE then (17) will hold.

Case 3 This case is the most arbitrary. Each species has its own tolerance matrix which may
or may not be positive-definite. The reference species ends up with a IR tolerance
matrix, and the sites scores are uncorrelated but have a different standard deviation
along each ordination axis. Choosing the reference species does make a difference
for R = 2: the ordination diagram is rotated so that the elliptical contours of the
reference species has semi-major and semi-minor axes parallel to the ordination axes.
Other species will generally have semi-major and semi-minor axes not parallel to the
ordination axes.

A species whose tolerance matrix is not positive-definite will not have an optimum or maximum.

6.3.2 Latent variable plots

“Latent variable plots” are another name for “ordination diagram” and are implemented by
the generic function lvplot(). For a rank-2 equal-tolerances model, the default output of
lvplot() will give a ‘natural’ latent variable plot (aka ordination diagram) in the sense that
distances between points will be subject to their intuitive interpretation (the closer they are,
the more similar). This is because the contours of the ellipses are scaled so that they are
circular. Consequently, V̂ar(ν̂i) will be diagonal. In order for the latent variable plot to look
accurate, the sides of the graph must be scaled so that the circular contours do actually appear
circular. On a computer screen, this is easy since it simply entails resizing the graphics window
using the mouse. If EqualTolerances=TRUE then these latent variable plots are computed by
rotating the species so that their tolerance matrices are diagonal, and then the canonical axes
are stretched/shrunken so that the estimated Tj are now IR.

One of the beauties about CQO is that a lot of information is available from the fit. For
example, consider (15). If ITolerances=TRUE in a Poisson CQO then the estimated mean
abundance one tolerance unit away from the optimum is about 40 percent less than the species’
maximum. This comes about by (24) (see Exercises) and

> exp(-0.5 * (1:3)^2)

[1] 0.60653066 0.13533528 0.01110900

Yee (2004) gives several more examples.
If EqualTolerances=FALSE is used for a rank-2 model, then it is necessary to interpret the

latent variable plot with reference to the elliptical contours. You have to compute Mahalanobis
distances in your head to correctly interpret distances!

6.3.3 Perspective Plots

For rank-2 models with x1 = 1, the response surface of any subset of the species can be plotted
using the generic function persp().

For rank-1 models with x1 = 1, persp() will produce a plot similar to lvplot() but with
the fitted curves smoothed out. The choice between lvplot() and persp() then depends on
the purpose of plotting them; lvplot() is more ‘closer’ to the data set while persp() can be
wrongly interpreted as the“truth”.

35

6.3.4 Trajectory plots

These are suitable for rank-1 models and plot the fitted values of pairwise combinations of
species. If S is large then it is wise to select only a few species to plot. A log scale on both
axes is often more effective. See Wartenberg et al. (1987) for an example.

36

6.4 Negative Binomial and Gamma Data

Currently cqo() can handle the negbinomial() and gamma2() family functions. However
these 2-parameter distributions can be more difficult to fit due to inherent numerical problems.
There are one or two tricks described below to help alleviate these problems.

The negative binomial distribution is actually more relistic in practice than the Poisson
distribution for the reason that some people maintain overdispersion is more often the norm
rather than the exception (pp.124–125 of McCullagh and Nelder (1989)).

Fitting CQO negative binomial CQO models can be done with a trick or two. Firstly, having
ITolerances=TRUE is not recommended because it is prone to numerical difficulties. Instead,
set ITolerances=FALSE and leave EqualTolerances=TRUE. This fits the same model as with
ITolerances=TRUE but using a more stable and slower algorithm.

The second trick involves transformation. With data that is negative binomial the trick is
to take the square root and fit a Poisson ordination to it. The justification is the formula

Var(g(Y)) ≈ [g′(µ)]
2

Var(g(Y)) (18)

by a Taylor series expansion. Then

Var
(
Y

1
2

)
≈ c0 + c1µ

where c0 = 1
4

and c1 = 1
4k

. This is at least proportional to µ. Or better,

Var
(
2
√

kY
1
2

)
≈ k + µ

which is close to µ if k ≈ 0. See Section 6.9 for an example.
If the species data has a 2-parameter gamma distribution then following the argument

behind (18) one has Var (log(Y)) ≈ a constant. Thus it is possible to fit the model with
normal errors, i.e., Gaussian errors. The way to simulate this is something like

> n = 200

> p = 5

> S = 3

> mydata = rcqo(n, p, S, fam = "gamma2", ESOpt = TRUE, Log = TRUE,

+ seed = 123)

> myform = attr(mydata, "formula")

> fit5 = cqo(myform, fam = gaussianff, ITol = TRUE, dat = mydata,

+ trace = FALSE)

6.5 A Summary

Fitting CQO models well require a substantial amount of experience and an understanding of
the mathematics behind the models. It is best to gain experience with simulated data first
because the“truth” is known.

Because there is quite a lot involved with CQO modelling, here is a brief summary of things
to watch out for. Of course, the online help needs to be read carefully too.

1. An equal-tolerances model can be fitted in two ways: setting ITolerances=TRUE or
EqualTolerances=TRUE. Try ITolerances=TRUE first because it is much faster—however
it may fail to converge unless good values of isdlv and MUXfactor are chosen. Setting
ITolerances=TRUE forces bell-shaped curves/surfaces on to all species (Ts = IR) re-
gardless of whether this is appropriate. If ITolerances=TRUE fails after many attempts,
then try EqualTolerances=TRUE because it is more numerically stable—however, T̂s

may not be positive-definite.

37

2. If ITolerances=TRUE then Ts = IR for all s, and V̂ar(ν̂i) is only constrained to be
diagonal. Hence the latent variables are uncorrelated and the tolerances are all unity.
Also, the diagonal elements of V̂ar(ν̂i) will be a decreasing sequence, therefore the first
ordination axis contains the greatest spread followed by the second ordination axis, etc.
This means the ordination axes are sorted by their dominance or importance.

3. For an ITolerances=TRUE model, it pays to standardize all the x2 variables apart from
factors (grouping variables). This is to avoid numerical problems that can arise from the
fast algorithm. The function scale() can be used on each variable in the formula, or
can be used on the X2 matrix as a whole.

4. A RR-MLM (see Section 2.5) is an alternative method for fitting an equal-tolerances
Poisson CQO. Although Ts is not available from this, the constrained coefficients Ĉ
should be ok. These can be fed into cqo() as initial values—the argument is Cinit.
Further details can be found in Appendix C of Yee (2006a).

5. CAO (see Section 8) can help fit better CQO models. It is a good idea to fit a CAO
first to see what the response curves look like. Species whose f̂s are very different from a
quadratic may be omitted from the CQO analysis or transformations on the x2 variables
sought to improve the appropriateness of CQO. For example, if the first variable in x2 is
nitrogen concentration, it would probably be much better to use the logarithm of nitrogen
concentration instead (and then standardize it).

6. It’s a good idea to fit a rank-1 model first, followed by a rank-2 model. The rank-1 model
is to be preferred if it looks reasonable and the rank-2 model is very difficult to fit and
there are many non-positive-definite tolerance matrices etc.

7. Numerical problems often are indicative that the model and data do not agree. Trying to
fit bell-shaped curves/surfaces to data that isn’t is like banging your head against a brick
wall. It pays to check your data first to see whether a CQO model is reasonable in the
first case, e.g., by applying a CAO model.

6.6 CQO Examples

Here are some basic examples illustrating the use of vgam for fitting CQO models.

6.7 Example 1

Here’s a simple rank-1 example in R involving simulated data. Note that the species’ tolerances
are unequal.

> set.seed(123)

> n = 100

> mysim = data.frame(x2 = rnorm(n), x3 = rnorm(n), x4 = rnorm(n))

> mysim = transform(mysim, lv1 = 0 + x3 - 2 * x4)

> mysim = transform(mysim, lambda1 = exp(3 - 0.5 * (lv1 -

+ 0)^2), lambda2 = exp(2 - 0.5 * (lv1 - 1)^2), lambda3 = exp(2 -

+ 0.5 * ((lv1 - (-4))/2)^2))

> mysim = transform(mysim, y1 = rpois(n, lambda1), y2 = rpois(n,

+ lambda2), y3 = rpois(n, lambda3))

> set.seed(111)

38

> p1 = cqo(cbind(y1, y2, y3) ~ x2 + x3 + x4, poissonff, ITol = FALSE,

+ data = mysim, trace = FALSE)

> c1 = Coef(p1)

Then

> deviance(p1)

[1] 240.5971

> is.bell(c1)

y1 y2 y3

TRUE TRUE TRUE

> c1

C matrix (constrained/canonical coefficients)

lv

x2 0.03332381

x3 1.06296508

x4 -2.07083501

B1 and A matrices

(Intercept) A

log(E[y1]) 3.011572405 -0.0470535

log(E[y2]) 1.547553364 0.8977449

log(E[y3]) -0.005169979 -1.0058999

Optima and maxima

Optimum Maximum

y1 -0.0470535 20.341831

y2 0.9381768 7.161182

y3 -3.9782596 7.357318

Tolerance

lv

y1 1.000000

y2 1.022271

y3 1.988700

Standard deviation of the latent variables (site scores)

lv

2.194405

Not surprising, the model fits the data well, e.g.,

� û1 is sandwiched between û2 and û3, and is about four times closer to û2 than û3,

� the estimated tolerances look correct etc., i.e., t̂3 is approximately twice the other two.

� all species have bell-shaped curves, and Species 1 is the most abundant at its optimum
(Nb. e3 ≈ 20)

39

> sj = ncol(p1@y)

> lvplot(p1, plot = TRUE, type = "f", lcol = 1:sj, llwd = 3,

+ llty = 1, y = TRUE, pch = 1:sj, pcol = 1:sj, las = 1,

+ main = "Simulated data")

> abline(v = Opt(p1), lty = 2, col = 1:sj, lwd = 2)

> abline(h = Max(p1), lty = 2, col = 1:sj, lwd = 2)

−4 −2 0 2 4

0

5

10

15

20

25

Simulated data

Latent Variable

F
itt

ed
 v

al
ue

s

● ●● ● ● ● ●● ●
●

●●
●
●
● ●

●●

●

●

●
●

●
●● ●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●●
●
●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●
●
● ● ●● ● ●

Figure 4: Latent variable plot for simulated Poisson data. The horizontal and vertical lines
denote the estimated optima and maxima respectively.

� the first coefficient of Ĉ is very small compared to the others.

Now a latent variable plot can be obtained—see Figure 4.
Finally,

> print(summary(p1, disper = 0))

Call:

cqo(formula = cbind(y1, y2, y3) ~ x2 + x3 + x4, family = poissonff,

data = mysim, ITol = FALSE, trace = FALSE)

C matrix (constrained/canonical coefficients)

lv

x2 0.03332381

x3 1.06296508

x4 -2.07083501

B1 and A matrices

(Intercept) A

log(E[y1]) 3.011572405 -0.0470535

log(E[y2]) 1.547553364 0.8977449

40

log(E[y3]) -0.005169979 -1.0058999

Optima and maxima

Optimum Maximum

y1 -0.0470535 20.341831

y2 0.9381768 7.161182

y3 -3.9782596 7.357318

Tolerance

lv

y1 1.000000

y2 1.022271

y3 1.988700

Standard deviation of the latent variables (site scores)

lv

2.194405

Dispersion parameter: 1

so that φ̂ = 0.81 ≈ 1. Note the two warnings: we emphasize again here that these standard
errors are biased downward because they are based on the assumption that Ĉ is known.

6.8 Example 2

Rather than manually generating a data set as in Section 6.7, it is more convenient to use the
function rcqo(). In particular, data from a species packing model can be generated. Here is
an example.

> n = 200

> p = 5

> S = 5

> mydata = rcqo(n, p, S, fam = "binomial", hiabundance = 5,

+ seed = 123, EqualTol = TRUE, ESOpt = TRUE, EqualMax = TRUE)

> myform = attr(mydata, "formula")

> b1 = cqo(myform, fam = binomialff(mv = TRUE), data = mydata,

+ trace = FALSE)

The hiabundance argument has been given a low value so that the maximum of each species’
probability of presence is not too close to 1. Then

> sort(b1@misc$deviance.Bestof)

[1] 533.7351 533.7351 533.7352 533.7357 533.7357 533.7360 533.7370

[8] 533.7370 533.7389 533.7389

gives a history of all the iterations. Now a latent variable plot can be obtained—see Figure 5.
Let’s compare the constrained coefficients of the fitted model with the ‘truth’:

> cbind(truth = attr(mydata, "ccoefficients"), fitted = ccoef(b1))

41

> lvplot(b1, y = TRUE, lcol = 1:S, pch = 1:S, pcol = 1:S,

+ las = 1)

−4 −2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

Latent Variable

F
itt

ed
 v

al
ue

s

●

●

●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●

●

●●●

●

●●●●●●●●●●●

●●

●

●●●●●

●●●●

●●●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●● ●●●●●●● ●●● ●●● ● ●

Figure 5: Latent variable plot for simulated binomial data.

lv lv

x2 0.3241401 0.3684269

x3 -0.5986456 -0.7075643

x4 0.7780473 1.0235454

x5 1.0489203 1.1602155

It can be seen that they are similar. Similarly,

> cbind(truth = attr(mydata, "optima"), fitted = t(Opt(b1)))

lv lv

y1 -2.846050 -3.4432761

y2 -1.423025 -1.8481410

y3 0.000000 0.1224865

y4 1.423025 2.0075783

y5 2.846050 3.8493058

Once again they are similar. All species have unit tolerances:

> Coef(b1)

C matrix (constrained/canonical coefficients)

lv

x2 0.3684269

x3 -0.7075643

x4 1.0235454

42

x5 1.1602155

B1 and A matrices

(Intercept) A

logit(E[y1]) -2.265935 -3.4432761

logit(E[y2]) 1.661390 -1.8481410

logit(E[y3]) 3.511222 0.1224865

logit(E[y4]) 1.628489 2.0075783

logit(E[y5]) -3.288104 3.8493058

Optima and maxima

Optimum Maximum

y1 -3.4432761 0.9749653

y2 -1.8481410 0.9667281

y3 0.1224865 0.9712158

y4 2.0075783 0.9745106

y5 3.8493058 0.9840226

Tolerance

lv

y1 1

y2 1

y3 1

y4 1

y5 1

Standard deviation of the latent variables (site scores)

lv

1.780794

> attr(mydata, "tolerances")

lv

y1 1

y2 1

y3 1

y4 1

y5 1

Lastly, each species has equal maxima (on the Poisson counts scale), therefore the output from

> Max(b1)

y1 y2 y3 y4 y5

0.9749653 0.9667281 0.9712158 0.9745106 0.9840226

should also give values that are equal. With binary data this is a little awkward because the
values are so close to 1 anyway.

43

6.9 Example 3

The following shows data that is negative binomial, but a Poisson CQO model is fitted upon a
square root transformation.

> n = 200

> p = 5

> S = 3

> mydata = rcqo(n, p, S, fam = "negbin", ESOpt = TRUE, sqrt = TRUE,

+ seed = 123)

The raw data can be seen in Figure 6. It can be clearly seen that there is more ‘noise’ compared
to a Poisson distribution.

> matplot(attr(mydata, "lv"), (mydata[, -(1:(p - 1))])^2,

+ col = 1:S)

1

1

1

1

111

1
1

1 1

1

1111 1

1

111 1
1

1

1

1

1

1
1

11

1

1111 1 1

1

1

1

11
111

1
1

11
1 111 1

1
1 1 11 11 1

1

1

1111 11

1

1

1
1

1 11 11 1 111
1

1 11 1

1

1 11

1

1

1 111

1

1

1

1
11 1

1
1

1 11 1

1

1 1111

1
1

1

1

11
1

1
11

1

1 11

1

11 11 1 1

1

11 1

1

1

1 1 1 1
1

1
1

1
1

1

1

11

1

1 1

1

1 1
1

1 1
1
1 1

11
1 1

1

1111
11

1

1

1

1
1

1

1

11

1

1 1
11

111 1 1

−4 −2 0 2 4 6

0

50

100

150

attr(mydata, "lv")

(m
yd

at
a[

, −
(1

:(
p

−
 1

))
])

^2

2

2 2
2

2

2

2
2

2
2

22 2

2

22

2

2
2

2

2

2

2

2
2

2
2

22 2
22

2

2

2

2 2
2

2

2

2

2

2
2

2

2
2 2

2
2 2

2

22

2

2

2
2

2
2

2

2

22
2 2

22
2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2
2 2

2
2 2

2

2

222

2

2

2
2

2

222
2

22

2

2

2

2

2

2
2

2

2

2

2

2
2

2

2

2

2 22 2

2

2

2

2

2
2

2

2 2

2

2
2

2

22 2
2 2

2

2

2

2
2

22 2

2
22

2

2
2

2
2

2

2

2

2 22
2 2

2

2
222 2

2

2 22
2222

22
2

2

2

22

2

2 2

2
2

2
2

2

2

2 2
23

3
3

3 3333 3 3
3

3 33
3

3 33 333

3

3
3

3 3 333

3

33 3333
3

3

3 33
3

3 3333 333 3 3
3

3

3

3 3 3 3
3

3

3 3
33

3

3
33

3
3

3 33 3 3 33 33
3

33

3

3

3

33 33

3

3

3

3 3 3 3
3

3333 3
3

3 333 3
3

3 33 3 33333 3
3

3 33 33

3

33 3

3

33 33
3

3 3
3

3
33 3

3 33 3

3

33

3

3

3

3 33

3

333

3

33 33 3

3

3
3

333 3

3

3 333333

3

333 3

3

3 33 3 3

3

33

3

33 3
3

Figure 6: Raw counts from a simulated negative binomial data set.

Now we can fit a Poisson CQO to the transformed data as follows.

> myform = attr(mydata, "formula")

> fit4 = cqo(myform, fam = poissonff, ITol = TRUE, dat = mydata,

+ trace = FALSE)

Then a latent variable plot is given in Figure 7.
Ideally, the optima in the figure should be at

√
100 = 10. This data set shows an underes-

timation. In terms of the constrained coefficients, one can compare the fitted model with the
’truth’ by

> cbind(truth = attr(mydata, "ccoefficients"), fitted = ccoef(fit4))

44

> lvplot(fit4, lcol = 1:S, y = TRUE, pcol = 1:S)

−2 0 2 4

0

2

4

6

8

10

12

Latent Variable

F
itt

ed
 v

al
ue

s

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●●

●
●
●

●

●

●

●

●

●

●●

●
●
●

●●●●●

●

●
●

●

●

●●●

●●

●●

●

●●●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●● ● ●● ● ●● ● ●●

●

●

●

●●●

●
●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●
●
●

● ● ●● ● ●● ● ●● ● ●●●●● ●●

●

●

●

●●●

●●

●●●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●●

●
●

●

●

●

●

●
●
●

●

●

●

●
●
●
●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7: Latent variable plot for simulated negative binomial data fitted with a Poisson
CQO model.

lv lv

x2 0.3241401 0.3253477

x3 -0.5986456 -0.4844184

x4 0.7780473 0.6198870

x5 1.0489203 0.7790064

There is a rough match.

6.10 Calibration

Yee (2005) describes maximum likelihood calibration whereby the values of the latent variables
at a site can be estimated, given the species data there. The generic function calibrate() is
available, and methods functions for CQO and CAO objects have been written for these.

6.11 Miscellaneous Notes

1. If x1 6= 1 then the maximum of a species is undefined as it depends on values of variables
in x1. Output from Coef() etc. will give a NA.

2. The constraint matrices of the x2 variables are considered to be the identity matrix.

3. If the “truth” is rank-R then fitting a higher rank model will give numerical problems
because the site scores will lie in a R-dimensional space. For example, if R = 1 but
you fit a rank-2 model, the site scores will lie effectively on a line. This is provided you
manage to fit the model in the first place. The tolerance and/or canonical coefficients
for the second ordination axis would then be difficult to estimate.

45

4. Practical experience with ITolerances=TRUE shows that optim() may give different
results due to its (faulty?) convergence criterion. That is, it may terminate prematurely
near the solution. This can be partly explained by the use of finite-difference approxi-
mations to the derivatives: the argument Hstep may not have a particularly good value.
If premature termination becomes a problem, trying applying scale() to the numerical
variables in x2 and/or setting EqualTolerances=TRUE (it results in a more accurate
answer usually, however, it can be much slower).

7 Unconstrained Quadratic Ordination (UQO)

Yee (2006a) discusses a new nomenclature that is partly given in Table 1. All three“constrained”
methods have an“unconstrained”counterpart whereby the site scores νi are not constrained to
be linear combinations of x2. For example, UQO is CQO but where the site scores are largely
free parameters.

Solving for the optimal site scores ν̂i by maximum likelihood estimation presents a very
difficult optimization problem, and very good initial values are required using the algorithm
currently implemented in uqo(). Unconstrained quadratic ordination is detailed in Yee (2005).

46

8 Constrained Additive Ordination (CAO)

Constrained additive ordination (CAO) can be performed by fitting a Reduced-Rank VGAM
(RR-VGAM). This is a nonparametric extension of QRR-VGLMs, and can loosely be thought
of as a GAM fitted to a very small number of latent variables ν. The function cao() cur-
rently implements CAO, but is currently restricted to rank R = 1 and Poisson and binary
responses with known dispersion parameters. This means the user needs to use poissonff()

and binomialff() families. Also, x1 = 1 is also needed.
In more detail, suppose R = 1 and we have presence/absence data. Then

cao(cbind(spp1,spp2,spp3,...,sppS) ~ ..., family = binomialff(mv=TRUE))

will fit the model

logit µis = log
µis

1− µis

= fs(νi), s = 1, . . . , S, (19)

where fs are arbitrary smooth functions estimated by a smoothing spline. The variables
spp1,. . . ,sppS should have values 1 and 0 for presence and absence respectively. In (19),
the intercept term normally associated with x1 has been absorbed into the function fs. With
Poisson abundance/count data, (19) becomes

log µis = fs(νi), s = 1, . . . , S, (20)

and the call would be

cao(cbind(spp1,spp2,spp3,...,sppS) ~ ..., family = poissonff)

Constrained additive ordination models were proposed by Yee (2006a).
Practitioners who know how to fit GAMs should find cao() easy to use. Books and articles

on GAM modelling abound; some are Hastie and Tibshirani (1990), Yee and Mitchell (1991),
Chambers and Hastie (1993), Hastie et al. (2001), Venables and Ripley (2002), Oksanen and
Minchin (2002), Ruppert et al. (2003).

8.1 Controlling Function Flexibility

Importantly, the df1.nl argument controls how smooth the functions fs are. A nonlinear
degrees of freedom value of 0 means that function is linear, so it is a constrained linear ordination
(CLO) model for that species. As the nonlinear degrees of freedom increases the smooth can
become more wiggly. A value between 0 and 3 is recommended, and possibly up to 4. However,
a common mistake is to allow too much flexibility to the curves, especially when the data set is
not too large. As the nonlinear degrees of freedom increases, the optimization problem becomes
more difficult because of the increased number of local solutions. A value of about 1.5 to 2 gives
the approximate flexibility of a quadratic, hence df1.nl=2 may give approximately the same
results as a CQO. The df1.nl argument allows different species to have different nonlinear
degrees of freedom, e.g., df1.nl=c(3, spp8=3.5, spp4=2.5) means Species 8 and 4 have
3.5 and 2.5 nonlinear degrees of freedom respectively, and all other species have 3 nonlinear
degrees of freedom. Assigning a df1.nl value that is too low for a species may result in a
lack-of-convergence problem (errcode == 3) in the local scoring algorithm. The remedy, of
course, is to assign a slightly larger value.

47

8.2 CAO Example

Yee (2006a) gives two examples of CAO modelling involving Poisson and binomial species data.
Here is a brief CAO analysis of the simulated data given in Section 6.7. After running the code
for the data generation, we can type

> set.seed(123)

> a1 = cao(cbind(y1, y2, y3) ~ x2 + x3 + x4, fam = poissonff,

+ data = mysim, trace = FALSE, Bestof = 4, df1.nl = 3)

> a1@misc$deviance

[1] 236.9799 236.9799 236.9799 236.9799

> print(Coef(a1))

C matrix (constrained/canonical coefficients)

lv

x2 0.017022

x3 0.481185

x4 -0.945096

Optima and maxima

Optimum Maximum

y1 0.006756 20.792

y2 0.462582 7.076

y3 NA NA

Nonlinear degrees of freedom

df1.nl

y1 3.002

y2 3.002

y3 2.998

for a start. Actually,“trace=FALSE” is only used to stop voluminous printout here, but for the
user it is best to use trace=TRUE. For these data all the fits give essentially the same deviance.
This is not usually the case because we have got ‘perfect’ data here. With real data, the fitted
models usually are very different and fitting many models is needed to get a good fit, e.g., use
Bestof=20.

A latent variable plot is given in Figure 8. Note that all three curves should be bell-shaped,
but one isn’t because there is insufficient data at the LHS side. That is, it isn’t because of
statistical error because there are few site scores on the LHS so there would be much uncertainty
there. Standard error bands (giving ±2 pointwise standard errors, say) are usual for GAM plots,
but here they are currently unavailable because the theory hasn’t been worked out for them yet
(the x-axis are latent variable estimates therefore contain uncertainty in them).

Note also that the latent variable axes of Figure 4 and Figure 8 do not match because the
CQO is scaled using a unit tolerance for Species 1 whereas the CAO has unit variance for the
site scores.

As an exercise, the reader can rerun this code with 1000 sites instead and show that all
three curves are bell-shaped as expected.

48

> lvplot(a1, lcol = 1:3)

−2 −1 0 1 2

0

5

10

15

20

Latent Variable

F
itt

ed
 v

al
ue

s

Figure 8: Latent variable plot of a1. This should be similar to Figure 4.

9 Ordinal Ordination

Ordinal responses obtained from an underlying Poisson or negative binomial distribution are a
common form of data. For example, in the biological sciences, it is common to measure species
data as an ordinal response taking levels {1, 2, . . . , L}, say, where L ≥ 2. For example, 1 means
absence, 2 means low abundance, 3 means medium abundance and 4 means high abundance.
A specific example of this is the Braun-Blanquet scale in plant ecology with L = 7 levels. The
need to measure the response as an ordinal factor often arises because it is too difficult to
count individuals, e.g., ants, diatoms, plankton are very small and/or moving. Instead, it is
more convenient to categorize the abundance into a factor Y ∗, say, with L levels. We have
Y ∗ = l if Kl−1 < Y ≤ Kl for integer cut points or thresholds Kl (l = 1, 2, . . . , L) where
K0 = −∞ and KL = ∞. Here, Y ∗ the categorical response.

Yee (2006b) has developed a new methodology which allows ordination with ordinal species
response. The main ideas are as follows. We assume the underlying count distribution (for a
random variable Y) is either Poisson or negative binomial with

log µ = η (21)

where µ = E(Y) and η is a linear or additive predictor in covariates x (Hastie and Tibshirani,
1990). This is the natural and ideal situation. However, we are stuck with Y ∗ instead of Y .

With ordinal responses Y ∗, a very popular approach is to model the cumulative probabilities
γl = pr[Y ∗ ≤ l]. For example, the proportional odds model has

g∗(pr[Y ∗ > l]) = η∗l , l = 1, 2, . . . , L− 1, (22)

where g∗ is the logit link and η∗l is a linear or additive predictor in x (see Yee and Wild (1996)).

49

Yee (2006b) has shown how it is possible to fit (21) by actually fitting (22). The key is
to use new link functions, called the“Poisson-ordinal” link function (or POLF) or the“negative
binomial ordinal” link function (or NBOLF). The disadvantage with these is that the cut points
must be known, something which is not possible for all studies. However, we can approximate
the negative binomial distribution by a 2-parameter gamma distribution (giving a GOLF) and it
is possible to obtain an approximate solution with the GOLF without knowing the cut points.

Note that, with Poisson counts and K1 = 0, it is recommended that a complementary
log-log link be used. That is, with presence/absence data coming from an underlying Poisson
distribution, a constrained ordination should use the complementary log-log link instead of the
logit link which is more popular and is the default for cumulative().

Useful functions in the vgam package for ordinal ordination are listed in Table 8.

Table 8: A summary of vgam functions associated with ordinal ordination.

Function Purpose
golf() gamma-ordinal link function, or GOLF.
polf() Poisson-ordinal link function, or POLF.
nbolf() negative binomial-ordinal link function, or NBOLF.
nbolf2() Alternative NBOLF (based on a Camp-Paulson approximation).
cumulative() vgam family function for ordinal regression.
Cut() Converts counts to an ordinal response
optim() General-purpose optimization function.

Here are some notes about the current vgam implementation of ordinal ordination.

1. The code is not finished! It is planned that invocations such as

cqo(ymat ~ x2 + x3 + x4 + x5,

fam=cumulative(link="polf", reverse=TRUE, mv=TRUE), data=d)

be done in FORTRAN—this is simple and clean for the typical user. Currently one needs to
do it all in R, e.g., in the example below there is the need for a function (called newfun())
to set things up and this is messy and complicated for the typical user. Hopefully the
need for such a function will be banished soon with the FORTRAN implementation.

2. The input/response to cumulative(mv=TRUE) is a matrix of ordinal responses taking
integer values {1, 2, . . . , L} for each column. That is, each response must have some of
each of L levels of the factor. This hopefully will be relaxed in the future. The output
from Cut() is specifically designed to be input for cumulative(mv=TRUE).

3. The link functions in Table 8 should be operated on the reverse cumulative probabilites,
i.e., γc

l = 1 − γl to maintain a suitable direction for η∗l . This is so that the tolerance
matrices are positive-definite for bell-shaped curves/surfaces. That is why reverse=TRUE
is recommended.

4. When using nbolf() and polf() the cut points are entered using the earg argument.
The component name of this list is "cutpoint". Since the reverse cumulative probabilites
are used, the "cutpoint" vector should be an increasing sequence. For example,

> prob = seq(0.1, 0.9, by = 0.2)

> polf(cbind(prob, prob), earg = list(cutpoint = c(5, 20)))

50

prob prob

[1,] 1.156667 2.736333

[2,] 1.541734 2.920352

[3,] 1.770706 3.038552

[4,] 1.976136 3.150155

[5,] 2.239844 3.301042

Here, the first argument of polf() must have two columns because there are two
cut points. The function nbolf() requires k and the component name is simply "k".

5. When using golf() the cut points are optional. However, λ isn’t, and it is entered using
the earg argument with component name "lambda".

6. For Cut() the argument breaks matches that of the S function cut(). It is recom-
mended that the first and last values of breaks should be -Inf and Inf respectively.

9.1 Example

Here’s an ordinal ordination example from the hunting spiders data set. The following code is
specific to the hspider data frame, however you could adapt it for your own data set. We fit
a rank-1 equal tolerances CQO negative binomial model with k = 1 for each species.

> data(hspider)

> hspider[, 1:6] = scale(hspider[, 1:6])

> newfun = function(bic, mylink = "nbolf", lambda = 1, kay = 1,

+ dev = TRUE, omitcutpt = FALSE, trace = FALSE, mybreaks = c(-Inf,

+ 5, 20, Inf), altbreaks = c(-Inf, 1, 10, Inf), altspp = NULL,

+ spp. = c(7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18)) {

+ xmat = as.matrix(hspider[, 1:6])

+ lv1 = c(xmat %*% cbind(bic))

+ lv12 = -0.5 * lv1 * lv1

+ matMYbreaks = matrix(mybreaks, length(mybreaks), 18)

+ if (is.Numeric(altspp))

+ matMYbreaks[, altspp] = altbreaks

+ LLength = nrow(matMYbreaks) - 1

+ allmyb = c(matMYbreaks[2:LLength, spp.])

+ ycut = Cut(hspider[, spp.], breaks = mybreaks)

+ counter = 1

+ for (ii in spp.) {

+ ycut[, counter] = Cut(hspider[, ii], breaks = matMYbreaks[,

+ ii])

+ counter = counter + 1

+ }

+ if (mylink == "polf")

+ earg = list(cutpoint = allmyb)

+ if (mylink == "nbolf")

+ earg = list(cutpoint = allmyb, k = kay)

+ if (mylink == "golf") {

+ if (omitcutpt) {

+ earg = list(lambda = lambda)

51

+ }

+ else {

+ earg = list(cutpoint = allmyb, lambda = lambda)

+ }

+ }

+ M = LLength - 1

+ NOS = length(spp.)

+ mylist = list("(Intercept)" = if (mylink == "golf") {

+ if (length(earg$cutpoint)) kronecker(diag(NOS),

+ matrix(1, M, 1)) else kronecker(diag(NOS),

+ diag(M))

+ } else kronecker(diag(NOS), matrix(1, M, 1)), lv1 = kronecker(diag(NOS),

+ matrix(1, M, 1)), lv12 = kronecker(matrix(1, NOS,

+ 1), matrix(1, M, 1)))

+ fit = vglm(ycut ~ lv1 + lv12, constraint = mylist,

+ cumulative(link = mylink, rev = TRUE, mv = TRUE,

+ par = TRUE, earg = earg, intercept.apply = TRUE),

+ trace = trace)

+ if (dev)

+ deviance(fit)

+ else fit

+ }

The function newfun() above uses two sets of cutpoints over all species. For example, rare
species can be handled by the argument altbreaks having lower values for the cut points. The
function newfun() fits the CQO given the values of c in the argument bic. The list mylist
contains the constraint matrices; understanding the technical details requires knowledge about
VGLMs and QRR-VGLMs in general.

Now we will get initial values for the constrained coefficients c by fitting an ordinary CQO
to the counts.

> ymat = as.matrix(hspider[, -(1:6)])

> p1 = cqo(ymat ~ WaterCon + BareSand + FallTwig + CoveMoss +

+ CoveHerb + ReflLux, fam = poissonff, trace = FALSE,

+ data = hspider, Crow1positive = FALSE, ITol = TRUE,

+ Bestof = 4)

> sort(p1@misc$deviance.Bestof)

[1] 1585.133 1719.542 2472.063 2472.070

> if (deviance(p1) > 1586) stop("suboptimal fit obtained")

> round(c(ccoef(p1)), dig = 2)

[1] -0.36 0.55 -0.92 0.32 -0.31 0.70

Now we can finally solve for c with ordinal ordination! The following code requires a
substantial amount of number crunching and can take a minute or two to run.

> set.seed(123)

> solveit = optim(par = c(ccoef(p1)), method = "L-BFGS-B",

+ fn = newfun, altspp = c(9, 10, 11), altbreaks = c(-Inf,

52

+ 0, 10, Inf), mylink = "nbolf", kay = 1, trace = FALSE,

+ lower = -Inf, upper = +Inf)

> solveit$value

[1] 232.1201

> solveit$par

[1] -0.1692321 0.7802340 -0.6223791 0.5538531 -0.1043394 0.9682084

> if (solveit$convergence != 0) stop("did not converge")

Now we scale the solution so that the species have unit tolerances.

> fit <- newfun(solveit$par, dev = FALSE, altspp = c(9, 10,

+ 11), altbreaks = c(-Inf, 0, 10, Inf), mylink = "nbolf",

+ kay = 1, trace = FALSE)

> ssoln = solveit$par * sqrt(coef(fit)[length(coef(fit))])

> fit <- newfun(ssoln, dev = FALSE, altspp = c(9, 10, 11),

+ altbreaks = c(-Inf, 0, 10, Inf), mylink = "nbolf",

+ kay = 1, trace = FALSE)

> deviance(fit)

[1] 232.1201

> coef(fit)["lv12"]

lv12

1

> round(ssoln, dig = 2)

[1] -0.19 0.89 -0.71 0.63 -0.12 1.11

(We checked the unit tolerances by seeing that the coefficient for the "lv12" is 1). Here, ssoln
is the scaled solution. Looking at the results, we can see that the constrained coefficients from
this ordinal ordination have the same sign as that of the raw count data. This is reassuring; it
shows there is some stability in the ordination. Fitting various ordinal CQO and CAO models
(and with Poisson, negative binomial and gamma links) shows that the signs of the constrained
coefficients do not seem to change much—see the Exercises.

It is expected that ordinal ordination should work reasonably well, especially for large sim-
ulated data sets. Given the current software limitation that each species must have the same
number of levels, how many levels should be used? From a practical point of view, I currently
recommend L = 3 or 4. Decreasing L means there is less sensitivity to outliers in the response.
Increasing L means less information loss, but with L too large it becomes more difficult to find
cut points that work well in data sets with both rare and abundant species.

Just to finish the example, note that

> fit@y

53

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0

2 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0

3 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0

4 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1

5 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0

6 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1

7 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0

8 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0

9 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0

10 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0

11 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0

12 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0

13 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

14 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1

15 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0

16 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0

17 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0

18 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0

19 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0

20 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0

21 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0

22 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

23 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0

24 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

25 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0

26 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

27 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

28 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0

Here, the first three columns correspond to the first species, etc. and the column names are l
for l = 1, . . . , L. A 1 indicates the presence of that level, otherwise a 0, so fit@y is a matrix
of indicator variables really. Each column must contain at least one 1 and one 0.

54

10 Not Yet Been Implemented

The following is a list of things not yet been implemented in vgam.

1. Along the lines of Fu (2003) and Fu (1998), one could apply a Lasso type operator to
the latent variables. This would mean that some of the coeffients would be zero, and
possibly the log-likelihood function would be unimodal rather than multimodal. This
needs investigation.

Software Changes

[12 Jan 2004] biplot.qrrvglm() merged with lvplot.qrrvglm(); the two functions
are equivalent.

[27 Sep 2005] FastAlgorithm=FALSE is not allowed.

[17 Oct 2005] An undocumented faster algorithm is implemented when ITolerances=TRUE.

[7 Aug 2006] ITolerances=TRUE is now the default.

Exercises

1. More general than (6) is

η = BT
1 x1 +

K∑
k=1

AkC
T
k xk+1,

where K is any specified positive integer, Ak is M × Rk and unknown, and xk is a
pk-vector with p1 + · · · + pK+1 = p. This is currently not yet implemented in vgam.
Discuss the computational details behind estimating such a model.

2. In the example of Section 5.2, corner constraints were used. Repeat the analysis with
summation constraints,

∑
i αi =

∑
j γj = 0, and reconcile the estimated regression coef-

ficients.

3. Search the literature for a model that has many parameters for which a reduced-rank fit
would be a good idea. Write a vgam family function for the model and run it under
rrvglm() on a suitable data set. Does a biplot add to your understanding?

4. Suppose Wi, i = 1, . . . , n, are general M × M positive-definite matrices and Z is a
general n × M matrix. Suppose we wish to approximate Z by a specified lower rank
matrix Ẑ = ACT where A is n×R and C is M ×R. One can do this by minimizing

‖Ω ∗
(
Z− Ẑ

)
‖2 =

n∑
j=1

M∑
k=1

(Ω)jk

(
zjk − aT

j ck

)2
, (23)

where Ω is an associated weight matrix and ∗ is the Hadamard (element-by-element)
product. Show that this may be solved by an alternating algorithm. Hint: look at the
underlying minimization problem behind vgam. [Gabriel and Zamir (1979)]

55

5. In the car example, show that a MLM treating Â as known and fixed produces standard
errors that are smaller than that obtained from the RR-MLM. Of course, your fitted
coefficients should be identical of the RR-MLM.

6. Suppose one runs

rrvglm(ymatrix ~ bs(x, 4), family=multinomial, Rank=1, Corner=TRUE)

Show that this is a multinomial logit model with

ηj = β(j)0 + ajf(x), a1 = 1, j = 1, . . . ,M,

where f is a smooth function of x estimated by a B-spline. If“multinomial”is replaced
by“cumulative”the curves won’t intersect if aj are all the same sign and f is monotonic.

7. Consider a rank-1 Poisson CQO model with x1 = 1. Let tj be the tolerance of species j.
Show that

µj(uj ± k tj)

µj(uj)
= exp

{
−1

2
k2
}

(24)

where k > 0. This says that if you are k tolerance units away from the species’ optimum
then the ratio of the mean abundance there relative to the species’ maximum declines
exponentially in −1

2
k2. Show that the RHS of (24) is also the corresponding expression

for the rank-2 equal-tolerances Poisson CQO model with Tj = I2 when k is the Euclidean
distance away from the species’ optimum. Is this true for general rank-R?

8. Consider the CQO model when ITolerances=TRUE. Discuss the uniqueness of the pa-
rameters for this model.

9. Extend the example of Section 6.7 by generating data from a rank-2 model, and then
fit a rank-2 QRR-VGLM. Obtain a latent variable plot, and check that it gives sensible
output. Also check that the output from summary() and Coef() is ‘right’.

10. In the example of Section 9.1, k = 1 was used for all species. Suppose all species have a
common k value but k 6= 1. Perform the ordinal ordination for various values of k and
so maximize a profile likelihood. What is the optimal k to one decimal place accuracy?

11. Using newfun() for a start, fit various ordinal ordinations to the hunting spiders data.
Vary the link function and the cut points. Do the results appear to change much?

References

Ahn, S., Reinsel, G. C., 1988. Nested reduced-rank autoregressive models for multiple time
series. Journal of the American Statistical Association 83, 849–856.

Anderson, J. A., 1984. Regression and ordered categorical variables (with discussion). Journal
of the Royal Statistical Society, Series B, Methodological 46, 1–30.

Anderson, T. W., 1951. Estimating linear restrictions on regression coefficients for multivariate
normal distributions. The Annals of Mathematical Statistics 22, 327–351.

56

Chambers, J. M., Hastie, T. J. (Eds.), 1993. Statistical Models in S. Chapman & Hall, New
York.

Fiocco, M., Putter, H., van Houwelingen, J. C., 2005. Reduced rank proportional hazards model
for competing risks. Biostatistics 6, 465–478.

Fu, W. J., 1998. Penalized regressions: The bridge versus the lasso. Journal of Computational
and Graphical Statistics 7, 397–416.

Fu, W. J., 2003. Penalized estimating equations. Biometrics 59, 126–132.

Gabriel, K. R., Zamir, S., 1979. Lower rank approximation of matrices by least squares with
any choice of weights (corr: V22 p136). Technometrics 21, 489–498.

Goodman, L. A., 1981. Association models and canonical correlation in the analysis of cross-
classifications having ordered categories. Journal of the American Statistical Association 76,
320–334.

Greenland, S., 1994. Alternative models for ordinal logistic regression. Statistics in Medicine
13, 1665–1677.

Hastie, T. J., Tibshirani, R. J., 1990. Generalized Additive Models. Chapman & Hall, London.

Hastie, T. J., Tibshirani, R. J., Friedman, J. H., 2001. Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer-Verlag, New York.

Heinen, A., Rengifo, E., 2005. Multivariate reduced rank regression in non-Gaussian contexts,
using copulas. Preprint submitted to Journal of Multivariate Analysis, 9 July 2004 .

McCullagh, P., 1980. Regression models for ordinal data. Journal of the Royal Statistical Society,
Series B, Methodological 42, 109–142.

McCullagh, P., Nelder, J. A., 1989. Generalized Linear Models, 2nd Edition. Chapman & Hall,
London.

Oksanen, J., Minchin, P. R., 2002. Continuum theory revisited: what shape are species responses
along ecological gradients? Ecological Modelling 157, 119–129.

Reinsel, G. C., Velu, R. P., 1998. Multivariate Reduced-Rank Regression: Theory and Applica-
tions. Springer-Verlag, New York.

Ruppert, D., Wand, M. P., Carroll, R. J., 2003. Semiparametric Regression. Cambridge Univer-
sity Press, Cambridge.

van Eeuwijk, F. A., 1995. Multiplicative interaction in generalized linear models. Biometrics 51,
1017–1032.

Venables, W. N., Ripley, B. D., 2002. Modern Applied Statistics With S, 4th Edition. Springer-
Verlag, New York.

Wartenberg, D., Ferson, S., Rohlf, F. J., 1987. Putting things in order: a critique of detrended
correspondence analysis. The American Naturalist 129, 434–448.

Yee, T. W., 2004. A new technique for maximum-likelihood canonical Gaussian ordination.
Ecological Monographs 74, 685–701.

57

Yee, T. W., 2005. On constrained and unconstrained quadratic and additive ordination.
Manuscript in preparation .

Yee, T. W., 2006a. Constrained additive ordination. Ecology 87, 203–213.

Yee, T. W., 2006b. Ordinal ordination with normalizing link functions for count data. Submitted
for publication .

Yee, T. W., Hastie, T. J., 2003. Reduced-rank vector generalized linear models. Statistical
Modelling 3, 15–41.

Yee, T. W., Mitchell, N. D., 1991. Generalized additive models in plant ecology. Journal of
Vegetation Science 2, 587–602.

Yee, T. W., Wild, C. J., 1996. Vector generalized additive models. Journal of the Royal Statis-
tical Society, Series B, Methodological 58, 481–493.

58

