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· Application to MLDC round 2 data
The model was applied to a simulated supermassive black hole inspiral
signal from round 2 of the Mock LISA Data Challenges (‘SMBH-1’ from
challenge 2.2). The signal waveform here is a restricted PN approxima-
tion defined by 9 parameters [3]. Monte Carlo integration of the posterior
is done using a parallel tempering MCMC sampler in a parallel implemen-
tation [4]. For the internal numerical derivation of the detector response
to a given signal, the ‘LISA Simulator’ is used [5].
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Posterior densities for the 9 signal parameters. True values are shown
in red (except for φc, due to a different parametrisation).

This general and robust approach will be useful with real data, where the
noise properties are not exactly known beforehand but need to be esti-
mated, along with the signal parameters from the same data and across
the entire frequency range.

· The model
The observed data, measured at discrete timepoints t1, . . . , tN , are as-
sumed to be the signal sθ(t) (dependent on the parameters θ) plus additive
noise n(t). For each ti, the noise then is defined as:

n(ti) =

N/2∑

j=0

aj cos(2πfjti) + bj sin(2πfjti)

where the fj are the Fourier frequencies, and aj and bj follow a Normal
distribution with zero mean and unknown variance σj. This specification
adds an extra N/2 noise parameters (σj) to the model, for which prior
information can be supplied, and which are inferred along with the sig-
nal’s parameters θ. Estimation of each noise parameter σj is based on the
‘observed’ aj and bj. Thus, or approach involves:
➥ a robust and general model, which makes minimal assumptions
➥ generalisation of a simple, Gaussian noise model
➥ parameters aj, bj which correspond to Fourier coefficients
➥ σj corresponding to noise spectrum
➥ a conjugate (conditional) posterior, with easy implementation
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(True) frequencies and amplitudes of individual background signals
within a narrow frequency band, and how these are reflected in the
posterior noise spectrum.

· Inference on signal parameters
When the gravitational wave signal of a binary inspiral event is observed
by LISA, the measurement will always be superimposed with noise from
various sources. In order to accurately infer the parameters of the origi-
nal signal, we follow a Bayesian approach. This means in particular that
quantification and derivation of information about the signal parameters
is done in terms of probability distributions. In order to complete the
analysis, the necessary integration over the parameters’ posterior distri-
bution (given the data at hand) is done using Markov chain Monte Carlo
(MCMC) methods.

· Noise problems
In the context of LISA, the challenge is that the noise is very complex,
that is, it is not simple white noise, but it is a mixture of various sources of
instrument noise and background noise; in particular, the galactic back-
ground noise will consist of countless superimposed modulated periodic
signals. The problem, then, is to find a sensible model formulation that
accurately reflects states of knowledge (and ignorance) about parameters
and noise, without ignoring nor explicitly modeling each of the back-
ground sources individually.

Due to LISA’s setup, its individual ‘raw’ data outputs will also have
highly correlated noises. In order to minimise this effect, we base our
inference on the derived Time Delay Interferometry (TDI) variables [1].

· Wanted:
...a model formulation based on minimal assumptions, that is able to ac-
count for the numerous unknown background signals and allows for rig-
orous inference at reasonable computational cost, without shortcuts or
approximations.

· Approach
Model the noise in a most flexible way, making use of the Maximum En-
tropy principle so that only minimal assumptions (here: finiteness of the
spectrum) enter the specification.

The model specified this way will not only reflect the randomness in
the noise, but also the ignorance about deterministic, but unaccounted for
signals within the noise [2].
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