
Vol. 4/1, June 2004 29

• Luke Tierney on namespaces and byte compi-
lation

• Kurt Hornik on packaging, documentation,
and testing

• Friedrich Leisch on S4 classes and methods

• Peter Dalgaard on language interfaces, using
.Call and .External

• Douglas Bates on multilevel models in R

• Brian D. Ripley on datamining and related top-
ics

Slides for the keynote addresses, along with ab-
stracts of other papers presented at userR! 2004,
are available at the conference web site, http:
//www.ci.tuwien.ac.at/Conferences/useR-2004/
program.html.

An innovation of useR! 2004 was the deployment
of “island” sessions, in place of the more traditional
poster sessions, in which presenters with common

interests made brief presentations followed by gen-
eral discussion and demonstration. Several island
sessions were conducted in parallel in the late after-
noon on May 20 and 21, and conference participants
were able to circulate among these sessions.

The conference sessions were augmented by a
lively social program, including a pre-conference re-
ception on the evening of May 19, and a conference
trip, in the afternoon of May 22, to the picturesque
Wachau valley on the Danube river. The trip was
punctuated by a stop at the historic baroque Melk
Abbey, and culminated in a memorable dinner at a
traditional ‘Heuriger’ restaurant. Of course, much
lively discussion took place at informal lunches, din-
ners, and pub sessions, and some of us took advan-
tage of spring in Vienna to transform ourselves into
tourists for a few days before and after the confer-
ence.

Everyone with whom I spoke, both at and after
useR! 2004, was very enthusiastic about the confer-
ence. We look forward to an even larger useR! in
2006.

R Help Desk
Date and Time Classes in R

Gabor Grothendieck and Thomas Petzoldt

Introduction

R-1.9.0 and its contributed packages have a number
of datetime (i.e. date or date/time) classes. In partic-
ular, the following three classes are discussed in this
article:

• Date. This is the newest R date class, just in-
troduced into R-1.9.0. It supports dates with-
out times. Eliminating times simplifies dates
substantially since not only are times, them-
selves, eliminated but the potential complica-
tions of time zones and daylight savings time
vs. standard time need not be considered ei-
ther. Date has an interface similar to the POSIX
classes discussed below making it easy to move
between them. It is part of the R base pack-
age. Dates in the Date class are represented in-
ternally as days since January 1, 1970. More
information on Date can be found in ?Dates.
The percent codes used in character conver-
sion with Date class objects can be found in
strptime (although strptime itself is not a
Date method).

• chron. Package chron provides dates and times.
There are no time zones or notion of daylight

vs. standard time in chron which makes it sim-
pler to use for most purposes than date/time
packages that do employ time zones. It is a con-
tributed package available on CRAN so it must
be installed and loaded prior to use. Datetimes
in the chron package are represented internally
as days since January 1, 1970 with times repre-
sented by fractions of days. Thus 1.5 would be
the internal representation of noon on January
2nd, 1970. The chron package was developed
at Bell Labs and is discussed in James and Preg-
ibon (1993).

• POSIX classes. POSIX classes refer to the two
classes POSIXct, POSIXlt and their common su-
per class POSIXt. These support times and
dates including time zones and standard vs.
daylight savings time. They are primarily
useful for time stamps on operating system
files, data bases and other applications that
involve external communication with systems
that also support dates, times, time zones and
daylight/standard times. They are also useful
for certain applications such as world currency
markets where time zones are important. We
shall refer to these classes collectively as the
POSIX classes. POSIXct datetimes are repre-
sented as seconds since January 1, 1970 GMT
while POSIXlt datetimes are represented by a
list of 9 components plus an optional tzone
attribute. POSIXt is a common superclass of

R News ISSN 1609-3631

http://www.ci.tuwien.ac.at/Conferences/useR-2004/program.html
http://www.ci.tuwien.ac.at/Conferences/useR-2004/program.html
http://www.ci.tuwien.ac.at/Conferences/useR-2004/program.html

Vol. 4/1, June 2004 30

the two which is normally not accessed di-
rectly by the user. We shall focus mostly on
POSIXct here. More information on the POSIXt
classes are found in ?DateTimeClasses and in
?strptime. Additional insight can be obtained
by inspecting the internals of POSIX datetime
objects using unclass(x) where x is of any
POSIX datetime class. (This works for Date and
chron too). The POSIX classes are discussed in
Ripley and Hornik (2001).

When considering which class to use, always
choose the least complex class that will support the
application. That is, use Date if possible, otherwise use
chron and otherwise use the POSIX classes. Such a strat-
egy will greatly reduce the potential for error and in-
crease the reliability of your application.

A full page table is provided at the end of this ar-
ticle which illustrates and compares idioms written
in each of the three datetime systems above.

Aside from the three primary date classes dis-
cussed so far there is also the date package, which
represents dates as days since January 1, 1960. There
are some date functions in the pastecs package that
represent datetimes as years plus fraction of a year.
The date and pastecs packages are not discussed in
this article.

Other Applications

Spreadsheets like Microsoft Excel on a Windows
PC or OpenOffice.org represent datetimes as days
and fraction of days since December 30, 1899
(usually). If x is a vector of such numbers
then as.Date("1899-12-30") + floor(x) will give
a vector of Date class dates with respect to Date’s ori-
gin. Similarly chron("12/30/1899") + x will give
chron dates relative to chron’s origin. Excel on a Mac
usually represents dates as days and fraction of days
since January 1, 1904 so as.Date("1904-01-01")
+ floor(x) and chron("01/01/1904") + x convert
vectors of numbers representing such dates to Date
and chron respectively. Its possible to set Excel to
use either origin which is why the word usually was
employed above.

SPSS uses October 14, 1582 as the origin thereby
representing datetimes as seconds since the begin-
ning of the Gregorian calendar. SAS uses seconds
since January 1, 1960. spss.get and sas.get in pack-
age Hmisc can handle such datetimes automatically
(Alzola and Harrell, 2002).

Time Series

A common use of dates and datetimes are in time se-
ries. The ts class represents regular time series (i.e.

equally spaced points) and is mostly used if the fre-
quency is monthly, quarterly or yearly. (Other series
are labelled numerically rather than using dates.) Ir-
regular time series can be handled by classes irts (in
package tseries), its (in package its) and zoo (in pack-
age zoo). ts uses a scheme of its own for dates. irts
and its use POSIXct dates to represent datetimes. zoo
can use any date or timedate package to represent
datetimes.

Input

By default, read.table will read in numeric data,
such as 20040115, as numbers and will read non-
numeric data, such as 12/15/04 or 2004-12-15, as
factors. In either case, one should convert the data
to character class using as.character. In the sec-
ond (non-numeric) case one could alternately use the
as.is= argument to read.table to prevent the con-
version from character to factor within read.table1.

date col in all numeric format yyyymmdd

df <- read.table("laketemp.txt", header = TRUE)

as.Date(as.character(df$date), "%Y-%m-%d")

first two cols in format mm/dd/yy hh:mm:ss

Note as.is= in read.table to force character

library("chron")

df <- read.table("oxygen.txt", header = TRUE,

as.is = 1:2)

chron(df$date, df$time)

Avoiding Errors

The easiest way to avoid errors is to use the least
complex class consistent with your application, as
discussed in the Introduction.

With chron, in order to avoid conflicts between
multiple applications, it is recommended that the
user does not change the default settings of the four
chron options:

default origin

options(chron.origin=c(month=1,day=1,year=1970))

if TRUE abbreviates year to 2 digits

options(chron.year.abb = TRUE)

function to map 2 digit year to 4 digits

options(chron.year.expand = year.expand)

if TRUE then year not displayed

options(chron.simplify = FALSE)

For the same reason, not only should the global
chron origin not be changed but the per-variable ori-
gin should not be changed either. If one has a nu-
meric vector of data x representing days since chron
date orig then orig+x represents that data as chron
dates relative to the default origin. With such a sim-
ple conversion there is really no reason to have to re-
sort to non-standard origins. For example,

1This example uses data sets found at http://www.tu-dresden.de/fghhihb/petzoldt/modlim/data/.

R News ISSN 1609-3631

http://www.tu-dresden.de/fghhihb/petzoldt/modlim/data/

Vol. 4/1, June 2004 31

orig <- chron("01/01/60")

x <- 0:9 # days since 01/01/60

chron dates with default origin

orig + x

Regarding POSIX classes, the user should be aware
of the following:

• time zone. Know which time zone each func-
tion that is being passed POSIX dates is assum-
ing. Note that the time of day, day of the week,
the day of the month, the month of the year,
the year and other date quantities can poten-
tially all differ depending on the time zone and
whether it is daylight or standard time. The
user must keep track of which time zone each
function that is being used is assuming. For ex-
ample, consider:

dp <- seq(Sys.time(), len=10, by="day")

plot(dp, 1:10)

This does not use the current wall clock time
for plotting today and the next 9 days since
plot treats the datetimes as relative to GMT.
The x values that result will be off from the wall
clock time by a number of hours equal to the
difference between the current time zone and
GMT. See the plot example in table of this ar-
ticle for an illustration of how to handle this.
Some functions accept a tz= argument, allow-
ing the user to specify the time zone explicitly,
but there are cases where the tz= argument is
ignored. Always check the function with tz=""
and tz="GMT" to be sure that tz= is not being
ignored. If there is no tz= argument check care-
fully which time zone the function is assuming.

• OS. Some of the date calculations done by
POSIX functions are passed off to the operating
system and so may not work if the operating
system has bugs with datetimes. In some cases
the R code has compensated for OS bugs but in
general caveat emptor. Another consequence is
that different operating systems will accept dif-
ferent time zones. Normally the current time
zone "" and Greenwich Mean Time "GMT" can
be assumed to be available but other time zones
cannot be assumed to be available across plat-
forms.

• POSIXlt. The tzone attribute on POSIXlt times
are ignored so it is safer to use POSIXct than

POSIXlt when performing arithmetic or other
manipulations that may depend on time zones.
Also, POSIXlt datetimes have an isdst compo-
nent that indicates whether it is daylight sav-
ings time (isdst=1) or not (isdst=0). When
converting from another class isdst may not
be set as expected. Converting to character
first and then to POSIXlt is safer than a direct
conversion. Datetimes which are one hour off
are the typical symptom of this last problem.
Note that POSIXlt should not be used in data
frames–POSIXct is preferred.

• conversion. Conversion between different date-
time classes and POSIX classes may not use the
time zone expected. Convert to character first
to be sure. The conversion recipes given in the
accompanying table should work as shown.

Comparison Table

Table 1 provides idioms written in each of the three
classes discussed. The reader can use this table to
quickly access the commands for those phrases in
each of the three classes and to translate commands
among the classes.

Bibliography

Alzola, C. F. and Harrell, F. E. (2002): An In-
troduction to S and the Hmisc and Design Li-
braries. URL http://biostat.mc.vanderbilt.
edu/twiki/pub/Main/RS/sintro.pdf. 30

James, D. A. and Pregibon, D. (1993): Chrono-
logical objects for data analysis. In: Proceed-
ings of the 25th Symposium of the Interface. San
Diego. URL http://cm.bell-labs.com/cm/ms/
departments/sia/dj/papers/chron.pdf. 29

Ripley, B. D. and Hornik, K. (2001): Date-time
classes. R News, 1 (2), 8–11. URL http://CRAN.
R-project.org/doc/Rnews/. 30

Gabor Grothendieck
ggrothendieck@myway.com

Thomas Petzoldt
petzoldt@rcs.urz.tu-dresden.de

R News ISSN 1609-3631

http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RS/sintro.pdf
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/RS/sintro.pdf
http://cm.bell-labs.com/cm/ms/departments/sia/dj/papers/chron.pdf
http://cm.bell-labs.com/cm/ms/departments/sia/dj/papers/chron.pdf
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
mailto:ggrothendieck@myway.com
mailto:petzoldt@rcs.urz.tu-dresden.de

Vol. 4/1, June 2004 32
D
a
t
e

c
h
r
o
n

P
O
S
I
X
c
t

n
o
w

S
y
s
.
D
a
t
e
(
)

a
s
.
c
h
r
o
n
(
a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
S
y
s
.
t
i
m
e
(
)
)
,
t
z
=
"
G
M
T
"
)
)

S
y
s
.
t
i
m
e
(
)

o
r
i
g
i
n

s
t
r
u
c
t
u
r
e
(
0
,
c
l
a
s
s
=
"
D
a
t
e
"
)

c
h
r
o
n
(
0
)

s
t
r
u
c
t
u
r
e
(
0
,
c
l
a
s
s
=
c
(
"
P
O
S
I
X
t
"
,
"
P
O
S
I
X
c
t
"
)
)

x
d
a
y
s

s
i
n
c
e

o
r
i
g
i
n

s
t
r
u
c
t
u
r
e
(
f
l
o
o
r
(
x
)
,
c
l
a
s
s
=
"
D
a
t
e
"
)

c
h
r
o
n
(
x
)

s
t
r
u
c
t
u
r
e
(
x
*
2
4
*
6
0
*
6
0
,
c
l
a
s
s
=
c
(
"
P
O
S
I
X
t
"
,
"
P
O
S
I
X
c
t
"
)
)

#
G

M
T

da
ys

d
i
f
f

i
n

d
a
y
s

d
t
1
-
d
t
2

d
c
1
-
d
c
2

d
i
f
f
t
i
m
e
(
d
p
1
,
d
p
2
,
u
n
i
t
=
"
d
a
y
"
)

1

t
i
m
e

z
o
n
e

d
i
f
f
e
r
e
n
c
e

d
p
-
a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
d
p
,
t
z
=
"
G
M
T
"
)
)

c
o
m
p
a
r
e

d
t
1

>
d
t
2

d
c
1

>
d
c
2

d
p
1

>
d
p
2

n
e
x
t

d
a
y

d
t
+
1

d
c
+
1

s
e
q
(
d
p
0
,
l
e
n
g
t
h
=
2
,
b
y
=
"
D
S
T
d
a
y
"
)
[
2
]

2

p
r
e
v
i
o
u
s

d
a
y

d
t
-
1

d
c
-
1

s
e
q
(
d
p
0
,
l
e
n
g
t
h
=
2
,
b
y
=
"
-
1

D
S
T
d
a
y
"
)
[
2
]

3

x
d
a
y
s

s
i
n
c
e

d
a
t
e

d
t
0
+
f
l
o
o
r
(
x
)

dc
0+

x
s
e
q
(
d
p
0
,
l
e
n
g
t
h
=
2
,
b
y
=
p
a
s
t
e
(
x
,
"
D
S
T
d
a
y
"
)
[
2
]

4

s
e
q
u
e
n
c
e

d
t
s

<
-

s
e
q
(
d
t
0
,
l
e
n
g
t
h
=
1
0
,
b
y
=
"
d
a
y
"
)

d
c
s

<
-

s
e
q
(
d
c
0
,
l
e
n
g
t
h
=
1
0
)

d
p
s

<
-

s
e
q
(
d
p
0
,
l
e
n
g
t
h
=
1
0
,
b
y
=
"
D
S
T
d
a
y
"
)

p
l
o
t

p
l
o
t
(
d
t
s
,
r
n
o
r
m
(
1
0
)
)

p
l
o
t
(
d
c
s
,
r
n
o
r
m
(
1
0
)
)

p
l
o
t
(
a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
d
p
s
)
,
t
z
=
"
G
M
T
"
)
,
r
n
o
r
m
(
1
0
)
)

5

e
v
e
r
y

2
n
d

w
e
e
k

s
e
q
(
d
t
0
,
l
e
n
g
t
h
=
3
,
b
y
=
"
2

w
e
e
k
"
)

d
c
0
+
s
e
q
(
0
,
l
e
n
g
t
h
=
3
,
b
y
=
1
4
)

s
e
q
(
d
p
0
,
l
e
n
g
t
h
=
3
,
b
y
=
"
2

w
e
e
k
"
)

f
i
r
s
t

d
a
y

o
f

m
o
n
t
h

a
s
.
D
a
t
e
(
f
o
r
m
a
t
(
d
t
,
"
%
Y
-
%
m
-
0
1
"
)
)

c
h
r
o
n
(
d
c
)
-
m
o
n
t
h
.
d
a
y
.
y
e
a
r
(
d
c
)
$
d
a
y
+
1

a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
d
p
,
"
%
Y
-
%
m
-
0
1
"
)
)

m
o
n
t
h

w
h
i
c
h

s
o
r
t
s

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
t
,
"
%
m
"
)
)

m
o
n
t
h
s
(
d
c
)

as
.n

um
er

ic
(f

or
m

at
(d

p,
"%

m
")

)
d
a
y

o
f

w
e
e
k

(
S
u
n
=
0
)

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
t
,
"
%
w
"
)
)

a
s
.
n
u
m
e
r
i
c
(
d
a
t
e
s
(
d
c
)
-
3
)
%
%
7

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
p
,
"
%
w
"
)
)

d
a
y

o
f

y
e
a
r

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
t
,
"
%
j
"
)
)

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
a
s
.
D
a
t
e
(
d
c
)
,
"
%
j
"
)
)

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
p
,
"
%
j
"
)
)

m
e
a
n

e
a
c
h

m
o
n
t
h
/
y
e
a
r

t
a
p
p
l
y
(
x
,
f
o
r
m
a
t
(
d
t
,
"
%
Y
-
%
m
"
)
,
m
e
a
n
)

t
a
p
p
l
y
(
x
,
f
o
r
m
a
t
(
a
s
.
D
a
t
e
(
d
c
)
,
"
%
Y
-
%
m
"
)
,
m
e
a
n
)

t
a
p
p
l
y
(
x
,
f
o
r
m
a
t
(
d
p
,
"
%
Y
-
%
m
"
)
,
m
e
a
n
)

1
2

m
o
n
t
h
l
y

m
e
a
n
s

t
a
p
p
l
y
(
x
,
f
o
r
m
a
t
(
d
t
,
"
%
m
"
)
,
m
e
a
n
)

t
a
p
p
l
y
(
x
,
m
o
n
t
h
s
(
d
c
)
,
m
e
a
n
)

t
a
p
p
l
y
(
x
,
f
o
r
m
a
t
(
d
p
,
"
%
m
"
)
,
m
e
a
n
)

O
u
t
p
u
t

y
y
y
y
-
m
m
-
d
d

f
o
r
m
a
t
(
d
t
)

f
o
r
m
a
t
(
a
s
.
D
a
t
e
(
d
a
t
e
s
(
d
c
)
)
)

f
o
r
m
a
t
(
d
p
,
"
%
Y
-
%
m
-
%
d
"
)

m
m
/
d
d
/
y
y

f
o
r
m
a
t
(
d
t
,
"
%
m
/
%
d
/
%
y
"
)

f
o
r
m
a
t
(
d
a
t
e
s
(
d
c
)
)

f
o
r
m
a
t
(
d
p
,
"
%
m
/
%
d
/
%
y
"
)

S
a
t

J
u
l

1
,

1
9
7
0

f
o
r
m
a
t
(
d
t
,
"
%
a

%
b

%
d
,
%
Y
"
)

f
o
r
m
a
t
(
a
s
.
D
a
t
e
(
d
a
t
e
s
(
d
c
)
)
,
"
%
a

%
b

%
d
,

%
Y
"
)

f
o
r
m
a
t
(
d
p
,
"
%
a

%
b

%
d
,

%
Y
"
)

I
n
p
u
t

"
1
9
7
0
-
1
0
-
1
5
"

a
s
.
D
a
t
e
(
z
)

c
h
r
o
n
(
z
,

f
o
r
m
a
t
=
"
y
-
m
-
d
"
)

a
s
.
P
O
S
I
X
c
t
(
z
)

"
1
0
/
1
5
/
1
9
7
0
"

a
s
.
D
a
t
e
(
z
,
"
%
m
/
%
d
/
%
Y
"
)

c
h
r
o
n
(
z
)

a
s
.
P
O
S
I
X
c
t
(
s
t
r
p
t
i
m
e
(
z
,
"
%
m
/
%
d
/
%
Y
"
)
)

C
o
n
v
e
r
s
i
o
n

(
t
z
=
"
"
)

t
o

D
a
t
e

a
s
.
D
a
t
e
(
d
a
t
e
s
(
d
c
)
)

a
s
.
D
a
t
e
(
f
o
r
m
a
t
(
d
p
)
)

t
o

c
h
r
o
n

c
h
r
o
n
(
u
n
c
l
a
s
s
(
d
t
)
)

c
h
r
o
n
(
f
o
r
m
a
t
(
d
p
,
"
%
m
/
%
d
/
%
Y
"
)
,
f
o
r
m
a
t
(
d
p
,
"
%
H
:
%
M
:
%
S
"
)
)

6

t
o

P
O
S
I
X
c
t

a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
d
t
)
)

a
s
.
P
O
S
I
X
c
t
(
p
a
s
t
e
(
a
s
.
D
a
t
e
(
d
a
t
e
s
(
d
c
)
)
,
t
i
m
e
s
(
d
c
)
%
%
1
)
)

C
o
n
v
e
r
s
i
o
n

(
t
z
=
"
G
M
T
"
)

t
o

D
a
t
e

a
s
.
D
a
t
e
(
d
a
t
e
s
(
d
c
)
)

a
s
.
D
a
t
e
(
d
p
)

t
o

c
h
r
o
n

c
h
r
o
n
(
u
n
c
l
a
s
s
(
d
t
)
)

a
s
.
c
h
r
o
n
(
d
p
)

t
o

P
O
S
I
X
c
t

a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
d
t
)
,
t
z
=
"
G
M
T
"
)

a
s
.
P
O
S
I
X
c
t
(
d
c
)

N
ot

es
:z

is
a

ve
ct

or
of

ch
ar

ac
te

rs
.x

is
a

ve
ct

or
of

nu
m

be
rs

.V
ar

ia
bl

es
be

gi
nn

in
g

w
it

h
dt

ar
e

D
at

e
va

ri
ab

le
s,

V
ar

ia
bl

es
be

gi
nn

in
g

w
it

h
dc

ar
e

ch
ro

n
va

ri
ab

le
s

an
d

va
ri

ab
le

s
be

gi
nn

in
g

w
it

h
dp

ar
e

PO
SI

X
ct

va
ri

ab
le

s
V

ar
ia

bl
es

en
di

ng
in

0
ar

e
sc

al
ar

s;
ot

he
rs

ar
e

ve
ct

or
s.

Ex
pr

es
si

on
s

in
vo

lv
in

g
ch

ro
n

da
te

s
as

su
m

e
al

lc
hr

on
op

ti
on

s
ar

e
se

ta
td

ef
au

lt
va

lu
es

.S
ee

st
rp

ti
m

e
fo

r
m

or
e

%
co

de
s

1 C
an

be
re

du
ce

d
to

d
p
1
-
d
p
2

if
it

s
ac

ce
pt

ab
le

th
at

da
te

ti
m

es
cl

os
er

th
an

on
e

da
y

ar
e

re
tu

rn
ed

in
ho

ur
s

or
ot

he
r

un
it

s
ra

th
er

th
an

da
ys

.
2 C

an
be

re
du

ce
d

to
d
p
+
2
4
*
6
0
*
6
0

if
on

e
ho

ur
de

vi
at

io
n

at
ti

m
e

ch
an

ge
s

be
tw

ee
n

st
an

da
rd

an
d

da
yl

ig
ht

sa
vi

ng
s

ti
m

e
ar

e
ac

ce
pt

ab
le

.
3 C

an
be

re
du

ce
d

to
d
p
-
2
4
*
6
0
*
6
0

if
on

e
ho

ur
de

vi
at

io
n

at
ti

m
e

ch
an

ge
s

be
tw

ee
n

st
an

da
rd

an
d

da
yl

ig
ht

sa
vi

ng
s

ti
m

e
ar

e
ac

ce
pt

ab
le

.
4 C

an
be

re
du

ce
d

to
d
p
+
2
4
*
6
0
*
6
0
*
x

if
on

e
ho

ur
de

vi
at

io
n

ac
ce

pt
ab

le
w

he
n

st
ra

dd
lin

g
od

d
nu

m
be

r
of

st
an

da
rd

/d
ay

lig
ht

sa
vi

ng
s

ti
m

e
ch

an
ge

s.
5 C

an
be

re
du

ce
d

to
p
l
o
t
(
d
p
s
,
r
n
o
r
m
(
1
0
)
)

if
pl

ot
ti

ng
po

in
ts

at
G

M
T

da
te

ti
m

es
ra

th
er

th
an

cu
rr

en
td

at
et

im
e

su
ffi

ce
s.

6 A
n

eq
ui

va
le

nt
al

te
rn

at
iv

e
is
a
s
.
c
h
r
o
n
(
a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
d
p
)
,
t
z
=
"
G
M
T
"
)
)

Table 1: Comparison Table

R News ISSN 1609-3631

