
My Speech: Interactive Software Paradigms
for Statistical Visualisation

: D

February 16, 2007

Slide 1 - Outline

Hi everyone, this talk is about what I’ve been working on pretty recently
and it’s about a number of software paradigms to help programmers build
interactive graphics applications that are reusable, scalable and more main-
tainable, particularly to those who use OpenGL as their graphics library of
choice. But, to give you a better appreciation of why these paradigms are
useful I would spend the first part of the presentation looking at the basic
idea behind them before getting into a more detailed discussion.

So here’s the outline of the talk. (NEXT) I’ll start talking briefly about some
motivation for the research that shaped up this presentation. (NEXT) Then
I’ll describe a basic but very important idea underlying a number of software
paradigms that I studied, using an example. Now because of time constraints
I would only have time to give an overview about one of them, and provide
a list of related paradigms at the end. And the one I’d talk about in this
session is called (NEXT) Taligent’s Model-View-Presenter. There’s another
widely accepted, simplified version used in Dolphin Smalltalk but I wouldn’t
get into it here.

Slide 2 - Motivation

(NEXT) Now here’s how I got started with the research. Two years ago I
was working on a prototype of a statistical visualisation toolkit. The toolkit
comes with an extensive documentation that will help programmers to build
applications with plots in 3 dimensions or other complex scenes using the
OpenGL library. It is also possible to put GUI controls on top or along-
side the plot with the help of GUI toolkits like Gtk+. (NEXT) The toolkit

1



reached some degrees of success but I found that the applications I built
weren’t very scalable. It’s just while the toolkit could let programmers build
highly interactive plots, I could yet come up with a satisfactory way to define
linking in a non-trivial fashion between graphical objects within a plot or be-
tween plots. Further I found that some components have to go through a lot
of fiddling around to be reused in another application. Therefore I looked
into Model-View-Controller and Model-View-Presenter to see which one of
these paradigms will do the best job of solving my problems.

(NEXT) MVC, and more recently MVP have received a lot of hype in the
software development world these days. Unfortunately, they’re also amongst
the most widely misinterpreted, because not only are they much more simply
said than done, but most importantly, when you look on the web, there’re
actually two widely accepted versions for each of MVC and MVP, and quite
often, various programmers will suggest their own interpretations while still
claiming it MVC/MVP. So unless you stick to the original and read the other
articles with a fairly critical mind you’re quite likely to get lost.

The good news is, half a year ago Martin Fowler wrote a web article called
GUI architectures. He does a good job of making people aware of the differ-
ent versions of MVC’s and MVP’s. His review on the two versions of MVC’s
are particularly credible because he had experience in seeing how the origi-
nal implementations work. However he hasn’t delved deep enough into the
MVP’s to conclude which version is the better of the two. There were also a
lot of doubts about the actual implementations of Taligent’s MVP before I
can make a judgment call. (NEXT) Therefore, I wrote a toy example using
the paradigm and the experience I gained becomes the main theme of this
talk.

Slide 3 - Widget Based Paradigm

Before looking into Taligent’s MVP, we’ll look at how things used to be done.
We’ll see some problems associating with this approach and we’ll see the ba-
sic ideas behind how these problems are tackled in MVC and MVP.

(NEXT) The application you see on the diagram is a mesh of a rosenbrock-
bivariate normal mixture. There are various things that a user can customise,
like the range of x and y axes, the resolution/smoothness of the mesh, and the
function parameters where a dialogue will pop-up when I press this button.
To implement all of these, (NEXT) I would first create the GUI’s using a view

2



composer, (NEXT) and register all the possible events/signals for the widgets
like clicking on a button or dragging the mouse on the drawing area. (NEXT)
After that, I would get the view composer to generate a template of all the
functions that handle the events or signals. (NEXT) Within each signal
handler, I would basically code up everything in that function like updating
the values in other parts of the GUI, perform the necessary computations and
finally request the plot window to redraw itself. This method of first laying
out the widgets and program according to them is known as the widget based
paradigm.

Slide 4 - Problems with Widget Based Paradigm

(NEXT) The paradigm results in code that is very easy to understand be-
cause you’d know exactly what’s going to happen when you look at the code.
However, it has its own drawbacks:

(NEXT) The main problem is that the user interface components that a user
creates are not fine-grained enough. The UI components created are usually
in form of a whole dialogue with all event handling of widgets stuck in one
place. Now what if I want a new component that is slightly different in func-
tionality later on? In that case I’d either have to copy and modify the old
component, or risk breaking the code and factor out the common bits. And
neither option is appealing.

(NEXT) Secondly, the backend is what actually does all the real work when
the user interface is there mainly to make things easier for users. But now
it’s all to easy to fall into the trap of having the user interface, which is the
less important part, to directly effect how you should implement the crux of
the application.

(NEXT) Thirdly, the paradigm does not force you to be careful about sep-
arating your backend from your frontend, or what other papers refer to as
domain logic and interface logic respectively. One example would be that
you can find yourself using a widget as your data storage because the data
structure is so simple that you couldn’t be bothered making copies of it. The
problem is that you risk breaking your code when your client suddenly wants
you to change the look-and-feel of the UI.

(NEXT) This fourth point I’ll illustrate in more detail on the next slide.

3



Slide 5 - Problems with Widget Based Paradigm

(ctn.)

(NEXT) Suppose I was asked to implement an object movement simulator,
and let’s assume for now that we’re interested in patterns in cattle movement.
The simulator would generate the change in locations every half a second,
which will be plotted on a grid. Then we would have this object selector that
allows us to change the colour of the selected points, as a way of tracking the
positions of some cattle. Now suppose I was told that the application is an
one-off so just forget all about proper program structures. Well, should be
able to do it in a week, perhaps.

The question mark here shows you that life is never this simple, and two
days later the user would tell me that there’re serious overplotting issues on
the grid and (NEXT) he wants to have a 3D histogram showing the density
of the grid, and preferrably a stacked histogram to show how the selected
cattle are distributed. Well, that’s not too bad, because the second window
is just a “slave” of the first. The main window can just give the subwindow
all the necessary data to render the histogram.

(NEXT) But wait. The user comes back the next day as he sees that one
location consistently has a high density and he wants to see if it is from the
same group of cattle or it just happens to be a good partying venue. Since
you have an object selector in the main window wouldn’t it be a trivial matter
of adding another one to select the bars in the subwindow? Well, nope. It’s
just the second window now needs to actively request for the necessary data
from the main window to handle the selection, while the main window has to
know about the colour and grouping information of the subwindow to display
the plot correctly. Or more simply put, they become tightly coupled. Now
without any refactoring it can suddenly become a 2 week job because we
have to take great care of all the dependencies between windows, especially
the possibility of cyclic ones. (NEXT) Further, imagine how you would add
or remove the dependencies when there are 4 windows depending on each
other, and worse still, when you have to remove one of them later on. The
result is seldom pretty.

Slide 6 - The two Stage Solution

(NEXT) So what can we do? First we need to identify and separate the data
objects out from the GUI’s as shown in the diagram. Then we make the plot

4



windows observing the data objects. By observing we actually mean that, the
plot windows will have direct access to the relevant data objects but the data
objects would only know they’ve a number of unknown objects attaching to
them. (NEXT) Now whenever the plot windows change the data, (NEXT)
the modified data objects will notify all the interested windows, raising the
flag “I’ve changed!” and not much else. Finally, upon notification, (NEXT)
the plot windows will retrieve the required data and update themselves to
reflect the changes, through the orange arrows.

And as we’ll see, the Observer pattern is actually used quite heavily in the
MVP framework because this allows us to define loose coupling between
objects.

Slide 7 - Consequence: View as Observer to

Data

We actually gain a lot already just by doing what was proposed in the last
slide. (NEXT) The code will certainly be more complex, (NEXT) but now
the data objects do not need to know what is referring to them anymore, and
it only requires a well-designed interface for other objects to gain access to
it. (NEXT) So your data can now be reused in other applications. (NEXT)
Then while plot windows seem to visually link to each other, they’re com-
pletely unaware of the others. Therefore you can add or remove as many
windows as you like without having to touch other components.

(NEXT) When you look at the name of the two paradigms, Model is actually
the data and View refers to the visual representation of them. The third
component, which it’s either called Controller or Presenter, aims to take out
the event interpretations and data manipulations part from the View and
make the GUI as lightweight as possible, because they are usually very hard
to test and debug. The paradigms have their responsibilities distributed
somewhat differently, but the idea I just talked about actually form the basis
of all 4 versions of the MVC/MVP paradigms.

Slide 8 - Taligent’s MVP

(NEXT) We now turn our focus onto the Taligent’s MVP framework. You
might expect that all versions of MVC/MVP will have three components like
this but Taligent’s MVP actually has (NEXT) six. (BACK) The Controller

5



component in the classic MVC used to receive all the events, interpret them
and make changes to the Model. (NEXT) In this version of MVP they split
the Controller into three extra levels of abstractions, the Interactor, Com-
mand and Selection. Then the remaining part of the Controller is renamed
to Presenter.

And here are the basic responsibilities of the individual components in more
detail. I have some slight modifications to the framework for my own use
but I’ll put up the original version first before stating the modifications.

As I mentioned before, View would represent the data that are stored in the
Domain model. In some cases, the data could be stored in other softwares
such as a database, and the Domain Model can act as a mediator between
the View’s and these other softwares as well.

Selection supposedly defines a simple collection of the selected data, and
provide an implementation to show them on the screen. In my implemen-
tation however, the definition and the rendering of the selection was moved
to Interactor and View respectively, while the Selection component gets re-
duced to a storage for the selected data. This is due to the idiosyncrasies of
OpenGL in regards to object selection, and the fact that this configuration
actually allows the Selection component to be shared between triads, which
is required for plot linking at times.

In the current implementation, the Command component receives command
objects created by the Interactor, each of which encapsulates an algorithm to
be applied to the data defined by the Selection component. The component
also has a Command history so the opeartions can be undone/redone.

Interactor is responsible for creating the command objects and pass it down
to the Command component, although the exact timing of this creation pro-
cess in the original version remained unclear. It is also the place to receive all
the user gestures and events, and map them to changes in the data. The orig-
inal paper actually mentioned that Interactor will first delegate these user
actions to the Presenter, where it will process them further before issuing
the appropriate commands. But then I had to leave this step when I was
implementing the example because most of the effort was put on clarifying
the structure of the Command component.

The final responsibility of the Interactor is to activate or deactivate parts of
the GUI in response to changes in Selections.

6



Finally, on top of possibly interpreting the user gestures further and invok-
ing commands, Presenter is also the creator of all the other components, and
therefore has access to every single one of them.

Then here are what the links in the diagram indicate. In what follows, the
green arrows indicate the Observer-Subject relationship which I mentioned
before. Violet indicates direct access and therefore the source will have refer-
ence to the target component. The brown ones are links that exist historically
in MVC but isn’t documented in the MVP paper. Finally the dashed lines
are optional links. And as you would expect, the Data component here is
also optional.

(NEXT) An important point to note also is that while the “triads” can be
applied on a per window basis, more proper implementations actually apply
the construct to data structures as simple as strings or vectors of integers
and use them to build more complex components. That’s how the additional
granularity is attained in these implementations.

Slide 9 - Taligent’s MVP (Modified for OpenGL)

(NEXT) The modified version is shown on this diagram. We have two ad-
ditional arrows, one from Interactor to Domain Model and one from View
to Selection. I also employ the Interactor-View link. The reason of their
existence will be explained in the conference paper but I have to skip over
them and just state their uses in the control flow of MVP instead. The only
thing is, the Interactor-Domain Model link, in saturated red, is the one I feel
the least comfortable with and I had extensive documentation in my example
code to limit its usage.

Slide 10 - Control Flow (Modified Version)

(NEXT) Now, we get onto the things that hasn’t been talked about a lot
and that’s the control flow of the paradigm. There’re a number of seemingly
viable implementations for some of the steps but I only have time to present
the one I did use in my toy example.

I’ll start doing a little demo of the toy example before using it to demon-
strate some of the steps in the control flow. This toy example is just a simple

7



colour selector. The circle is a HSV colour wheel, and you can customise
the number of colours to be displayed on the wheel, using this spinbutton.
Then you can customise the range of values for hue, saturation and value
given the other two fixed. So at this point, the hue starts from 0 with 360
as the total increment while saturation and value are kept fixed at 0.5. And
I can do various things to change the appearance of the wheel so I can ob-
tain different sets of colours. Now I can click Ctrl left button to select the
colours, and when I’m done I can either save it or click this button to display
my selection on the subwindow. In this subwindow, I can change the colours
one at a time using this colour selection dialogue and the change will be
reflected in the main window. This window is actually pretty useless, but
I’m doing it so that I can demonstrate linking like you’d do in statistical plots.

I’ll describe the control flow of all the different steps in the conference paper,
but I only have time to talk about two of the more significant ones.

Since I’m not talking anymore here’s the control flow of all of them. Cor-
responding slides at the end

Triad Creation

As the caption suggests, this is when all the components are created, and it’s
the time when you see the widgets appearing on the screen.

The individual components except the extra data are supposedly created by
the Presenter, but for pluggability issues, I also had a version where I would
create all the components outside and wire them all up in the Presenter. The
extra data and the connection of it would in any case be done by the Domain
Model.

Rendering the Data

After you see the window, the process of rendering or representing the data
is carried out whenever you see the appearance or values of a widget chang-
ing, and not restricted to the colour wheel in the drawing area. And the
mechanism is just what I talked about in the first half of the presentation.

Update Available Commands

I haven’t implemented this feature in my toy example yet, but one example
you can think of is the activation or deactivation of the menu items after

8



you selected some words in a word processor. This activation or deactivation
is determined by the set of available commands, and in turn determined by
the state of the Selection component. The method I’m presenting here is
actually inspired by Joanna Carter’s implementation in her tutorial series.
The Command component would contain a list of strings of all possible com-
mands. Now when a selection is made, the Selection component will notify
the Command component, and the component will respond by spliting the
list of strings into two sets - available and not available. Interactor will then
be notified by the Command and this is the place where the activation and
deactivation take place.

Selecting Observations and Rendering Selected Obs

(NEXT) When I click on the pieces on the colour wheel, I was actually
selecting some data and the colour pieces will have white line loops around
them. In my implementation, the Interactor would interpret the mouse click
and decide that I’m selecting some data. The detection of the selected objects
would then be carried out through the View using the selection buffer in
OpenGL, and when we know what the objects are, we would update the
indices of the colour array in the Selection. The View would be notified
of the change and it would respond by rendering the screen again with the
selected objects highlighted.

User Gestures/Events Interpretation and Command Ex-
ecution

(NEXT) Next one is to execute the commands when the users perform
some actions other than selections. Towards the end of the demonstration I
changed the colour of a square and this would be one of the situations when
this is happening. Under the current implementation, the Interactor will re-
ceive the signal, grab the current colour of the colour selection dialogue and
create the “set-colour” command objects, using the colour and these two
links. The Command component will then accept the created object and
modify the data through link 2, 3 and 4.

Now that the data gets modified, the interested View’s would update the
changes, and that’s when we see the colour on the two windows changing
simultaneously.

9



Slide 11 - Conclusion

(NEXT) To conclude, benefits of Model-View separation and having the
View observing the data are obvious. (NEXT) But at this point we still
cannot conclude on the best suited framework amongst the various versions
of MVC’s/MVP’s for this particular toolkit.

(NEXT) The finer separation of Taligent’s MVP looks good on paper and
Mike Potel clearly addressed all the benefits of the extra separation in his
paper. However some further studies are required to assess its effectiveness
in practice, as well as the effect of the additional links in the modified version.

(NEXT) One major drawback of the framework though comes in its rather
steep learning curve and proper documentations and assisting tools will be
necessary.

There’re also a number of mysteries remaining but I cannot cover them all
today, and they’ll be addressed in the conference paper as well.

As promised, here’s a list of related paradigms, roughly in their chronological
order, which ends my talk. Thank you for your patience, as it cures my
insomnia every time I read it at heart.

Slide 12 - Quote of the day

This last one is to show you how Martin Fowler started his research in
MVC’s. . .

Slide 13 - Mysteries of Taligent’s MVP

There’re actually a number of mysteries behind the paradigm that go unad-
dressed. But I guess I’ve no time for that and I’ll skip over them. Instead
I’d present the modified version of the paradigm and talk briefly about the
control flow.

10


