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The bootstrap is a general resampling procedure which can be applied to estimate the sampling
distribution of a statistic. From the statistical practitioner’s point of view it has attractive
properties because it requires few assumptions, little modeling or analysis, and can be applied in
an automatic way in a wide variety of situations regardless of their theoretical complexity. The
bootstrap can provide answers to questions that are too complicated for traditional statistical
analyses, which are usually based on asymptotic normal approximations. A brief discussion of
the non-parametric bootstrap is presented, followed by examples and illustrations. Possible
suggestions regarding the teaching of these concepts at various levels are made. The key
requirements for computer implementation of the bootstrap method include a flexible
programming language with a collection of reliable quasi-random number generators, a wide
range of built-in statistical bootstrap procedures and a reasonably fast processor. The use of the
statistical languages S and Fortran, using the current commercial versions S-Plus 4.5 and Digital
Fortran 6.0, are illustrated.

INTRODUCTION
Central to statistical science stands the explicit recognition of uncertainty. Educators

traditionally prepared students to deal with uncertainty by training them in probability and
statistical theory. Shaughnessy (1977) describes most courses offered at university level to be
rule-bound recipe-type courses or overly mathematized traditional instructions, delaying the
student’s development of statistical intuition and skilful application of modern technology.
Biehler, et al. (1988) identified both the lack of experience in data manipulation and the tendency
of teachers to avoid problems that depend on students’ computational skills, as two targets of
difficulty in statistical education. Efron and Tibshirani (1993) stated that the traditional road to
statistical knowledge is blocked by a formidable wall of mathematics.

Although Efron (1979) introduced the bootstrap methodology more than two decades
ago, it is still a relatively new statistical tool to the practitioner. The bootstrap is a newly
developed technique, based on modern computer power and technology for making certain kinds
of statistical inferences. It provides a way of escaping from some mathematical handicaps and
answers many real statistical questions without formulas, such as assigning measures of
accuracy to statistical estimates. However, knowledge and mastering of basic traditional
statistical concepts are essential for the bootstrap to be applied correctly. Rice (1995) advises the
inclusion of traditional topics, e.g. methods based on likelihood, topics in descriptive statistics
and data analysis, interpretation of graphical displays, aspects of experimental design, and
realistic applications of some complexity. But these statistical topics are generally not taught in
secondary schools which causes the bootstrap course to be presented either as a final section in
the under-graduate statistics course, or as a thoroughly defined honours statistical course, where a
well written book such as Efron and Tibshirani (1993) can be useful. A possible text book for a
follow-up bootstrap course, i.e. for an M.Sc. course for example, is Davison and Hinkley (1997).
However, the bootstrap method can be introduced gradually in layman’s terms wherever an
appropriate opportunity arises in the under-graduate years, as it is done by Rice (1995), where the
parametric bootstrap is introduced in Chapter 8 in an informal, intuitive way to a natural situation.
The simulation concept is simultaneously introduced as being an interesting frequentistic way of
imitating the truth contained in a random sample.

Having completed basic statistical training, students attending a bootstrap course will
possess enriched instincts about statistical concepts such as random sample, parameter,
estimator, confidence interval, empirical distribution function, stepfunction and especially
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sampling distribution of a statistic, on which modern inference techniques can be built. Due to
the influential development of bootstrap methods during the past decade, bootstrap courses
should also be included as an essential component of any statistical training program for
statistical practitioners working in the fields of biomedical sciences, psychology, education,
economics, communications theory, sociology, genetic studies, epidemiology, geology, physics,
astronomy, financial mathematics and other practical areas.

The non-parametric bootstrap belongs to the general subfield Non-parametric Statistics
which is defined by Dudewicz (1976) as the subfield of statistics that provides statistical
inference procedures which rely on weak assumptions (or no assumptions at all) about the
underlying distribution of the population. Statistical practitioners should use non-parametric
procedures only in so far as the assumptions about the underlying distribution are seriously
doubtful in their validity. Efron (1979) states that the bootstrap is a way to pull oneself up (from
an unfavourable situation) by one’s bootstrap, to provide trustworthy answers despite of
unfavourable circumstances. In ideal parametric situations traditional ways or parametric methods
such as the parametric bootstrap, may be more applicable, due to the fact that the more
information is known and used about the underlying distributions, the more accurate statistical
inference procedures will be. When assumptions are not violated, non-parametric procedures will
usually have greater variance (in point estimation), less power (in hypothesis testing), wider
intervals (in confidence interval estimation), lower probability of correct selection (in ranking and
selection) and higher risk (in decision theory) when compared to a corresponding parametric
procedure.

ESSENTIAL CORNERSTONES
The bootstrap methodology depends on the following concepts:

• An original random data sample of size n , denoted by 1, , nx x⋅ ⋅ ⋅ : It is thought of as the
outcomes of independent and identically distributed (i.i.d.) random variables 1, , nX X⋅ ⋅ ⋅  whose
probability density function (PDF) and cumulative distribution function (CDF) will be denoted by
f  and F  respectively. The sample is used for inference purposes regarding a population

characteristic, generally denoted by θ , using a statistic 1( , , )n n nT T X X= ⋅⋅ ⋅  whose value for the
sample is nt . If it is assumed that nT  is an estimate for θ , the attention is focused on the
sampling distribution of nT , to answer questions about, for example, the standard error, bias and
quantiles of this distribution. The quantiles are needed for determining, among others, bootstrap
confidence intervals for θ  from probabilities such as 1 1 2( ( , , ) )n nP a T X X a≤ ⋅ ⋅ ⋅ ≤ .
•  The empirical distribution function (EDF): Having observed a random sample of size n
from the CDF F , an estimate of F , say F̂ , can be constructed from this sample. The EDF
ˆ

nF F=  is defined to be the discrete distribution that puts probability 1/ n  on each value

, 1,2, , .ix i n= ⋅⋅ ⋅  The EDF can also be written as 1
1( ) ( ),n

jjnF x n I x x−
== ≤∑  where ( )I ⋅  is the

indicator function. The values of the EDF are fixed (0,1/ ,2 / , , / )n n n nL . Efron and Tibshirani
(1993) showed that all the information about F  contained in 1, , nx x⋅ ⋅ ⋅  is also contained in the
EDF, so that the bootstrap observations are often generated from the EDF by computer methods
when F  is unknown.
• Alternative estimates of F :  Bootstrap observations are often generated from smoother
estimates of F , such as kernel estimates. This procedure is referred to as the smoothed bootstrap
procedure. The kernel estimate of F  which is defined by

( ) ( )( )1
1

n
n,c iiF̂( x ) F x n K x X / c−

== = −∑ , where nc c=  is a sequence of smoothing parameters
such that 0nc → as n →∞ , and K  a known continuous CDF symmetric around zero, produces a
smooth version of F . Azzalini (1981) obtained second order results showing asymptotic
improvement in estimating F  by ,n cF  instead of nF , provided certain regularity conditions on

F  are met and that { nc } converges at a specific rate to zero. However, questions of whether the
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smoothed bootstrap is superior to the classical bootstrap, and which smoothing parameter c  is to
be used, are important research topics. Silverman and Young (1987), DiCiccio and Romano
(1989), Hall (1990), De Angelis and Young (1992), El-Nouty and Guillou (2000), and several
others have produced valuable work in this field.
• The plug-in principle: This concept, discussed in Efron and Tibshirani (1993), is a simple
method of estimating parameters from samples and a handy tool in teaching the bootstrap
method. It enhances that, if some aspect of a probability distribution F  is to be determined from
a random sample drawn from F , and if, for example, the EDF ˆ

nF F=  is used to estimate F , any
interesting aspect of F  such as its mean, median or correlation is estimated by using the
corresponding aspect of .nF  For example, the plug-in estimate of a parameter ( )t Fθ =  is defined
to be ˆ ˆ( )t Fθ = . The bootstrap can then be used in an automatic way to study the bias and standard
error, for example, of ˆ ˆ( )t Fθ = , no matter how complicated the functional mapping ( )t Fθ =  may
be.
• Bootstrap sample: A bootstrap sample is defined to be a random i.i.d. sample of size m
drawn from the EDF nF , with replacement from the population of n  objects x = 1 2( , , , )nx x xL ,

and consists of members of the original data set 1 2, , , nx x xL , some appearing zero times, some

appearing once, twice, etc., in which case we denote the bootstrap sample by *x  =
* * *
1 2( , , , ).mx x xL  The *-notation indicates that *x  is not the actual data set x , but rather a

resampled version of x . A large number of independent bootstrap samples are usually needed,
which are easily generated repeatedly by computer methods, using a random number device to
select integers 1 2, , , mi i iL , each of which equals any value between 1 and n  with probability

1 / n . The bootstrap sample then consists of the corresponding members of 1 2, , , nx x xL , i.e.

1 2
* * *
1 2, , ,

mi i m ix x x x x x= = =L . Usually m n=  (classical bootstrap). However, Swanepoel (1986)
defined the modified bootstrap procedure ( m n≠ ) and recommends this method for cases where
the classical bootstrap fails.          
• Computer skills: To apply the bootstrap practically, students should have achieved at least a
user knowledge of computer packages such as Fortran or S-Plus. Shaughnessy (1977) remarks
that the use of computers to conduct Exploratory Data Analysis (EDA) is the direction for
statistical education to proceed on, and during the past decade skills involving the use of systems
such as SAS, Statistica, BMDP, S-Plus and several others, became part of the statistics
curriculum. Monte Carlo studies include the application of simulation methods according to
bootstrap algorithms and rules, utilising the speed and availability of modern high speed
computers. Most questions involving the size of simulation studies are answered in Efron and
Tibshirani (1993).  
• The place of the non-parametric bootstrap in statistical inference: It should be realised that if
no particular mathematical model with adjustable constants and parameters that fully determines
F  exists, i.e. when aspects of F  are unknown, the use of non-parametric analysis, such as the
non-parametric bootstrap, is inevitable. Also, when F  is known but nT  is a statistic of
complexity, explicit probabilistic calculations are often impossible to conduct, and the
application of non-parametric methods is essential to estimate the desired quantities.    

THE NON-PARAMETRIC BOOTSTRAP ESTIMATION TECHNIQUE   
Let θ̂ = nT ( x ) be a calculated estimate of a parameter ( )t Fθ = . Corresponding to a

bootstrap data set *x , *θ̂ = nT ( *x ) then denotes one bootstrap replication of θ̂ , i.e. the quantity

nT ( *x ) resulted from applying the same function ( )nT ⋅  to *x  as was applied to x . This concept
is applied repeatedly in the following examples, illustrating the implementation of the bootstrap
method in assessing the accuracy of an estimator θ̂  of a parameter θ .
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Example 1: Estimating the standard error of the statistic θ̂ : It is assumed that θ̂
is a statistic of complexity, in which case the computation of an exact numerical value of

F
ˆse ( )θ , the standard error of θ̂ , will be complicated or impossible.  The bootstrap

estimate of F
ˆse ( )θ  is then a plug-in estimate that uses an estimate F̂  in place of the

unknown distribution F , and is defined by F̂
*ˆse ( )θ . The bootstrap algorithm which

follows below is always applicable and is an easily computational way of obtaining a
good approximation to the numerical value of F̂

*ˆse ( )θ . Briefly stated, the bootstrap
algorithm in this case is implemented by drawing many independent bootstrap samples,
evaluating the corresponding bootstrap replication for each bootstrap sample, and
estimating the standard error of θ̂  by the empirical standard error of the replications, and
the result is referred to as the bootstrap estimate of standard error. More explicitly:
1. Select, by using computer methods, B  independent bootstrap samples *1 *2 *, , , BLx x x , each
consisting of n  data values (classical bootstrap) drawn with replacement from x .
2. Evaluate the bootstrap replication of θ̂  corresponding to each bootstrap sample, i.e.

*ˆ ( )bθ = nT ( *bx ) , b = 1,2, ,B.L

3. Approximate the standard error F
ˆse ( )θ  by � Bse  = { }1/ 221 * *

1
ˆ ˆ( 1) ( ) ( ) ,B

bB bθ θ−
=  − − ⋅ ∑  where

* *

1

ˆ ˆ( ) ( ) / .
B

b
b Bθ θ

=
⋅ = ∑

The limit of � Bse  as B  goes to infinity, is the bootstrap estimate of F
ˆse ( )θ , i.e. F̂

*ˆse ( )θ , which
follows from the strong law of large numbers. How large B  should be depends on factors such as
affordability of computer time and the complexity of θ̂ = nT ( x ). Efron and Tibshirani (1993)

deduced a rule of thumb from examining the coefficient of variation of � Bse , i.e. the ratio of
� Bse ’s standard deviation to its expectation, that 200B =  replications are adequate for estimating
the standard error. Larger values of B  are needed for other estimation problems.

Example 2: Estimating the bias of θ̂ = nT ( x ): The same algorithm is used, where the

bias of θ̂  is defined by ( ) ( ) ( )ˆ ˆbiasF F= E - t Fθ θ . The bootstrap estimate of bias is defined to be

the estimate ( )bias *
F̂ θ̂  we obtain by substituting F̂  for F  in the previous expression, i.e.

( ) ( ) ( )bias * *
ˆ ˆF F

ˆ ˆ ˆE t Fθ θ= − . Here ( )ˆt F , the plug-in estimate of θ , may differ from θ̂ = nT ( x ).

Having followed the first and second steps in the above algorithm, the bootstrap expectation

( )*
F̂

ˆE θ  is approximated by the average ( ) ( )* *B
b=1

ˆ ˆ= b / Bθ θ⋅ ∑ . The  bootstrap estimate of bias

based on the B  replications is then � ( ) ( )*
B ˆ ˆbias t F .= ⋅ −θ  Sometimes � Bse  and � Bbias  can be

calculated simultaneously from the same set of bootstrap replications, but it was found that more
often the number of bootstrap replications B  must be much larger to produce a trustworthy
estimation of bias and an improved estimation method for bias have been suggested by Efron and
Tibshirani (1993, chapter 10).

Example 3: Estimating probabilities of the form 1 2
ˆ( )FP a aθ≤ ≤  where θ̂ = nT ( x ):

The bootstrap estimate of the probability is defined to be *
ˆ 1 2

ˆ( )FP a aθ≤ ≤  where *θ̂ = nT ( *x ).
As before, follow the first and second steps in the above algorithm. The bootstrap estimate of
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1 2
ˆ( )FP a aθ≤ ≤  based on the B  replications is ( )1

1 2
1

B *
B b

b

ˆP̂ =B I a a ,θ−

=
≤ ≤∑  which is increasingly

accurate for large values of n  and B .
Example 4: Constructing a ( )100 1 %α−  confidence interval for θ : Let θ̂ = nT ( x ) be

some  (complex) estimator of θ . The so-called bootstrap percentile ( )100 1 %α−  confidence

interval for θ  can be constructed as follows: Calculate, as before, bootstrap replications *ˆ ( )bθ ,

1b , ,B= L , and then determine the order statistics ( ) ( ) ( )
* * *
1 2

ˆ ˆ ˆ
Bθ θ θ≤ ≤ ≤K . The desired confidence

interval is then ( ) ( )
* *
r s

ˆ ˆ,θ θ 
  , where [ ]2r B /α=  and ( )1 2s B /α=  −   , and [ ]a  denotes the

integerpart of a . Better bootstrap confidence intervals, like bias-corrected percentile,
accelerated bias-corrected percentile and percentile-t are discussed in Chapters 12-14 of Efron
and Tibshirani (1993).

REMARK
As far as the smoothed bootstrap is concerned, an algorithm for constructing a

bootstrap sample from ( ) ( )( )1
1

n
n,c iiF̂ F x n K x X / c−

== = −∑ , i.e. the kernel estimator of F , is

the following: Generate 1 2
* * *

nY ,Y , ,YL  which are independent random variables with common

CDF nF  and also generate 1 2 nZ ,Z , ,ZL  which are independent random variables with common

CDF K . If these two samples are independent, then 1 2* *
j j j ,X Y cZ j , , ,n,= + = L   denotes a

bootstrap sample from n,cF .

THE NON-PARAMETRIC BOOTSTRAP APPLIED TO MORE COMPLEX DATA
Literature contains many non-parametric bootstrap techniques for analysing linear

regression models, generalised linear models, non-linear models, survival models, time series
models, and many more. The following example shows that the algorithms become slightly more
complicated.
Example 5: Estimating the sampling distribution of the estimated parameters of a
regression model: The probability structure of a regression model is usually expressed in the
form iX =g ( it , β ) + iε , 1 2i , , ,n= L , with X  the response vector, g  a known real-valued
function of the covariates t  and the parameters β  . The errors iε  are assumed to be a random
sample from an unknown CDF F  having expectation 0.  Least-squares estimates for the
parameters β  are obtained from the definition β̂ arg min

β
= i1( (n

ii X g t= −∑ , β 2)) . The

algorithm below provides a trustworthy approximation to the sampling distribution of β̂ , i.e. the

bootstrap distribution of *β̂ , from which accuracy and confidence measures can be deduced.

1. By using the original estimators β̂ , first calculate the centered residuals

iε̂ = i(iX g t− , β̂ ) 1
1n (n

i
−

=− ∑ i(iX g t− , β̂ )) , 1i , ,n= L , from which 1 2
* * *

n, , ,ε ε εL , an error
bootstrap sample, is generated as before.

2. By using *ε  and β̂ , the first bootstrap sample *X  is created, with i(*
iX g= t , β̂ ) + *

iε ,

1 2i , , ,n= L , and the first bootstrap replication of β̂  is determined, i.e. the least-squares

estimator ( )1*β̂  from the definition ( )1*β̂ arg min
β

= i1( (*n
ii X g= −∑ t , β 2)) .
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3. Repeat the previous steps B  times independently to obtain ( )1*β̂ , ( )2*β̂ ,L , ( )*ˆ Bβ , from
which histograms, for example, can be constructed to approximate the sampling distribution
of β̂ .

PRACTICAL IMPLEMENTATION
Several flexible computer programs are available for the implementation of resampling

methods, for example S-Plus and Fortran. The free cloned version of S-Plus, namely R, of which
the basic package can easily be downloaded and installed from the website http://cran.r-
project.org, enables the application of resample methods free of cost in both UNIX and Windows
environments. Several add-on bootstrap packages are available on this website, two of which are
complementing the books of Efron and Tibshirani (1993), as well as Davison and Hinkley (1997).
The bootstrap library for Davison and Hinkley can also be used, which is obtainable from the
home page http://dmawww.epf1.ch/dvison.mosaic/BMA/ for UNIX users, or from a disk to be
used with S-Plus for Windows, which accompanies Davison and Hinkley’s book. The functions
boot, boot.array, print.boot, boot.ci on the disk were found easy to use and time saving. Free S-
Plus functions for Windows, complementing both the books mentioned above, are available at
http://lib.stat.cmu/edu/S/ under the names bootstrap.funs and davison-hinkley, and contains
more than 50 bootstrap related functions as well as useful data files. Similar free add-on R
functions are available on CRAN. Free help on learning S-Plus and/or R code is available at
http://www.math.montana.edu/stat/tutorials/S-Plus.html.
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