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A SHORT INTRODUCTION TO NONPARAMETRIC CURVE ESTIMATION
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Some ideas about how basic aspects of nonparametric curve estimation can be introduced to
students at a post secondary level will be discussed here. The idea of estimating population
curves, like the density or the regression function, is studied from a nonparametric viewpoint.
Starting from well-known estimators as the histogram or the regressogram, the discussion will
then go to some of the smoothing methods developed in the last four decades, mainly focusing on
the kernel density and regression estimators. Some ideas about the important problem of
smoothing parameter selection will also be presented.

PARAMETRIC VERSUS NONPARAMETRIC FITS IN CURVE ESTIMATION

One of the risks after a first course in a statistics at a post secondary level is that some of
the students start believing that every continuous population has a normal distribution. Using very
well-known real data sets, like the turtle data or the Old Faithful geyser data in Silverman (1986)
it is quite easy to make a student understand that there are plenty of real examples in which the
normal and also some other classical parametric families are not reasonable (see Figure 1).
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Similar facts appear when dealing with different probability curves, as the regression
function. After an intuitive introduction of the concept of regression via the conditional
expectation, several examples can be introduced to see how unreasonable the classical linear
assumption for the regression function may be. Some of these examples could be the motorcycle
data and the coronary risk-factor study data (see, for instance, Fan & Gijbels, 1996).

Although the nonparametric fits exhibit several benefits when compared to parametric fits
and have been widely used as exploratory techniques, it is also important to point out, from the
beginning, two of the practical problems of the nonparametric techniques: the smoothing
parameter selection and the curse of dimensionality.

FROM THE HISTOGRAM TO THE KERNEL DENSITY ESTIMATOR

The key point to explain how the nonparametric estimators work for the probability
density function is to focus first on the definition of this curve. The limit concept of ratio between
probability mass in a neighbourhood of a point and the “size” of that neighbourhood plays an
important role when explaining what a simple histogram is doing.

This idea can be easily extended to obtain the moving histogram (or naive estimator) and,
finally, the kernel density estimator by just giving different weights to the data according to their
proximity to the interest point. A mathematical expression for the well-known Parzen-Rosenblatt
kernel density estimator can be then introduced:
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Its practical performance can be explored by using it with real data coming from some of
the examples mentioned above. In particular, the great influence of the bandwidth, or smoothing
parameter, and the small influence of the kernel function are easily shown when viewing some
plots of the estimator applied to the data (see Figure 2).
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Figure 2. Estimator Plots.

Some standard problems, as the undersmoothing and oversmoothing effects caused by the
increasing of variance and bias of the estimator, can also be presented from a practical viewpoint
using some real example. The asymptotic expressions for the bias and the variance of the
estimator give an easy explanation of the crucial role of the amount of smoothing used in the
estimation process.

QUICK IDEAS ABOUT OTHER NONPARAMETRIC APPROACHES

Still in the context of density estimation, some other nonparametric techniques are
available. We will just give some intuitive ideas about how several of these nonparametric density
estimators deal with the problem. The nearest neighbour estimator will be introduced by recalling
the relationship between the length of the interval in which the & nearest neighbour to a point lay
and the value of the probability density at that point. When regarding the density in a functional
vector space, the orthogonal series estimator appears as some finite linear combination
approximation to the infinite linear combination representation of the density. The splines
estimator will be introduced as an attempt to use piecewise smooth polynomial functions for
estimating the density. Some practical application of these estimators could be useful to compare
their performance with the histogram or the kernel density estimator.
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KERNEL AND LOCAL POLYNOMIAL ESTIMATORS FOR REGRESSION

The kernel estimator can be easily introduced in the nonparametric regression context via
the regressogram, see Figure 3. This is parallel to what happens when going from the histogram
to the kernel estimator in the density case. The
undersmoothing and oversmoothing problems,
as well as some introductory bias and variance
asymptotic expressions will be presented in a
completely analogous way as done for the
density set-up. It is also worth mentioning that
the kernel density estimator is the least squares
local linear constant estimator.

The previous property can be taken as a
definition in order to extend local constant
estimators to the so-called local polynomial
regression estimators. The behaviour of these
estimators will be illustrated by means of the
motion picture analysis of smoothing (see
Marron, Ruppert, Smith & Conley, 2000). 2= 4

Figure 3. Regressogram.

HOW TO CHOOSE THE SMOOTHING PARAMETER?

After having pointed out how important is the bandwidth selection problem in curve
estimation, some available automatic bandwidth selectors will be presented for the density case.
To do this, we will sketch some of the methods
in the comparative study by Cao, Cuevas and
Gonzalez-Manteiga (1994). By looking at the
plot of the MISE (mean integrated squared
error), in figure 4 in a simulated context, as a
function of the smoothing parameter, it is clear
that any reasonable bandwidth selector has to
take into account the mentioned trade-off
between variance (or stochastic error) and
squared bias (or deterministic error). h

MISE(h)

Figure 4. Plot of the MISE.

We first introduce, in a natural way, first-generation plug-in bandwidth selectors which
essentially estimate the unknown (population) quantities appearing in the asymptotic formula for
the mean integrated squared error (AMISE). Also much improved versions of these plug-in ideas
(like the Sheather and Jones selector will be briefly introduced).

Starting from the expression of the integrated squared error (ISE) it is easy to derive the
form of the least squares cross-validation function to be minimised to find the pertaining
bandwidth selector. More refined and accurate methods based on the same idea, as the smoothed
cross-validation, will be presented too.

Finally, some quick ideas about how the bootstrap can be used for the bandwidth
selection problem will be given. These bootstrap bandwidth selectors are obtained by minimising
some bootstrap version of MISE. One important feature that should be mentioned is the fact that
closed expressions are available for these bootstrap versions, without any need of performing
Monte Carlo simulations.

DISCUSSION

The lack-of-fit problems of many parametric models as well as the flexibility of
application of nonparametric techniques as exploratory tools have made of nonparametric curve
estimation procedures a very active research field in statistics. From the teaching statistics
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viewpoint there exists the need of including more and more of these new techniques in the
content of statistical courses at a post-secondary level. As an attempt to do it, a proposal is made
in order to get the students on these concepts in an intuitive and not much formalistic way. Of
course, some mathematical tools are needed, but our proposal mainly focuses on concepts, ideas
and graphical visualisation.
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