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In this paper, two examples of multilevel modeling as part of the analysis of data from HIV
evaluation studies are presented. Strategies for teaching multilevel models for each type of data
are discussed. The first, a panel study, uses multiple linear regression models to show how a
hierarchical linear model can be developed. The second, a repeated cross-sectional design, uses
simple analysis of variance models to show how a random coefficients model can be fit to the data.
Complex multilevel models may be easier to understand and apply when broken down into these
more familiar strategies. Analyses are presented using the HLM program and SAS.

Techniques for the analysis of data from longitudinal studies are one of the more
challenging course content areas for multivariate methods classes. In most applied multivariate
statistics courses, students are typically instructed in the analysis of repeated measures data
through multivariate or univariate analysis of variance models. Analysis of variance approaches,
however, can present severe limitations to the analysis of repeated measures data, due to the
likelihood of unbalanced data and missing observations from longitudinal designs (e.g., Kenny,
Bolger & Kashy, 2002), the treatment of time as a fixed rather than a random effect (e.g., van der
Leeden, 1998), and assumptions about the nature of change across time (e.g., Wallace & Green,
2002). Advances through the past two decades or so have led to powerful and flexible models for
describing data from longitudinal studies, particularly through the consideration of longitudinal
data as multilevel in structure. However, availability of options for the statistical treatment of
longitudinal data has not effectively translated to ease of application of these analytic strategies in
practice (Mason, 1995). Particularly for future and current substantive researchers, who may be or
have been successful at their required courses in statistics in graduate school but who would not
classify themselves as professional statisticians, demystifying the technologically complex
literature on multilevel models may improve the likelihood that analyses of data from longitudinal
studies move beyond a rigid analysis of variance formulation. One way to approach this
demystification is to break down these strategies into simpler and more familiar concepts and
models such as multiple regression and analysis of variance. Two longitudinal examples are
presented here to illustrate this approach. I focus on relatively simple models in both examples and
represent rate of change as a linear trend.

DATA STRUCTURES
Longitudinal data can arise under scores of different research designs. To provide a

context for some of these design characteristics from the field of AIDS prevention, consider the
changes in attitudes towards condom use that are expected to occur as a result of participation in
an HIV prevention program. When information is collected on the same individuals at two or more
points in time, the result is repeated measures in the form of “panel data.” The repeated
observations of attitudes towards condom use can be seen as nested within each person in a study,
yielding a hierarchical structure to the data. The first level of data is the occasion or time when the
attitude information is collected. The second level of data is the actual person on which the data
are collected, and there may be person characteristics such as gender, age, socio-economic status,
or treatment group that could be used to help explain differences between people in their change
across measurement occasions. This opportunity to explain variability in change relative to
different levels of the data is an extremely useful characteristic of multilevel models. Additionally,
within multilevel models it is entirely possible for individuals to vary regarding the number and
spacing of time points. The ability to deal with missing occasions for some individuals and to
work with designs where occasions may vary are two of the greatest benefits of the multilevel
perspective (Bryk & Raudenbush, 1992; Hox, 2000; Snijders & Bosker, 1999).
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Another type of data structure for which multilevel models are commonly employed arises
from naturally clustered data. Evaluations of community-level interventions are one example of
research studies where data are collected cross-sectionally across communities or groups over
time, rather than following specific individuals. Persons clustered within the same community or
group tend to be more similar than persons from a different community or group, a phenomenon
known as the intraclass correlation (ICC) effect (Graubard & Korn, 1994; Kish, 1995; Longford,
1995). Traditional analysis of variance and multiple regression approaches ignore the impact of the
ICC and grossly misrepresent the findings from clustered data sets (Bryk & Raudenbush, 1992;
Hox, 2000; Kreft & deLeeuw, 1998; Murray, 1998). However, multilevel modeling allows the
researcher to appropriately conduct simultaneous analysis of individuals and their community
settings (Jones & Duncan, 1995).

Example Data Sets. The panel study was designed to investigate the effects of a behavioral
intervention for seropositive gay males in the Northeastern United States. The intervention was
based on the information-motivation-behavior theory of individual behavior change (Fisher &
Fisher, 2000; Fisher, Kimble-Willcutts, Misovich, & Weinstein, 1998). Two versions of the
intervention were used. Content remained the same, but the first group met multiple times over a
period of eight weeks and the second group met over an entire weekend retreat. Using HLMv5
(Raudenbush, Bryk, Cheong, & Congdon, 2000) individual growth curves were fit to the data and
intervention effectiveness was evaluated by change in slope of linear growth relative to individuals
in a comparison condition. The repeated cross-sectional study evaluated an HIV prevention
intervention for women in high-risk communities across the United States (Lauby, O’Connell,
Stark, & Adams, 1999; Lauby, Smith, Stark, Person, & Adams, 2000). A cross-section of women
within each community was sampled during each wave of data collection, and there were four
annual waves of data collection in eight matched communities (four intervention and four
comparison). Random coefficients models were fit to the data using SAS to assess the interaction
of time by condition (the intervention effect).

Example 1: Longitudinal Panel Data. Self-confidence in the use of condoms is the
outcome variable used for the first example. Change in individual growth was modeled as a linear
trend, consistent with the availability of only three waves of data, with time measured as 0
(baseline), 3, or 6, representing number of months since baseline. The level 1 model includes time
as the only predictor. In the example, no time-varying covariates are introduced at level one, but if
necessary they could easily be incorporated into the model as additional independent variables.
The level 1 model is: Yti = π0i + π1iTti + eti.

By convention, within person effects are indicated by the symbol π. Yti represents the self-
confidence outcome for individual i measured at time t. Tti represents the variable measurement
occasion in terms of number of months from the baseline assessment for person i (0 is used as the
baseline time point). The slope, π1i , is the growth rate or growth parameter for the ith person. This
person-specific parameter represents the linear change or growth in self-confidence. The intercept,
π0i, represents the expected self-confidence rating of the person at baseline (Tti = 0), also called
initial status (Raudenbush & Bryk, 2002). The within-person residuals, eti, are assumed N(0, σ2).

At level 2, the goal is to investigate variations in the estimates of initial status for self-
confidence (π0i) and in the linear growth parameter (π1i) attributable to intervention group
(eightweek, weekend, or comparison group). If, for example, change occurs faster in an
intervention group, the slopes for people in that group should be larger than in the comparison
group. Similar to ordinary least squares (OLS) linear regression, dummy codes are created to
represent group membership and are used as predictors of the level 1 effects. The between-subjects
models are: π0i = β00 + β01(D1)i + β02(D2)i + r0i

π1i = β10 + β11(D1)i + β12(D2)i + r1i

D1 and D2 represent the dummy codes used in the analysis with the comparison group as the
referent. D1 takes on the value of 1 for the eightweek group; D2 takes on the value of 1 for the
weekend group. Accordingly, β00 and β10 represent the expected baseline and slope, respectively,
for the comparison group (when D1 and D2 are both 0). The coefficients for D1 and D2 indicate
how much these expected values increase or decrease for each respective treatment group. There
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are two random effects at level 2, r
0i and r

1i
 , with variances τ00 and τ11, respectively, and a

covariance τ01. The covariance reflects the relationship between initial status and rate of change.
For a linear growth curve, these variances and the covariance can be used to find the correlation
between initial status and rate of change. In general, a negative correlation suggests that low initial
status would tend to be associated with larger slopes (stronger gains over time), and high initial
status tends to be associated with less change. Intuitively this makes sense; individuals starting off
as very confident in their use of condoms have less room to improve dramatically over time. There
are some interesting conceptual similarities between the level 1 model and an ordinary least
squares regression model of the outcome on time as the only predictor. Assuming there are 139
subjects each having three occasions of measurement, there could be 139 regression models based
on three observations each. The intercepts from each of these 139 regressions represent the
expected baseline response or starting point for that individual, and the slopes represent that
individual’s expected linear change in self-confidence for condom use as time increases by 1 unit
(1 month). For example, the first person in the comparison group has an individual linear growth
equation with an intercept of 3.939 and a slope of -.061. The first person in the eightweek group
has an intercept of 3.648 and a slope of +.024.

Given these 139 regressions, with different intercepts and outcomes for
individuals, it would be interesting to see whether or not these differences can be
statistically accounted for by the intervention group; in essence, this would illustrate an
intervention effect (threats to validity not withstanding). One approach to determining if
the interventions made a difference relative to change in the comparison group would be
to average the slope estimates for each group and test for differences across the groups.
Conceptually, this is similar to subjecting the collection of level 1 slopes to a multiple
linear regression, with dummy codes for group membership used to test for differences
across the groups. Group differences at baseline could be investigated in a similar fashion.
Two problems arise however. The first pertains to how the level 1 coefficients are
estimated, and the second issue is how to use these level 1 estimates to assess intervention
differences. The process of averaging the collection of slopes or intercepts assumes that
they were estimated with equal reliability for all participants. This, however, is not the
case, since some participants did not complete all survey administrations. While
comparing “average” intercepts and slopes across the groups conceptually makes sense,
better estimation and testing methods are available. Details on estimation principles may
be found in more theoretical expositions of multilevel modeling (e.g. Bryk & Raudenbush,
1992; Raudenbush & Bryk, 2002; Snijders & Bosker, 1999), and I mention them only
briefly here. First, rather than using OLS estimates of the level 1 intercepts and slopes in
equation (1), which are free to vary among individuals, estimates of these coefficients are
determined using empirical Bayes (EB). An empirical Bayes estimate for a participant, or
unit, “utilizes not only data from that unit but also data from all other similar units”
(Raudenbush & Bryk, 2002, p. 66). This estimation strategy allows for optimal estimates
of individual intercepts and slopes given the presence of incomplete data. Second, once
the EB estimates for the level 1 coefficients have been determined, we can return to our
earlier question regarding differences in “average” intercepts or slopes between the
intervention groups. Again, OLS does not offer the best estimates. Instead, generalized
least squares (GLS) estimates are used, which are precision-weighted estimates taking into
account the differential precision expected from contributions of different units. Finally,
the residual variance at level 1, the variances of the random effects at level 2, and
covariances between the level 2 random effects are determined through maximum
likelihood (ML) techniques.

Example 1 Results: Panel Data. Table 1 provides the results. The first analysis is an
unconditional model, where intervention effects are not assessed, only variability in intercepts and
slopes is determined. The second analysis models the level 1 intercepts and slopes using two
dummy codes to indicate group belongingness. Results show that when the intervention effect is
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not considered (unconditional model), the slopes seem to be flat on average (�10 = .014, p=.102),
indicating close to zero slope and consequently no linear trend over time. However, considerable
variability exists in the individual slopes across time (�= .00089, p=.079). Initial status is high
(�00 = 4.11, p=.000), but there is also considerable variation in initial status estimates of
confidence for condom use (�00 = .17906, p=.000).

We now turn to the analysis designed to determine if treatment group can account for
some of the variation in the slopes and initial status estimates. For the level two models
conditioning the slope and intercept estimates on treatment group, two dummy coded variables are
included as predictors (D1=eightweek group versus comparison, D2=weekend group versus
comparison). The correlation between initial status and rate of linear growth was near zero
(r=.046). The considerable variability in initial status could not be accounted for by group
differences (τ00 = .17814, p=.000), with only .5% of the variability in initial status explained by
treatment group ((.17906 -.17814)/.17906)). However, treatment group accounts for 34.83% of the
variability in linear growth rates ((.00089 - .00058)/.00089). Relatively little variation in the time
effect remains to be explained by other potential variables for this sample of individuals (τ11 =
.00058, p=.127). The linear trend in the comparison group was positive but weak (β10 = .026,
p=.120). The eightweek group showed slightly stronger improvement over the slope in the
comparison group (for D1, β11 = .021, p=.438). Relative to the trend in the comparison group, the
weekend group showed a decrease in rate of change (β12 = -.030, p=.130). The weekend group,
however, had a high and non-variable self-confidence level on average across the three occasions
(means for this group are: 4.14, 4.13, 4.12).

Table 1 HLM Results for Confidence in Behavioral Skills
Level 1 parameters and their predictors Unconditional Model Conditional Model (treatment group as

predictor)
Model for Intercepts (π0i)
     β00 4.11**   (p=.000) 4.19**  (p=.000)
     β01 (D1) ----- -.210     (p=.118)
     β02 (D2) ----- -.058     (p=.575)
     Variance (τ00) .17906**    (p=.000) .17814**  (p=.000)
Model for Slopes (π1i)
     β10 .014    (p=.102) .026    (p=.120)
     β11 (D1) ----- .021    (p=.438)
     β12 (D2) ----- -.030    (p=.130)
     Variance (τ11) .00089*    (p=.079) .00058    (p=.127)
Residual variance σ2 .34633 .11889
** p<.01, *  p<.10

Example 2: Repeated Cross-Sectional Data. Perceived advantages for consistent condom
use (“pros”) with one’s main partner is the variable analyzed in this example. Recall that in the
panel study, the data were treated as nested within the individual. In a repeated cross-sectional
survey, different individuals are interviewed from within the same communities over time; the
resulting data are nested within each community. This structure compels the researcher to consider
an analysis where (1) intercepts (baseline characteristics) and slopes (time effect) may vary
between communities; and (2) the positive intraclass correlation expected in the data due to
ecological or geographical similarities of communities is accounted for in the determination of the
intervention effect (time X condition interaction). In this research situation, the random
coefficients model provides the most plausible representation of the data, since the data are
naturally clustered within communities (Longford, 1995; Murray, 1998).

Understanding the model used to address these issues can be accomplished by first
considering the situation for one city. Within one city, two areas are designated as either
intervention or comparison communities: the condition effect. Four waves of data are collected
from each of these groups or communities: the time effect. The simplest model to fit to the data
represents time as a linear trend; such a model is reasonable when only one baseline survey is
collected within each group or community (Murray, 1998). As a result, the problem is a
straightforward analysis of variance design:  the outcome Y=perceived advantages of condom use
with one’s main partner; Factor A is “condition” with two levels, factor B is “time” with 4 levels,
and the interaction effect is also the intervention effect, “time by condition.” If the intervention is
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successful at improving attitudes towards condom use, we would expect to see a departure from
parallel slopes between conditions, and observe a greater linear slope estimate for the intervention
condition. The model is familiar as the factorial analysis of variance model: Yijk = µ + αj + βk + (αβ)jk +
εijk . We can improve on the representation of parameters in this model by using Cj to represent
condition (0=comparison group, 1=treatment group), and by writing time as a fixed factor with a
linear trend:Yijk = µ + Cj + Tlintk +(CTlint)jk + εijk. In these equations, Yijk represents the ith person’s
attitude measure in the jth condition at the kth time point. Time is measured as 0, 1, 2, or 3,
representing time in years from baseline. These models can be easily fit and compared for each of
the four cities in the data set.

However, one of the primary goals of this evaluation study was to determine if the
intervention was effective across all the cities included in this study, with the desire to be able to
generalize to other communities similar to the ones included in the intervention. Therefore, a
model was developed to include group (or city) as a random effect (Gk:l) in an expanded prediction
model. Structurally, the data collected is treated as nested within each city. Using SAS Proc
Mixed, the following (general) linear random coefficients model was fit to the data:  Yi:jk:l = µ + Cl +

Tlintj + TlintjCl + Gk:l + Tlintj Gk:l + Σβ0(X0i:jk:l - X 0…) + εi:jk:l. Random effects are indicated in bold print. The
outcome represents the perceived advantages of condom use for the ith person nested within the jth

time period in the kth group within the lth community. The random coefficients model allows the
intercepts and slopes to vary between level 2 units, the communities, but no attempt is made to
explain this variability (Raudenbush & Bryk, 2002). In this model, heterogeneity among the group
specific slopes and intercepts are represented by the random effects: Gk:l and Tlintj Gk:l. With the
clustering effect inherent in the data, failure to include these random effects in the model (as if all
individuals in the same condition, regardless of city, were combined and a factorial analysis run to
compare time trend across the two conditions), would seriously inflate the type I error and
misrepresent the findings. A propensity score adjustment was used in these analyses. This is a
composite covariate used to adjust for demographic differences related to selection effects.
Variance components are determined for those sources of variation in the model that involve a
random factor. These include the variability among the group:condition specific intercepts (σ2

g:c),
the variation among the group:condition specific slopes (σ2

t(lin)g:c), and variation among members
(error variance) within time by group:condition (σ2m:jk:l). The random coefficients analysis also
provides an estimate of the covariance (if any) between the slopes and the intercepts.

Example 2 Results: Repeated Cross Sectional Data. The random coefficients model allows
each community to have its own slope and intercept. Results of the analysis are shown in Table 2.
Table 2 Linear Random Coefficients Model for Perceived Advantages of Condom Use with Main Partner
RANDOM EFFECTS
Variance Covariance Matrix

Intercepts Slopes
Intercepts .0053 -.0032
Slopes -.0032 .0036
Individual level random effects:  σ2m:jk:l = σ2e = .4729
FIXED EFFECTS
Source NDF DDF Type III F p
Cond 1 6 0.97 .3616
Year 1 6 3.05 .1313
CxYear 1 6 0.89 .4056
Segment 4 6405 5.16 .0004

The effect of interest is the intervention effect and is represented by the Time by Condition
term in the model. For the pros of condom use with a main partner, the findings were not as strong
as expected. Encouraging women to use condoms with their main partner, even when that partner
may be putting them at risk for HIV, presents an enormous challenge to intervention researchers,
so sensitive tests of intervention effects are very important. Although repeated cross-sectional
designs are becoming more common in the research community, particularly in understanding
health promotion efforts (Koepsell, et al., 1992; Murray, 1998; von Korff, Koepsell, Curry &
Diehr, 1992;), our data were fairly limited due to the short time series and the small number of
communities included in the study. Increasing the number of communities, or lengthening the
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series in which data are collected, can enhance the ability to detect intervention effects across
varying groups.

CONCLUSIONS
Although multilevel analyses can be quite complex, I have tried here through simplified

analyses to focus on their relationships to familiar and well-understood analytic tools, such as
multiple regression analysis and analysis of variance, which was the primary goal of this paper.
Instructors of multilevel techniques can begin to demystify some of the complexity by constantly
referring back to these less cumbersome analyses. While no analysis can fully compensate for all
of the design issues affecting the two studies presented here, models that truly reflect the structure
of the data are clearly going to offer the most useful information as we continue to seek best
practice in health promotion efforts and in the analysis of change. While there is much more to the
world of multilevel modeling than I could possibly cover here, I hope that the approach laid out
provides a helpful starting point for those teaching others or working with multilevel models
themselves. In terms of learning how best to improve health or decrease risk from disease for
individuals or communities, the challenges of becoming comfortable with multilevel modeling
strategies may at first appear daunting, but the benefits of their use may surely be even greater.
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