
ICOTS6, 2002: Blejec           
 

 1

TEACHING STATISTICAL CONCEPTS WITH SIMULATED DATA 
 

Andrej Blejec 
National Institute of Biology 

Slovenia 
 

Different kinds of data are used in teaching statistics. In applied statistics courses we usually use 
real life data related to the main subject matter of our students. Such data are interesting for 
students and motivate final interpretation of statistical results. For demonstration of statistical 
concepts, computer simulated data with known statistical properties can be used. The advantage 
of such data is that results of analysis can be compared with known and pre-defined properties of 
data. Many important statistical concepts and procedures can be obviously shown with computer 
simulations and dynamic graphics. Such simulations can sometimes be more convincing than 
proofs and are appreciated by students. 
 
INTRODUCTION 

One of the goals of statistics teaching is to show students how to apply statistical 
methods. We try to attract their attention by application of statistics to real life problems or 
problems from their specific field of studies. Such examples, usually connected to a story that 
describes the problem, motivate students to interpret statistical results according to the problem 
context (Fillebrown, 1994). While such method gives students a possibility to see and get familiar 
with what we call "statistical thinking", it is sometimes difficult to see the analytical potential and 
limitations of the applied statistical method. 

To understand and interpret statistical results one has to adopt many statistical concepts. 
Some are as simple as the central tendency or variation of natural and social phenomena. Some 
are less obvious and are often described and presented in a way that needs some mathematical 
insight or abstract thinking. In such cases, non-mathematically oriented students feel very 
uncomfortable and are unable to understand the meaning of such concepts. Generations of 
students have problems with understanding important concepts as, for example, confidence 
interval, standard error or true meaning of p-values. 

For correct interpretation of, let's say confidence intervals, one has to understand its 
meaning. Without that, reporting the confidence interval for the mean is merely the calculation 
drill or even just another mouse click in a statistical package, despite the interesting project in 
which it is applied. Sometimes, the real life project data are too complex and one cannot say if the 
real interrelations are described (Mackisack, 1994). For better understanding, the meaning of 
certain concepts and methods can be demonstrated and presented by the use of simulated data 
with known statistical properties. In such cases, one can say whether the tested method can reveal 
real property or data relation. 

 
REAL, INVENTED AND SIMULATED DATA 

Though the ultimate goal of statistical investigation is making decisions in context sphere, 
it is not necessary that complete learning is performed only by context related problems. Though 
the use of real data is attractive and motivates students, the problems are often too complex in 
structure and sometimes require deep knowledge of subject matter if we wish to make reasonable 
interpretation. Since the real data structure is unknown, we cannot be sure if the applied method 
revealed it. To avoid the problem of complexity, problems are simplified, sometimes even 
oversimplified. They become in a sense similar to invented data, sets of raw numbers used just to 
practice statistical calculations. They have no background story and the results are just numbers 
whose correctness can be checked on answer pages in the textbook.  

To demonstrate statistical properties and concepts we can use simulated data with known 
statistical properties. They are samples from distributions with known type and parameters, for 
example normal with known mean µ and variance σ2. With such data one can see whether the 
applied method (e.g. arithmetic mean of a sample) can reveal the imposed property (e.g. true 
population mean µ). Or, for demonstration of properties and power of linear regression, we can 
construct variables with known linear relationship: samples of normally distributed variable 
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X~N(µ, σX 
2) and error term ε~N(0, σ2), with known variation of X and ε , combined into variable 

Y by linear relation Y = β0 + β1X + ε, where β0 and β1 are known model constants. Such data are 
usually generated by computer, using the random number generators present in every computing 
program or programming language. Computers are essential for demonstration of statistical 
concepts via re-sampling i.e., generation of large number of samples with the same predefined 
statistical properties and comparison of statistical results on such sets of samples. 

 
RESAMPLING 

One of the basic methods for computer-supported demonstration of statistical concepts is 
resampling (Good, 2001). Sample after sample is taken from the population with known 
parameters. To each sample, the considered statistical procedure is applied and the distribution of 
results is inspected. A typical example of resampling procedure is demonstration of sampling 
distribution of a mean, standard error, and confidence intervals. Results can be presented by 
dynamic computer graphics in attractive and obvious way. Since “seeing is believing”, students 
can get the feeling for such concepts as central limit theorem, influence of the sample size on 
sampling distribution shape and variability of estimates. Because the true mean value is known, 
students can check how many confidence intervals include the true mean and get the insight into 
the real meaning of confidence interval and confidence level. 

Using the same procedure for estimation of variance, one can demonstrate properties of 
"divide by n-1" rule, which confuses many students in elementary statistics courses. Plot of the 
estimates of biased estimator (divisor n) and their sampling distribution for small samples (Figure 
1a) shows the skewed distribution with expected value, which is smaller than the true value. The 
bias disappears if the unbiased estimator (divisor n-1) is used (Figure 1b). The sampling 
distribution is still skewed to the right, which means that, for the variance σ2 one should not 
construct symmetric confidence intervals (based on normal distribution properties) but rather 
asymmetric ones, based on the χ2 distribution. 

 

Figure 1. Empirical sampling distribution (histograms, 200 samples) for biased (a) and 
unbiased (b) variance estimators. Dots: estimates of variance (sample size n=9), horizontal lines: 
confidence intervals, vertical line: true variance value σ2, triangle: sampling distribution 
(histogram) mean value. Note that the mean value (triangle) in (a) is smaller than the true value. 
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MAXIMUM LIKELIHOOD ESTIMATION 
Many students have difficulties in understanding of maximum likelihood estimation. 

Using the interactive dynamic computer graphics it can be shown that it is essentially an educated 
guessing procedure. For that purpose, first a sample from known population is taken and plotted 
as shown by tick marks on upper panel of Figure 2. Students can be asked to guess what the mean 
value would be. Next, using the mouse or other pointing device, the proposed parameter (e.g. 
mean) value is selected. The individual data likelihood, according to the proposed distribution, are 
plotted as vertical segments (Figure 2, upper panel) showing the sketch of the proposed 
distribution. The log likelihood for proposed value is plotted in the lower panel of Figure 2. After 
selection of some values and inspection of different situations, the shape of log likelihood 
function leads to an observation, that the best proposal is at the maximum of log likelihood 
function. The situation with the best estimate for given sample and true distribution curve is 
plotted for comparison and observation of the lack of fit. 

In a similar way, the estimation of standard deviation can be illustrated (Figure 3, the 
same data as in Figure 2). This time the proposed parameter values change the spread of 
distribution. In the same manner as in previous example, we can observe that some guesses, next 
to the maximum of a log likelihood function in lower panel of Figure 3, make more sense than 
those far away. The least squares estimation can be illustrated in similar fashion, making clear the 
concepts as deviation from the mean and minimum sum of squared deviations principle.  

 

Figure 2. Maximum likelihood estimation of the mean. Log likelihood for some proposed 
values for µ (circles) with the best estimate for given sample (vertical line) are plotted in lower 
panel. Individual data are presented as ticks (upper panel). Vertical segments are individual data 
likelihood for the best estimate. Curve represents parent distribution (µ = 3) from which sample 
(n=10) was taken. 
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Figure 3. Maximum likelihood estimation of the standard deviation (σ =1). Upper panel: 
modeled distribution curve(thick line), estimated distribution curve (thin line) with vertical 
segments at individual data. Lower panel: log likelihood for some proposed values (dots) and best 
estimate (vertical line)for given sample. 

LINEAR REGRESSION 
For demonstration of linear regression properties, data based on linear model 

Y = β0 + β1X + ε are simulated. All parameters of linear model are known: β0 and β1 are selected 
model constants, X and ε are normally distributed X~N(µ, σX 

2) and ε~N(0, σ2) with selected 
parameters. With some resampling it can be shown, that the distribution of Y is normal with mean 
value µ Y = β0 + β1µ and variance σ2

Y = β1
2σX 

2 + σ2. To get the feeling for closeness of sample 
picture and model picture, we can generate series of samples and plot the data and regression 
lines. Students can get the notion of the influence of error term variation and how it is connected 
to the coefficient of determination r2 = 1 – σ2/σ2

Y. A series of regression lines and model line are 
plotted in Figure 4. The regression lines differ from the model line due to the variation of the 
error term. Students easily notice that the lines are embedded in the curved regression line 
prediction band around the model line (Figure 4, right panel), which can be transformed into 
confidence band for particular regression situation (Figure 4, left panel). Looking at the results of 
regression for many simulated samples and comparing the estimates of model parameters and 
coefficient of determination (in example from Figure 4: 0.0415, 1.2400, 0.567) to the model 
parameters (0, 1, 0.5) students can learn to what extend the method can show the true data 
structure. Getting familiar with the power of the method on simple and pure simulated data the 
students are prepared for inspection of real life data in which they will be able to interpret lack of 
fit or understand the meaning of confidence band. 
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Figure 4. Linear regression confidence band. Left panel: regression line (thin line), based 
on a sample (dots) with n=50 with model line (dashed) for modeled data (on top) incorporated in 
95% confidence band (thick curves). Right panel: regression lines from 15 different samples (thin 
lines) with 95% prediction band (thick curves) - essentially the envelope of the set of regression 
lines. 

DISCUSSION 
Computer simulated data have many advantages in teaching statistical concepts. Their 

statistical properties are known and one can see the connection of data properties and results of 
analysis. It is easy to change the properties and observe the influence of such changes for the 
analysis. Many users of statistics feel uncomfortable to select appropriate statistical method since 
they are not sure if necessary assumptions for specific method are met by their data. It is easy to 
simulate the data not meeting the assumptions (for example non-constant variance of error term) 
and show possible fallacy of results. 

Graphically supported simulations can - to some extent - replace proofs, usually not 
understandable for non-mathematics majors. Maybe they can answer Moore's question: "If an 
audience is not convinced by proof, why do proof? (Moore, 1996). Simulated data have to be 
combined with real life data and projects (Mooney, 1995). They serve as pure and simple data on 
which we can train our perception for statistical results and learn what patterns and properties in 
data can be revealed by applied method. After such preparation students will be able to interpret 
the real life and subject matter data in all their complexity. 
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y =  0 + 1 *N(0, 1 )+N(0, 1 ) 
 n= 50   Conf. level = 0.95   r^2 =  0.5

y =  0 + 1 *N(0, 1 )+N(0, 1 ) 
 n= 50   Conf. level = 0.95   r^2 =  0.5

0.0415  +  1.24  * X
r^2= 0.567


