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In an ideal world, science students would act as scientists do: investigating their own questions, 
designing experiments, and so forth. This paper reports on curriculum development and field 
testing that takes a step in this open-ended direction. To do this, we have focused on integrating 
more data analysis into science activities; this also gives students a chance to use more 
mathematics, in an understandable context. This mathematics includes work with functions and 
variation. A closer look at plausible activities shows us that principles of measurement connect 
these elements; furthermore, a broad view of measurement reconnects us to our original goal: to 
expose students more directly to the nature of science. 

 
INTRODUCTION 

Our project integrates mathematics into the science curriculum through increased 
attention to data analysis. Data analysis is a natural bridge between science and mathematics; 
mathematics students get a welcome context in which to practice their skills, and science students 
get new and powerful tools to help them understand content. Yet data analysis is complicated; 
fortunately, new advances in technology can help students use mathematical tools they might 
otherwise be unable to use. We can also ask why more mathematics has not been integrated into 
science already. The stereotypical answer—which is largely true—is that the students “can’t do 
the math”. While we can glibly say that technology will help them, a more interesting question to 
ask is, “just what math is it that we want students to use in the science classroom?” 

The curriculum development we have done on this project to date has, as of December 
2001, consisted of developing prototype laboratory activities and doing extensive field tests. If we 
look at the math in these labs, we easily see measurement when students get their raw data. But to 
analyze the data (which occurs partly before measurement) students need to use many mathema-
tical ideas; chief among these seem to be functions and variation. Interestingly, we can also look 
at function and variation, as we use them in data analysis, as sophisticated tools for measurement. 

So let us talk about measurement. Of all the areas covered by standards documents from 
the United States (e.g., NCTM 2000), measurement is the weakest. In the early grades, it focuses 
on skills such as learning to use a ruler; later on, it extends itself only as far as units analysis and 
formulas for volume. Measurement error gets a brief nod; the main idea is not to carry too many 
decimal places. In the data analysis and probability strand, there is some discussion of residuals, 
but we do not discuss their causes. And while students are  to “understand the distinction between 
a statistic and a parameter” (p. 325) the idea that you can find a parameter based on data is limited 
to finding a proportion based on a poll. In general, science standards documents are not much 
better. With the few notable exceptions (for example, the Benchmarks documents: AAAS 1990, 
1993, 2001), they are weighed down by the massive amounts of content they seem obligated to 
cover (even NRC 1995, while a good document, suffers from this content-heaviness). 

So let us first take a broad view of the mathematics we do when we do science. Then we 
will look at a sample curriculum activity field-tested in a high school, and discuss the 
mathematics in it. This activity highlights functions and variation, and we will be able to see how 
closely these are related to measurement in this context. Finally, we will comment on the 
importance of measurement to our subsequent curriculum development, to data analysis, and to 
the study of the nature of science. 

 
THE MATH WE DO WHEN WE TALK ABOUT SCIENCE 

Here is a list from Erickson (2001)—roughly ordered by complexity — of ways scientists 
use mathematics. I do not claim that it is comprehensive, but it is a useful starting point for 
discussion: 

1. We use mathematics—or at least numbers and categories—to record data.  
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2. We use mathematical ideas, e.g., the concept of a variable, to organize our thinking and 
plan just what data we will collect.  

3. We use mathematics (some would say computer science) to organize, clean, and 
transform our data, to get it ready to analyze. We may have to write a formula to tell 
when an event happens; or we might need to use relational formulas to look up data in 
another table; or we might have to clean up or transform our data—for example, to look 
at a change rather than an absolute amount. We often forget that this “data preparation” is 
an important, often time-consuming part of data analysis (Gould 2001). 

4. We use mathematics to make indirect measurements. This goes beyond trigonometry for 
inaccessible distances. For example, knowing a symbolic relationship among variables, 
we first solve for the one we want to determine; then we measure the others and calculate. 

5. We use mathematical functions to model phenomena. To be sure, we can calculate using 
formulas, e.g., to find the force of gravity on the surface of the moon. But real 
understanding comes when we think of the phenomenon functionally, e.g., to see how 
that force decreases as we get farther away. Recursively-defined functions and many 
types of simulations can be models as well.  

6. We use mathematics to describe departures from a model. Models typically oversimplify; 
often we draw the most interesting conclusions from the way data depart. 

7. We use mathematics to cope with variability in data. This goes beyond insisting that 
every measurement have a “plus-or-minus.” For example, we might calculate standard 
errors, or repeatedly simulate an inexact measurement process.  

8. We use mathematics to decide if we can reject a hypothesis based on quantitative results. 
Often this requires only an informal comparison of data to model, but sometimes we need 
statistical inference in order to assess whether an observed effect could be due to chance.  

9. Mathematics—logic and statistics—also helps implement our experimental designs (e.g., 
to control variables both informally and using multiple regression or analysis of 
variance). 

10. We use multiple mathematical representations—graphs, of course, but also tables, charts, 
and formulas—to help us understand the story the data tell and to communicate with 
others. The more representations we have at our disposal, the more flexible we are at 
exploratory data analysis and communication. 
 

AN EXAMPLE ACTIVITY: GALILEO’S RAMPS 
The Galileo’s Ramps activity is a common laboratory in USA high-school Physics 

classes, often in year 11 or 12. Students roll ball bearings down metal tracks, using stopwatches to 
time how long it takes the ball to roll different distances. Measuring the time introduces the most 
inaccuracy. Without computer technology, teachers instruct students to take many measurements 
at each distance (the class we visited had traditionally done nine neasurements at each of six 
distances). Then students average the measurements to get a single timing for each distance, 
which they then plot by hand in a scatter plot of distance versus time. The point is for students: 

first to realize that the points fall on a parabola of the form d = 
1
2 at2 (a is an acceleration); second, 

to figure out the acceleration. An extension asks them to see how the acceleration depends on the 
angle of the ramp. 

Problems with this arrangement included: 
• Averaging the points and plotting them by hand was extremely laborious.  
• The points looked at first glance as if they might easily be fit by a line. 
• It was not obvious that students should try a parabola, even once they decided the data 

were not linear. 
• It was not obvious how students were to determine a best fit parabola, even once they 

decided the data were quadratic. 
The first change we made to the activity was to eliminate the averaging. Since students 

could make graphs easily, we wondered what we could do if they plotted all of the data instead of 
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just the means. Figure 1 shows sample student data; the students used the software package 
Fathom (KCP Technologies, 2000). We also show what the “averaged” graph would look like. 

 

  
Figure 1. Sample Student Data (left). At Right, the Data Averaged over Each Position. 
  
With just this graph, we can ask interesting questions, such as why the clusters of points 

are horizontal. This helps less-experienced students firm up their understanding of what the graph 
is telling them. But it also brings up important questions such as whether time should be on the 
vertical axis. Some groups decided to do the lab that way; with Fathom it is a matter of a moment 
to switch axes, so we could leave it up to them. Now we asked the students to try to fit a line to 
the data. Fathom has a Movable Line feature; students place a line on the graph. As they move the 
line with the mouse, the equation for the line updates continuously. They can even make a 
residual plot from that line, which also updates.  

While this line is plausible at fitting the data on the graph, a student always mentions that 
it really should go though the origin, as it should take no time to go no distance. (And if a student 
had not pointed it out, we could have easily asked about it.) So we can either ask Fathom to Lock 
Intercept at Zero or add another point at the origin—which appears immediately on our graph. 
Figure 2 shows both. 

 

 
Figure 2. The same data with a movable line passing though (0, 0) and a residual plot. As you 
move the line, the equation changes at the bottom of the graph, and the residual plot updates. 

 
 Here we pointed out that the “bowed” pattern in the residuals shows that a line is not the 

best model for our data. This is not obvious to all students, but playing with the line, and seeing 
the residuals update, helps them understand the residual plot and what it means. So students tried 
curves. Even though they had just been studying uniform acceleration, students tried a wide 
variety of curves: parabolas, exponentials, even the tangent function. It is easy to plot a curve in 
Fathom if you can express it symbolically, and easy to get the residuals from that model. But 
what values should you use for the parameters the curve requires?  

Fathom does not provide “movable” versions of all elementary functions as it does for the 
line. Neither does it automatically make least-squares fits to curves. While movable parabolas and 
exponentials might be a good idea for a future version, we think the lack of nonlinear least-
squares fits is an advantage for learning, helping students avoid what we often see elsewhere: a 
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scattershot approach where they try every possible function and choose the one with the “best” fit, 
as measured by r2 or its equivalent, irrespective of visible patterns in the data or (especially) any 
reason to expect that functional form. Instead, in a statistics class, we might well ask students to 
transform the data and make a linear fit. Or, as we do here, to use another of the dynamic features 
of the software: sliders.  

A slider is a variable parameter that, when you slide it, changes a global value. This can 
be many things; here, we use it for a coefficient in a function. We asked students to find the range 
of values of the acceleration that they thought could be correct given the data. Figure 3 shows, at 
right, a graph with two plausible curves—and the sliders that determine these accelerations. 
Asking students for a range of parameters helps them appreciate that the variation in the data 
implies an uncertainty in the parameter they derive—and even gives them a clear visual 
representation of that uncertainty. 

 

  
Figure 3. At left, the data with a parabola and its residuals; at right, the data with two parabolas 
plotted corresponding to the maximum and minimum “plausible” acceleration. 

 
Note that we can also discuss what makes a plausible fit. Here, the class felt that the 

curves should go though, or at least be close to, all six clusters of points. Note the cluster at a 
distance of 2 meters—the tightest of the clusters. Since the points are so close together, they force 
the parameters close as well (this is a good statistical lesson should they address it later). But 
notice: if they had just used the means, that point would have appeared as an outlier, and they 
probably would have ignored it. That is, in this case, what we would see as the best, most 
influential data would have been thrown away. 

Let us return to the issue of the form of the function. One group, for example, persisted in 
using the tangent function because it fit the data so well; at least as well as the parabolas when we 
looked at residual plots. But we could then display the data and the function on the class projector 
and discuss whether it was reasonable to use the tangent. Students had many cogent objections to 
the tangent, besides the fact that they finally remembered that uniform acceleration was quadratic. 
Two of the most interesting were, first, that the tangent implied what looked like an infinite speed 
when you reached the asymptote; and second, that the tangent required more parameters—and if 
you could do just as well with that one-parameter parabola, why not use it? That is, the student 
had come up with Occam’s Razor independently. Then we could ask the critical question: what 
could you do to tell whether the tangent or the parabola was a better model? They all knew: take 
more data. Then we could ask: take more data, where? that they knew as well: farther out, where 
the tangent group’s model blew up. 

 
ABOUT THE MATHEMATICS 

As suggested at the outset, this approach to data analysis lets students use more of their 
math-class knowledge of functions than the old, plot-one-parabola-by hand version; the ease of 
plotting any function, and the dynamic sliders gives students a rich experience with different 
elementary functions and their parameters. Then, plotting all the data gives students more 
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experience with and intuitive sense of variation. Asking for a plausible range of parameters 
connects the ideas of functions and variation. 

What does this have to do with measurement? First, we can ask students directly which 
variable contributed more to measurement error; and they can see that immediately in the graph. 
More important, though, is what we’re measuring. We’re measuring time and distance directly. 
But indirectly, we’re measuring acceleration, and that’s really the point of the whole exercise. To 
do that, we could measure a single distance/time point and plug the results into a formula, but to 
really understand whether we’re doing the right thing, we need to understand the function that 
relates these three quantities. And we need to assess the whole function—not just a point—by 
comparing that model to data (for example, with the residual plots). Finally, we can assess the 
uncertainty in the acceleration by looking at how variation in the data affects our estimate of that 
parameter.  

This is deep stuff, and, like Occam’s razor, points us into the nature of science—a topic 
often given short shrift in USA secondary science programs, because of the content we feel we 
need to “cover.” It may be that with activities a little more open-ended than this one, students can 
take even more responsibility for deciding what to measure and how to measure it well; that is, 
they can come closer to becoming experimentalists. In one activity, described in detail in 
Erickson (2001), students receive a (fictitious) scientific “paper” expounding a theory that they 
then support or refute through an experiment of their own design.  

 
CONCLUSIONS 

Thus data analysis is at the heart of what makes science work, but students can’t even get 
to it if data analysis is too cumbersome. Instead, we suggest that we can use statistical/data 
analysis packages to make it much more accessible and interesting—and consequently 
motivating. In our field test, students used more math, and took less time, largely because the 
technology took care of graphing and the laborious calculations that graphing at its most useful 
(e.g., plotting functions over data, making residual plots) requires. 

Another, subtler benefit of technology was that it helps students escape what we might 
call the “tyranny of the center”: by plotting all the data, and determining ranges of parameter 
values instead of a single best fit, students have a better chance to appreciate the importance of 
variation—both in the measurements themselves and in what that variation implies for results. 
Eventually these students may use more formal statistical baggage, for example, to determine a 
confidence interval for the acceleration. But at this stage, that’s neither necessary nor particularly 
desired. 
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