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Over the past several years, statistical educators have been involved in teaching ‘service 
courses,’ where our audiences often come from the social sciences and humanities.  As such, it is 
unlikely that these students will ever become ‘producers’ of statistics – rather, they will be 
‘consumers’ or ‘users’ of statistics.  Thus, the courses we teach these students should reflect this 
fact – instead of focusing on calculations and derivations, our courses are becoming much more 
conceptual. This paper highlights some of the author’s experiences with the transition from 
‘number crunching’ to ‘conceptual’ basic statistics courses, focusing on in-class activities, 
student projects, writing assignments, and using computer packages. 
 
INTRODUCTION 

Some time ago, I was helping a Genetics colleague with the analysis of his fruit fly data 
for which the response variable was binary (success or failure) and the explanatory variable was 
degrees of latitude.  After the data were obtained, the colleague claimed he could “crunch the 
numbers” himself, and proceeded to produce and analyze his derived 2×2 contingency table in 
which one row corresponded to “low latitudes” and the other to “high latitudes.”  He was elated 
when his analysis produced “statistical significant,” the all-important “P < 5%.”  It was then that 
I started to appreciate the great disservice we do when we teach “number crunching” statistics 
courses – courses that emphasize formulas over concepts, rote memorization over reasoning. 

After years of teaching introductory statistics courses, and reflecting on the larger issue 
of statistical literacy in society, I have shifted my focus the past several years away from whether 
to how.  That is, I have come to realize that every educated citizen does indeed need to have a 
basic level of statistical literacy, and have started to think of how specifically we can do that.  
Clearly, when introductory courses are taught emphasizing only the successful use of a given 
formula or set of steps and failing to underscore the underlying statistical model, however, these 
courses perpetuate the misconception that the key to successfully analyzing a set of data amounts 
to using the “correct formula.” 

My Genetics colleague no doubt had taken a statistical methods course similar to the one 
I taught years ago to science and social science graduate students using Ott (1993) and akin to the 
introductory biostatistics course I currently teach to Biology undergraduate students using 
Samuels and Witmer (2003).  These courses cover the usual topics, including one- and two-
sample paired and independent t-tests, categorical methods, nonparametric methods, linear 
regression, and one-way ANOVA.  From the student’s perspective, these courses do indeed 
emphasize (through exams and homework) choosing the proper statistical tool from the statistical 
toolkit and properly using that tool.  Of course, these courses also underscore critically assessing 
any necessary assumptions and conveying conclusions in clear non-technical terms, but the focus 
is more on methods than on concepts. Also, I do encourage my current Biology students to take 
at least one follow-up course, and many have gone on to take an Advanced Biostatistics course, 
in which a great deal of time and effort goes into statistical modelling and the like; the topics 
covered are given at: http://homepages.math.luc.edu/~tobrien/ABTableofContents.pdf.   

In contrast to these Biology students – students who may well go on to perhaps become 
‘producers’ of statistics – I also recently had the opportunity to teach an introductory statistics 
course to humanities and social science majors (‘consumers’ of statistics), and it is this latter 
course and audience which is the focus of this paper. 
 
TOPICS COVERED AND ASSESSMENT 

When I first joined the faculty at Loyola University Chicago in 1998, the textbook in use 
for the Statistical Fundamentals course was Friedman et al. (1998), which does an excellent job 
of downplaying the use of involved formulas and emphasizing underlying statistical concepts.  
For example, instead of conveying the idea of a sample standard deviation with the formula 
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students are asked to find it using the three-step process: 
1. find the sample mean and the deviations for each score, 
2. square the deviations, and average these squares, but using (n-1) in the denominator, 
3. take the square root of this average. 

Students can easily remember this root-mean-square (RMS) process, and this procedure is useful 
later in the course in the chapter on regression.  The book also introduces so-called box models as 
a metaphor for the population under study.  For example, in the chapter that discusses Mendel’s 
genetics work with pea plants involving crossing two heterozygous parents (each with one 
dominant trait, denoted ‘A,’ and one recessive trait, denoted ‘a’), the box model for the 
phenotype of the next generation contains one ‘a’ and three ‘A’s, thereby conveying the 
probability of 75% of observing a dominant offspring.  Box models are also used in Buntinas and 
Funk (2005) and lay the foundation for statistical modelling; see also Moore and Notz (2006). 
 Since the text by Friedman et al. (1998) is somewhat dated and lacks extensive resources 
for instructors, and since I wanted to de-emphasize the calculation of standard deviations, test 
statistics, etc., I used the text by Utts (2005a), which is coupled with excellent detailed resources 
for instructors and with an activities manual, Utts (2005b).  We spent roughly two-thirds of the 
50-minute class meetings covering the text (approximately one chapter per class), and the 
remaining class periods involved in in-class exercises or in the computer lab.  Final grades were 
calculated using the following breakdown. 
 

Midterm Exam   22.5 % 
Final Exam   22.5 % 
Homework and Quizzes  20.0% 
Groupwork and Participation 10.0 % 
Mini-Projects   15.0 % 
Project    10.0 % 

 
Exams were made up of conceptual questions (short answer, multiple choice and fill-in-the-blank 
problems) and exercises, and calculators were required for homework and exams (although used 
much less as for a methods course). 
 The text by Utts (2005a) can be broken into the following four conceptual parts: 

1. Obtaining reliable data (including experiments vs. observational studies, bias, etc.) 
2. Representing data graphically (including regression, 2×2 contingency tables, etc.) 
3. Basics of probability 
4. Estimation (point and confidence intervals) and hypothesis testing. 

I felt that the text did a good job of sharpening student’s eyes in assessing potential biases in 
news and other studies and stories (discussed in part 1), paved the way for hypothesis testing 
(discussed in detail in part 4) by introducing the basics for 2×2 contingency tables in part 2, and 
did not over-do things with details by just covering the basics of probability.  Although the text 
by Utts (2005a) was the primary textbook for the course, I augmented this material by 
introducing box models (for example to illustrate the Central Limit Theorem for independent 
Bernoulli trials), by assigning outside readings from Peck et al. (2006) and Huff (1993), by using 
the Minitab statistical package when needed (see the section “Using the Computer” below), and 
by having students gather and interpret their own data that they found of interest. 
 
CONFUSION OF THE INVERSE, BAYES RULE, AND PROBABILITY TREES 
 On the first day of class, I circulated a Class Survey and gathered data which was used 
later in the course.  One of the questions of this Survey was the following. 
 

Suppose 1 in 1,000 people have a disease.  A test for it has a 10% false positive rate 
and a 10% false negative rate.  If someone tests positive for the disease, the chances 
that they actually have it are about:                    % 
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Approximately 75% of the students in this class answered “90%,” and thus were guilty of what 
Utts calls ‘confusion of the inverse’ thinking that the question was instead asking, “given that a 
person has the disease, what are the chances s/he tests positive?”  We covered this topic in depth 
when we covered probability, and defined specificity and sensitivity, terms that are also useful in 
the context of drug studies.  The manner in which Utts (2005a) introduces Bayes’ Rule is by 
using a 2×2 table; in the above example, the table would be the following. 
 

  How Person Tests Total 
  Positive Negative  

Has Disease       90        10       100 Person’s 
True Status Doesn’t   9,990 89,910   99,900 
Total  10,080 89,920 100,000 

 
I found it useful to discuss this table approach but also to use the probability tree approach, 
wherein the first branch corresponds to the person’s true status, and the subsequent branches 
corresponds to the test results. 

Furthermore, this strategy of using probability trees proved useful later in the course in 
several instances.  First, when discussing hypothesis testing and distinguishing between p-values 
and the probability that the null hypothesis is true, we drew a tree in which the first branch 
corresponded to the veracity or otherwise of the null hypothesis, and the second branch 
corresponded to seeing data as extreme as or more extreme that that which we observed.  In this 
manner, students clearly saw that the p-value is not the probability that the null hypothesis is 
true, a common misconception for beginning students.  Probability trees were also helpful for 
students to visualize the derivation of probabilities for the “Let’s Make a Deal” classroom 
activity as discussed in Utts (2005b, pp. 22-25).  Finally, we considered the so-called random 
response strategy given in Samuels and Witmer (2003, pp. 340-341) to ascertain for example an 
estimate of the percentage of students on campus who are currently using illegal drugs (or some 
other sensitive subject for which it may be doubtful that selected individuals would answer 
truthfully when asked).  The procedure involves subjects discretely tossing two coins.  Subjects 
who obtained an “H” on the first toss answered the question, “Did you obtain a “H” on your 
second toss?”  Subjects who obtained a “T” on the first toss answered the discrete question (such 
as “Are you currently using illegal drugs?”).  If this latter probability is denoted “p,” then 
students can then show that the probability of receiving a “Yes” response is (2p+1)/4, and the 
probability that a “Yes” responder is in fact an illegal drug user is 2p/(2p+1).  For example, if the 
true probability is 1%, then this latter conditional probability is very nearly 2%. 
 
CLASSROOM ACTIVITIES 
 As an instructor trained in mathematics and statistics, and with only the basics of 
teaching pedagogy given in my Peace Corps training in West Africa, I found the classroom 
activities given in Utts (2005b) tremendously beneficial to underscore the ideas and techniques 
discussed in the classroom lecture and to provide an opportunity for students to learn from one 
another.  For example, students learned about the strategy of staying with one’s original choice or 
switching to another choice in the “Let’s Make a Deal” activity mentioned above.  On another 
instance, confidence intervals were illustrated when each student dropped a tack 100 times 
(actually 5 tacks 20 times) and counted the number of times the prong landed facing up (deemed 
a “success” for this exercise); this exercise also illustrated how confidence intervals became 
narrower when the results were pooled over the four students in each group (i.e., when the 
sample size increase from 100 to 400).  In several activity sessions, students read through and 
discussed abstracts of research articles (or the actual articles themselves) highlighting potential 
biases, confounding and interacting variables, etc.  At the end of these sessions, students would 
often note how many of these potential problems were ignored by the authors and thus how 
questionable were the findings given in these studies and reported in the newspaper. 
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WRITING ASSIGNMENTS AND PROJECTS 
 Since my audience was humanities and social science majors, they really didn’t mind 
that 25% of their final grade was based on assignments involving writing, and in that regard this 
course was writing intensive.  The Utts (2005a) text has Mini-Projects at the end of each chapter, 
and at three instances during the semester, I asked students to complete one of these for a subset 
of the chapters.  For example, one of these asked students to find a research article discussing an 
observational study, and to write a 1-2 page summary of the study and to mention potential 
biases and the possible ramifications of these.  As an extra-credit assignment, I gave students the 
option of completing the second assignment given in Jordan (2004) in which students are asked 
to write a letter to their father explaining and interpreting the p-value associated with a 
randomized placebo-control study in layman’s terms and to discussing its importance.  The final 
course project/paper required that students obtain their own data on a quantitative variable for 
each of two groups, summarize the data and testing hypotheses, and write up their findings. 
 
USING THE COMPUTER 
 Numerous concepts are best illustrated using an easy-to-use statistical package such as 
Minitab.  For example, using the following Minitab commands, my students easily produced the 
histograms below, thereby illustrating the Central Limit Theorem for a Bernoulli proportion 
when n = 100 and p = 0.40 (left histogram) and when p = 0.05 (right histogram). 
 

Calc -> Random Data -> Bernoulli -> 10000 rows -> store in columns C1 – C100 -> 
probability of success 0.40 -> OK.  Next, label column C101 phat, then Calc -> Row 
statistics -> click mean -> input variables C1-C100 -> store result in phat (or C101). 

 

phat
0.600.550.500.450.400.350.300.25

Dotplot of phat

Each symbol represents up to 21 observations.    

phat
0.140.120.100.080.060.040.020.00

Dotplot of phat

Each symbol represents up to 44 observations.  
 
Even though the latter situation (n = 100, p = 0.05) barely satisfies the usual “largeness” (of 
sample size) criterion (that is, both n*p and n*(1-p) at least 5), students easily see that the normal 
approximation is becoming dubious for this case. 
 Another illustration corresponds to the “German tank exercise” discussed in Bullard 
(2003) in which sets of 7 randomly chosen integers (used as a proxy for serial numbers found on 
the captured German tanks) between 1 and N, and where the goal is to obtain a “good” estimator 
of N; I chose N = 344 for the in-class exercise.  My students focused on the estimators T1 = 
x  (the sample mean), T2 = max, T3 = median, T4 = x  + 2SD, T5 = x  + 3SD, T6 = 2* x , T7 = 
2*median, T8 = min + max, and T9 = 8/7*max, and the class conversation ultimately centered on 
unbiasedness and small variance.  Then, in a subsequent computer lab, we produced the 
following histograms (for T7, T8, and T9, respectively) and summary statistics (for T1 – T9). 
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Descriptive Statistics  
Variable      N     Mean  StDev   Median    
mean      10000   172.53  37.78   172.57 
max       10000   301.24  38.37   312.00 
median    10000   172.53  57.65   172.00 
xbar2SD   10000   366.25  56.93   372.10 
xbar3SD   10000   463.10  74.08   469.04 
2xbar     10000   345.06  75.55   345.14 
2median   10000   345.06 115.31   344.00 
min+max   10000   345.07  58.07   345.00 
8/7max    10000   344.27  43.86   356.57 

 
After viewing these results, students can easily appreciate that T9 = 8/7*max is “best” in terms of 
smallest variance amongst the unbiased choices.  But we can go one step further. 
 In the context of the above Bernoulli examples with p = 0.40 and p = 0.05, we can also 
construct the approximate 95% confidence intervals using the Wald method ( p̂  ± 2SE) and 
count the number of times these intervals contain the true p; this is achieved using the following. 
 
Next, label C102 SE, and follow Calc -> calculator -> store result in C102 -> expression 
sqrt(C101*(1-C101)/100).  Next, label column C103 L, column C104 R, and column C105 
covers40, and follow Calc -> calculator -> store result in C103 -> expression C101-2*C102 
Calc -> calculator -> store result in C104 -> expression C101+2*C102 
Calc -> calculator -> store result in C105 -> expression ((C103 LE 0.40) and (0.40 LE C104)) 
Then, Calc -> column statistics -> mean -> input variable C105 gives the following 
Mean of covers40 = 0.9564, meaning that 95.64% of my intervals contained the true 40%. 
 
For the case of p = 0.40, 95.64% of our intervals covered the true value, and this calculation 
helps students to understand the correct (Frequentist) interpretation of confidence intervals.  This 
Wald procedure is called into suspicion for the case where p = 0.05 since in that case the actual 
coverage rate of the 95% confidence intervals was only 87.27% and since 25.72% of these 
intervals also contain zero (so that the interval includes negative estimates for p).  The class also 
discussed the Score confidence intervals method discussed in Santner (1998), and we found these 
intervals superior since none contained zero and since the nominal coverage rate was 96.44%. 
 Finally, we returned to the German tank exercise to evaluate the performance of the 
estimators T6 – T9 in terms of coverage probabilities of the corresponding 95% Wald-type 
confidence intervals.  Based on 100,000 replications, these percentages were 95.12%, 95.95%, 
93.74% and 94.78%, respectively.  That each of these values are nearly all the same and nearly 
equal to the nominal 95% indicates that none is preferred to the other based solely on coverage of 
the respective confidence interval.  This helps students understand that some uncertainty and 
controversy exists in terms of evaluating estimators. 
 
CONCLUSION 

Even though there is some truth in the statement that “all [statistical] models are wrong 
but some are useful” (Box, 1979), a course in statistical methods which ignores statistical 
modelling and which fails to underscore the underlying concepts is easily seen as a jumble of 
formulas and usually leaves students with the impression that statistics is merely “number 
crunching.”  On the contrary, the real strength of statistical science is its ability to develop new 
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methods to directly aid researchers and decision-makers, and we need to emphasize this in our 
courses. 

By way of an epilogue, encouraged by my successes in this course and some of my 
students, I have agreed to teach another course on statistical concepts next semester, this one on 
Statistics and Medical Ethics, and using the texts of Angell (2004), Avorn (2004) and Crossen 
(1996).  Should be fun. 
 
REFERENCES 
Agresti, A. and Coull, B.A. (1998). Approximate is better than “exact” for interval estimation of 

binomial proportions. The American Statistician, 52(2), 119-126. 
Angell, M. (2004). The Truth About the Drug Companies. New York: Random House. 
Avorn, J. (2004). Powerful Medicines: The Benefits, Risks, and Costs of Prescription Drugs. 

New York: Alfred A. Knopf. 
Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In R. L. Launer, 

and G. N. Wilkinson, (Eds.), Robustness in Statistics. New York: Academic Press. 
Bullard, F. (2003). “The German Tank Problem,” presented at the Beyond the Formula 

Conference, Rochester, NY, 
  http://web.monroecc.edu/manila/webfiles/beyond/2003S022S071Bullard.pdf 
Buntinas, M. and Funk, G.M. (2005). Statistics for the Sciences. Belmont, CA: Thomson. 
Crossen, C. (1996). Tainted Truth: The Manipulation of Fact in America. New York: Simon and 

Schuster. 
Freedman, D., Pisani, R. and Purves, R. (1998). Statistics (3rd Edition). New York: Norton. 
Garfield, J. (2004). Becoming an effective teacher of statistics. Stats Magazine, 40, 8–11. 
Huff, D. (1993). How to Lie with Statistics. New York: W. W. Norton and Company. 
Jordan, J. (2004). Tales from the Frontline: A Pilot Study of Writing Assignments. Handout at 

Innovative Ideas for the Statistics Classroom Session at the Joint Statistical Meetings, 
Toronto, CA. 

Moore, D. S. (1997). New pedagogy and new content: The case of statistics. International 
Statistical Review, 65(2), 123-165. 

Moore, D. S. and Notz, W. I. (2006). Statistics: Concepts and Controversies (6th Edition). New 
York: W.H. Freeman and Co. 

O’Brien, T. E. (2002). Hypothesis tests, confidence intervals and common sense. In B. Phillips 
(Ed.), Proceedings of the Sixth International Conference on Teaching of Statistics, Cape 
Town. Voorburg, The Netherlands: International Statistical Institute. 

Ott, R. L. (1993). An Introduction to Statistical Methods and Data Analysis (4th Edition). Pacific 
Grove, CA: Duxbury. 

Peck, R. Casella, G., Cobb, G., Hoerl, R., Nolan, D., Starbuck, R. and Stern, H. (Eds.) (2006). 
Statistics: A Guide to the Unknown (4th Edition). Belmont, CA: Thomson. 

Rossman, A. J. and Chance, B. L. (2005). “Teaching Statistical Concepts with Activities, Data 
and Technology.” Short course handout at MathFest, Albuquerque. 

Samuels, M. L. and Witmer, J. A. (2003). Statistics for the Life Sciences (3rd Edition). Upper 
Saddle River, NJ: Pearson Education (Prentice-Hall). 

Santner, T. J. (1998). Teaching large-sample binomial confidence intervals. Teaching Statistics, 
20(1), 20-23. 

Utts, J. M. (2003). What educated citizens should know about statistics and probability. The 
American Statistician, 57(2), 74–79. 

Utts, J. M. (2005a). Seeing Through Statistics (3rd Edition). Belmont, CA: Thomson. 
Utts, J. M. (2005b). Activities Manual for Seeing Through Statistics (3rd Edition). Belmont, CA: 

Thomson. 


