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Geostatistics is sometimes a difficult leap for even those individuals well versed in classical 
statistics.  The impact of data location in spatial statistics may be only vaguely understood 
initially.  Visualization tools that allow the student or practitioner to see the impact of moving 
data, adding additional data, deleting data, adding fault lines, changing search radiuses, and so 
forth aid the learning of geostatistical concepts.  Due to page limitations only a few items are 
briefly illustrated.  This visualization software called the Kriging Game is available free at 
http://geoecosse.bizland.com/softwares/ .  This site also has other free geostatistical software and 
tutorials. 
 
INVERSE DISTANCE WEIGHTS VERSUS KRIGING WEIGHTS 

Inverse distance weighting is a common interpolation technique and often the default in 
GIS packages.  It is simple to program, easy to understand, and useful for obtaining an initial feel 
for one’s data.  However, it may provide poor estimates.  It ignores the spatial structure of the 
actual data as well as not using the full information available concerning the relative locations of 
the actual data used to estimate the true unknown value T at a point where no sample exists.  

The geostatistical technique known as kriging if used properly results in better estimates 
(optimal in a minimum variance sense if the modelling is correct) based on the development of 
spatial weights that reflect the spatial variability seen in the actual data of interest.  Modelling the 
spatial variability is usually done by the development of a semi-variogram model reflecting the 
distance versus variability found in the actual data and also considering if the structure is isotropic 
(variability the same in all directions) or anisotropic (variability versus distance relationship is a 
function of direction).  This modelling is outside the context of this paper but Clark and Harper 
(2000) as well as tutorials on the above mentioned web page will help.  

The simple topic examined here is how the placement of data impacts inverse distance 
estimation versus a kriging estimation in terms of the weights assigned to the values selected to 
interpolate at a given spatial location.  Take the simple example illustrated in Figure 1 below.  
The small dataset in Figure 1 has six data values though only four of these will be used to 
estimate an unknown value at the location marked with a T based on the search radius selected.  T 
is often used in geostatistics to represent the true unknown value at a given spatial location.  T* is 
the estimated value.  Obtaining T* depends on many modelling choices inter alia the spatial 
dependence model assumed, the search radius used to decide which actual values to include in the 
estimation, and whether a global trend is factored in. 

Figure 1 shows four data values labelled 1, 2, 3, and 4 that are to be interpolated in this 
simple two dimensional case in which no global trend is modelled and the spatial dependence is 
assumed to be isotropic.  * i iT w g=∑ where the wi depend on the method used and the gi 

represent the values at the observed spatial locations. For this simple system 1.0iw =∑ . The 
point at (1, 1) seen with a T in Figure 1 is equidistant from all four data values. Each data value 
has corresponding X and Y locations and a sample value as given in Table 1 below.  Inverse 
Distance estimation computes the distance di from the desired estimation location to each sample 
point used in the interpolation.  These are inverted to give the inverse distance and normalized so 
that the sum is 1.0 as seen in the column “Inverse Distance weights” in Table 1. Kriging uses the 
semi-variogram values that are functions of the di to establish a kriging system of equations that 
are solved to find the optimal kriging weights. For all the kriging weights shown in this paper a 
linear semi-variogram was chosen with a nugget of 0.0 and a slope of 1.0 just for simplicity.  
While in tables other than Table 1 the kriging weights might vary for other semi-variogram 
models, the basic concepts to be illustrated would be the same.  Note that both the inverse 
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distance and kriging approaches result in the same weights in this initial example and thus each 
data value receives 0.25 weight.  The resulting T* = 5.725 by both methods. 

The Kriging Game software illustrated in Figure 1 allows students to quickly assess the 
kriging weights of each data value used in the estimation as well as many other features not 
discussed in this article.  For example students may easily move a data point and see how both its 
weight changes as well as the estimated T* and its standard error.  Points may be removed by the 
student and the resulting impact on the weights of the other points and the estimation seen.  
Perhaps one of the most interesting items for geologic data is the impact of faults that show 
discontinuities in the geologic medium.  Faults may be easily drawn in and the impact illustrated 
directly on the screen. 

 

 
 

Figure 1: First data set with four equidistant points used to estimate T 
 

Table 1: Weights for data in Figure 1 
 

Point 
# X Y Sample 

Value, gi
di 1/di 

Inverse 
Distance 
weights 

Kriging 
weights 

Inverse 
distance 
estimate 

of T* 

Kriging 
estimate 

of T* 

1 0 0 3.2 1.4142 0.7071 0.25 0.25 0.8000 0.8000 
2 0 2 5.7 1.4142 0.7071 0.25 0.25 1.4250 1.4250 
3 2 0 6.2 1.4142 0.7071 0.25 0.25 1.5500 1.5500 
4 2 2 7.8 1.4142 0.7071 0.25 0.25 1.9500 1.9500 
     2.8284 1.00 1.00 5.7250 5.7250 

 
 Figure 2 adds a fifth data point such that it is behind sample point 4 from the perspective 
of the unknown sample location at T.  Examine the weights in Table 2 now assigned by both 
inverse distance and kriging to the 5 values now used in the estimation of T*.  Since the weights 
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are different the corresponding estimates will vary. While the kriging game will show the kriging 
T* in one of its screens, the tables included here show how T* varies between the inverse distance 
and kriging approaches.  The kriging weights do provide the optimal weights in terms of 
minimizing the standard error of T* for the assumed spatial variability model contained in the 
semi-variogram. 

The intriguing part of this simple analysis to learning geostatisticians is often twofold.  
First and perhaps most important concerns the weights assigned to the five points now being used 
to estimate T by the two methods.  Inverse distance weights are solely a function of the distance 
between the observed point and the location of the point to be estimated.  The fifth point added in 
the second sample seen in Figure 2 has a weight of 0.1818 that is almost equal to the weight of 
0.2045 for the nearby fourth point.  Thus the northeast corner of the data is accounting for 
approximately 39% of the weight of the full data set for the inverse distance method.  Conversely 
all 4 corners for the kriging approach allocate approximately 25% to each corner.  Why is this?  
First let’s briefly mention the 2nd item newcomers find surprising.  Unlike inverse distance 
weighting, kriging weights may be negative.  The concept of a negative weight is hard to swallow 
for some. But the visualization tools provide an entry door to begin such discussion. 

Addressing the unanswered question in the prior paragraph, spatial estimation of any kind 
has the underlying assumption that points close in space are likely to have similar values.  Thus 
the two points close by (sample points 4 and 5 in Figure 2) are assumed to have similar values 
and thus sample point 5 is expected to provide little new information over sample point 4.  Thus 
each of the 4 corners in this particular application are fairly equally weighted by kriging.  The 
inverse distance method does not examine how close the observed values are in space to each 
other and thus loses the opportunity to compensate in the estimation.  The combination of the 
visualization and ability to add, move, and delete data allows quicker understanding and a good 
stepping off point for subsequent learning that could not be so easily addressed otherwise. 
 

 
 

Figure 2: Second data set with fifth point added very close to another point 
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Table 2: Weights for Figure 2 
 

Point 
# X Y Sample 

Value, gi
di 1/di 

Inverse 
Distance 
weights 

Kriging 
weights 

Inverse 
distance 
estimate 

of T* 

Kriging 
estimate 

of T* 

1 0 0 3.2 1.41421 0.70711 0.2023 0.2493 0.6474 0.7978 
2 0 2 5.7 1.41421 0.70711 0.2023 0.2507 1.1532 1.4290 
3 2 0 6.2 1.41421 0.70711 0.2023 0.2507 1.2543 1.5543 
4 2 2 7.8 1.41421 0.70711 0.2023 0.3201 1.5781 2.4968 
5 2.06066 2.06066 7 1.5 0.66667 0.1907 -0.0708 1.3352 -0.4956 

     3.49509 1.00 1.00 5.9682 5.7823 
 

Figure 3 and the corresponding Table 3 provide another simple but interesting example. 
The fifth data point has been moved to a location directly to the right of T but at the same distance 
away that it was in Figure 2.  What happens to our weights under the two procedures?  Absolutely 
no changes occur with inverse distance weighting for any of the points; however, a dramatic 
difference is seen in the kriging weighs – especially for the fifth point that has gone from a 
negative weight of -0.0708 to a positive weight of 0.0916!  Note that these kriging weights are 
computed automatically and displayed by the free kriging game software. 
 

 
 

Figure 3: Third data set with fifth point moved to another location exactly as far from T as in Figure 2 
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Table 3: Weights for Figure 3 
 

Point 
# X Y Sample 

Value, gi
di 1/di 

Inverse 
Distance 
weights 

Kriging 
weights 

Inverse 
distance 
estimate 

of T* 

Kriging 
estimate 

of T* 

1 0 0 3.2 1.41421 0.70711 0.2023 0.2526 0.6474 0.8083 
2 0 2 5.7 1.41421 0.70711 0.2023 0.2526 1.1532 1.4398 
3 2 0 6.2 1.41421 0.70711 0.2023 0.2016 1.2543 1.2499 
4 2 2 7.8 1.41421 0.70711 0.2023 0.2016 1.5781 1.5725 
5 2.5 1 7 1.5 0.66667 0.1907 0.0916 1.3352 0.6412 

     3.49509 1.00 1.00 5.9682 5.7117 
 

The last example for comparing inverse distance weighting to kriging weights moves our 
beloved mobile fifth point to its final resting place in this too short paper.  This fifth point is 
moved closer to T than any of the five observations to be used in the estimation procedure but 
directly in a northeastern direction in line with the fourth observation.  What happens in this case 
to our weights?  Both give the largest weight now to the newly moved fifth point that is the 
closest to T.  The inverse distance method however equally weights the four original corner 
observations while the kriging method does not.  Note in particular the kriging weight assigned to 
the fourth observation. 

 

 
 

Figure 4: Fifth data point moved closer to T 
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Table 4: Weights for Figure 4 
 

Point 
# X Y Sample 

Value, gi
di 1/di 

Inverse 
Distance 
weights 

Kriging 
weights 

Inverse 
distance 
estimate 

of T* 

Kriging 
estimate 

of T* 

1 0 0 3.2 1.41421 0.70711 0.1667 0.2111 0.5333 0.6755 
2 0 2 5.7 1.41421 0.70711 0.1667 0.1523 0.9500 0.8681 
3 2 0 6.2 1.41421 0.70711 0.1667 0.1523 1.0333 0.9443 
4 2 2 7.8 1.41421 0.70711 0.1667 -0.0621 1.3000 -0.4844 
5 1.5 1.5 7 0.70711 1.41421 0.3333 0.5464 2.3333 3.8248 

     4.24264 1.0000 1.00 6.1500 5.8283 
 
This relatively straightforward comparison of inverse distance weights versus kriging 

weights can be done without the visual tools in the kriging game, but students typically learn 
more by exploring on their own and visually seeing what happens as points are added, deleted, or 
moved.  All of this may be done interactively with this software.  It is a shame that space limits 
the coverage of this game as it has the ability to illustrate many complex operations such as the 
impact of adding fault lights, the often mysterious Lagrange multipliers and the perhaps scary 
kriging equations directly.  It is recommended that individuals download the kriging game and 
use it personally or for their classes to take advantage of the visualization options to enhance the 
understanding of geostatistical techniques. 
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