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Statistics plays a leading role in finance. The explosive development of increasingly complex 
markets makes it more and more difficult for practitioners to correctly value financial asset. 
Statistical analysis has become a powerful tool for a better market valuation, taking a leading 
role in the development of new financial products that try to hedge the increasing amount of risks 
that an investor has to take. Statistics knowledge demand is steadily increasing in Hedge Funds, 
Investment Banking and Financial Institutions in general, where statistics students could 
developed a professional career. Finance can be seen as a way to motivate students on the 
applications of almost any statistical tool we would like to teach them, since we could always find 
an example where these techniques are put into practice. 
 
SOME HISTORY ON THE EXPLOSION OF STATISTICS IN FINANCE 

The major economic crisis experienced in Europe between 1875 and 1895 brought about 
the need for a major application of the academic statistical concepts to organize and record new 
statistical data such as consumer price indexes of workers, family budgets or unemployment days. 
This way, survey techniques and mechanical processing of information became to be widely used 
to solve practical problems in economics, but the development of analytical methods remained 
separated from the practise. 

A good example on how the statistics is being used progressively into the field of finance 
can be shown through the derivation of the Black-Scholes formula (Black and Scholes, 1972 and 
Merton, 1973) for option pricing. The usual derivation of the Black-Scholes formula relies on the 
assumption that the market price of the underlying security follows a diffusion process. For the 
Black-Scholes model, the geometric Brownian motion is the basic model for the behaviour of 
stock-market prices. In 1900, Louis Bachelier, in his doctoral dissertation Théorie de la 
Spéculation, proposed that stock prices move like what it would be later known as Brownian 
motion. One of the most important shortcomings or Bachelier’s model was that it allows the price 
to become negative. In 1960 the American economist Samuleson eliminated this difficulty and 
proposed the geometric Brownian motion that assumes that the logarithm of the share prices, 
rather than the price itself, follows a Brownian motion (Intuitively, Brownian motion is a 
continuous limit of a random walk) . The consistency of this modelization with Fama’s popular 
theory of efficient markets (Fama, 1965), has made it the standard descriptor of asset prices 
identifying them as random variables. This theoretical framework has allowed most of actual 
financial analysis and development. 

Actually, there are an incredible number of examples where statistics plays a key role in 
finance. We will describe some of them as the importance of subjective probability in price 
discovery; the efficient market hypothesis and iid samples; Montecarlo simulation for the 
definition of the efficient frontier; returns modelization; and finally, applications of risk measures. 
Each of the following sections will provide a brief introduction to different financial concepts at a 
level comprehensible to degree students with no previous knowledge of finance or economics. 
 
ASSET VALUATION AND PROBABILITY 

Finance main concern is related with the valuation of assets. An asset can be seen as the 
promise of receiving a set of future payments, called cash-flows (CF). The asset value (P) could 
be approached by the sum of all CF associated with that asset. But, this would mean that we do 
not take into account that an individual would rather prefer to receive the same amount of money 
today than in five years. For that reason, CF should be weighted inversely to the time to 
fulfillment. The weights are obtained from a discount function dependent on time to maturity and 
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a parameter called interest rate (i) that can be seen as a price of time. The fundamental formula of 
asset valuation will be as shown in Equation 1. 
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where jtie ·−  is a continuous discount function. Once we know all the CFj (and its correspondent 
tj) and the appropriate i, P is uniquely determined. Let us suppose we have an US coupon-zero 
Treasury Bond that promise to pay $100 in one year. Given an i=0.04, then P=100·e-0.04·1=96,08. 

Unluckily, most of the CFs present in financial assets are not known in advance. This is 
the case with shares, where CFs are called dividends and depends on firm performance year by 
year. Even if your asset is a bond where the amount and time of maturity of each coupon is 
contractually established, you cannot be sure of the fulfillment of payments, as any borrower of 
Enron or Parmalat will know for sure. 

In fact, any CF can be seen as a random variable. If we knew the probability distribution 
of each CF, then it is possible to reconstruct a mean value of an asset from the expected CF. But, 
although it is not possible to know such probabilities, everyday millions of people made such 
valuation (consciously or not), using their own subjective probabilities. 

Although these subjective probabilities may seem feasible, we have to take into account 
that financial markets enclose thousands of practitioners that use its own judgment of the 
distribution of CF to valuate assets, buying and selling in consequence. The movements on prices 
originated by these operations, produce a so-called price discovery process (PDP), that allow the 
agents to improve their knowledge of the hidden probabilities by the joint opinion of the other 
investors as reflected in the operation they made. 

Fama (1965) proposed the Efficient Market Hypothesis (EMH) that estate that if all 
information relevant to the pricing of an asset is known by investors, this information will be 
incorporated into the price via PDP, and no available information in the market can be used to 
improve such evaluation. 

Let us now suppose we have a corporate bond that promise to pay $100 in one year and 
the market price it at $93. The difference comes from the possibility that the company does not 
pay it (default as it is called), compared with a Treasury Bond that is supposed to be risk-free. 
The $100 CF can be modeled as governed by a binomial variable B(1,π), where π has been 
implicitly established by the market, 

[ ] 93·100)·1( 04.0 =−= −ePE π        (2) 
So π= 0.032 is the subjective probability given by the market to the company to default in 

one year. We have used a very simple asset with just one CF and an available risk-free asset for 
the same period. But the analysis could be expanded to more complex assets (Hull and White, 
1999). This a very simple example for an student to see binomial distributions, just by open a 
newspaper, and cooperative exercises can be implemented in the classroom, as well as homework 
assignments, to the discovery of default probabilities (π). 

In the previous exercise we have implied that the evaluator is neutral to risk, that is, it is 
indifferent for him to select between assets with different levels of risk. In a world where 
everybody is risk-neutral, all investment would be made in the asset who promises higher CF for 
fewer prices. If that where the case, everybody would invest in junk-bonds issued by troubled 
companies and countries, but the fact is that most people prefer assets with quite less risk like 
American Treasure Bonds or German Deutsche Bunds. 

It was Markowitz (see Markowitz, 1991) who established that the decision on where to 
invest was a problem of Pareto optimal decision between risk and return. For the same level of 
return we would prefer assets with less risk, and for the same level of risk we would prefer more 
returns. 

Markowitz’s portfolio theory can be used as an instrument for a very simple example of 
the possibilities provided by Montecarlo Simulations. Our exercise consists in tracking 32 world 
indexes during 2003. For each one of these markets we can proxy the expected daily returns from 
Equation (3), 

1loglog −−= ttt PPr         (3) 
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and risk by standard deviation of rt, also called volatility. In Figure 1a, a scatter-plot of risk and 
expected returns for the selected basket of indexes. From the analysis of this figure it could seems 
that there are some stocks where it is not wise to invest but, in fact, this is not the case. 
Markowitz showed that sometimes it is possible to obtain the same amount of return of a single 
asset but with less risk via diversification with an appropriate portfolio including “not so good” 
assets.  

To show this point we can use Montecarlo Simulation to generate a set of portfolios 
(linear convex combinations) until we obtain something similar to Figure 1b that illustrates how it 
is possible to find portfolios with better performance (measured in terms of returns and risk) than 
individual assets. These “efficient” portfolios include significant proportions of assets that would 
have been ruled out by a careless analysis of Figure 1a. These portfolios define an efficient 
frontier as it is called in Portfolio Theory. 
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Figure 1: (a) Daily Risk and Return of 32 World Stock Indexes along 2003. (b) Daily Risk and Return of 

3.000 simulated portfolios and efficient frontier. 
 

PRICE MODELLING AND STOCHASTIC PROCESSES 
Asset return definition in Equation 3 implies that asset prices evolve as some kind of 

random walk. This conception of prices can be tracked back to Bachelier (1900) seminal work, 
improved by Samuelson (1960) that defined it in continuous time as a geometric Brownian 
motion. Samuelson’s improvement consisted of the appearance of P in the denominator of price 
changes, which avoid the theoretical appearance of negative prices. 

dWdtr
P

dP ·· σ+=         (4) 

A type of stochastic process where t represents time, r is the long term expected return, 
and σ is a measure of volatility, so price movements distribute as ( )trN σ,  as consequence of 
the presence of the Wiener process (dW). Norbert Wiener showed in the early 1920s that a 
Brownian motion can be described directly in terms of a probability measure over a space of 
continuous path. This type of modeling has become standard due to its consistency with EMH. If 
Equation 4 stands, then the dW term prevents asset price forecasts, apart from its long term 
expected return r. 

Efficiency will implied that returns would be independent and identically distributed 
(iid). The most potent test of the iid hypothesis may be the BDS test (e.g., Brock et al., 1996), that 
systematically rejects the iid hypothesis when applied to return time series. 

Encouraging results have been made to overcome the “frustating” consequence of EMH. 
Insights in observed return distribution as pioneered by Mandelbrot (1963) lead to the discovery 
of three stylized facts: 

• Returns diverge from Gaussian distribution by having more observations close to the 
mean and the extremes of the distribution (heavy tails). This tails are linked to the arrival 
of new information into the market what requires reevaluating Equation 1. 

• Returns are skewed to the left of the distribution, as result of heavier reaction to bad news 
(losses) than to good news, coherent to the expected risk-aversion of economic agents. 

• Extreme movements tend to cluster in some periods of time, what suggest that volatility 
changes over time. 
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Return time series are easily obtained from the Internet and can be used by students to 
became familiar with simple concepts of probability as the meaning of mean, variance, skewness 
of kurtosis. It is an easy exercise to see how divergence from normality is due to the presence of 
extreme values, that is, new information and reevaluation of Equation 1 (Gimeno and Gonzalez, 
2004). If we take a time series of returns and evaluate its normality with a standard test of 
Gaussianity like Jarque-Bera test (Jarque and Bera, 1980) we will reject the Gaussian hypothesis 
(Figure 2). 
 

 
Figure 2: (a) Histogram of daily returns on British FTSE-100 against normal distribution. (b) Histogram of 

daily returns of FTSE-100 and normal distribution after subtracting 2.3% of largest movements. 
 

In spite of this, if we order the sample by the magnitude of absolute returns and 
recursively test normality subtracting the largest movements (Figure 3), it can be seen that we just 
need to erase a small part of the sample to obtain a gaussian distribution, where there is no track 
of the leptokurtosis or skewness (Figure 4). The observations subtracted tend to cluster in some 
periods of time and reinforce the theory of the connection between extreme values and the arrival 
of new information. 

 
Figure 3: Recursive Jarque-Bera Tests on FTSE-100 daily returns. Test statistic is represented on the left 

while the test p-value is on the right. 

 
Figure 4: Skewness and Kurtosis coefficients on FTSE-100 daily returns in function of the number of 

extreme values subtracted 
 

RISK MANAGEMENT 
Nobel Prize winner Engle (1982) has supposed a recent revolution in finance developing 

new models (Generalized Autoregressive Conditional Heterokedasticity, or GARCH Models) that 
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successfully capture these clusters of volatility allowing parameter σ of Equations 4 and 5 to 
evolve over time. A Typical GARCH(1,1) model would be, 
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Promising results as the ones that have been obtained with GARCH models or its variants 
has put lately the focus on asset risk. Some measures allow quantifying and managing the risk of 
a portfolio. That is the case of Value at Risk (VaR) that international agreements like the one 
known as Basel II have established as a standard tool for financial institutions. VaR is the 
maximum loss we could have in a determined period of time with a given probability. A 
VaR(95%) of a portfolio could be obtained by simply recovering a record of past returns and 
using them to estimate parameter σ. Then ( ) σ̂·645'1%95 =VaR  if Gaussianity of returns is 
assumed. GARCH modeling allows for better estimation of σt as seen in Figure 5. The wide 
variety of VaR model that it is possible to find allows for an interesting project in which students 
can compete in a stochastic process contest on implementations of VaR models for a given 
portfolio. 

 
Figure 5: FTSE-100 daily returns and VaR(1%) estimated with a GARCH(1,1) model 

 
CONCLUSION 

In the new millennium the contact between statistics and economics, and especially 
finance, is of the major relevance. In the new economy, we are witnessing the rapid emergence of 
new financial products and derivates, the advances of the information technology and 
telecommunications produces rapid expansion of international trade and capital flows, and the 
globalization and economic linkages make important to track trade and investment flows among 
the companies operating locally and overseas. These are only a few reasons of why in this 
increasingly complex and globalized economy it is vital that statistics and economics work 
together to develop new concepts and methodologies. 

These issues pose a challenge for statistical education. Although it seems evident that an 
understanding of basic statistical theory is useful for most university statistics students, what our 
students need is to develop a broader appreciation of statistics and their applications. For this 
reason, it is vital that students, especially in a business school, were exposed to practical problems 
that are likely to be encountered in practical statistical world such as those used in financial 
markets every day. Only in this way, we can achieve a better comprehension of the statistics and 
their applications in our students and competent and well-trained financial practitioners. 

In this way, the use of Monte-Carlo simulations, so frequent in finance to obtain a valid 
pricing of assets, can serve as useful learning problems that help students to stop viewing 
econometrics as a collection of mechanical procedures with an accompanying set of formulas. 
Besides, the Monte-Carlo exercises are suitable vehicles (Kennedy, 2001) for motivating students 
to ensure that they understand the sampling distribution concept that captures the basic logic of 
statistics. 

We cannot be exhaustive with the tools showed in the paper. Therefore, some other 
financial concepts could have been used to introduce some concepts as linear regression (Capital 
Asset Pricing Model), factor analysis (Arbitrage Pricing Theory), Logit/Probit (Credit Scoring), 
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Neural Networks (Price Forecast), Stochastic calculus (Black and Scholes optin valuation) or 
nonlinear regression (Term Structure of Interest Rates). 
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