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Many concepts in simple linear regression can be explained or illustrated on scatterplots. Similar 
diagrams for regression with two explanatory variables require 3-dimensional scatterplots. 
Appropriate colouring and dynamic rotation on a computer are needed to effectively show their 
3-dimensional nature. Concepts such as multicollinearity, sequential sums of squares and 
interaction have no analogue in simple linear regression, so it is particularly helpful to illustrate 
them graphically. This paper gives several examples of concepts in multiple regression that can 
be illustrated well with 3-dimensional diagrams. 
 
INTRODUCTION 

Most introductory statistical concepts can be explained with diagrams in addition to, or 
even replacing, mathematical formulae and proofs. Dynamic and interactive computer-based 
diagrams are usually more effective than static paper-based ones, not only for their explanatory 
power, but also for their ability to keep student interest and because they are more memorable. 

In this paper, we show that dynamic and interactive diagrams are equally useful for 
teaching more advanced topics such as multiple regression. In a static medium, it is difficult to 
explain to readers why interactive diagrams are more effective than static ones, so it is suggested 
that readers also examine the interactive versions of the diagrams from this paper in Release 3.1 
of CAST (Stirling, 2006). All diagrams in this paper are taken from CAST. 
 
SIMPLE LINEAR REGRESSION 

Many concepts in regression can be explained or illustrated much more effectively with 
diagrams than with proofs and formulae. For example, in simple linear regression, the 
representation of residuals as vertical lines from the data points on a scatterplot to the least 
squares line is easier to understand for most students than the equation 

ei = yi − b0 − b1xi 
Static diagrams can explain many concepts in simple linear regression, but others are 

more effectively illustrated with interactive diagrams on a computer. For example, a square can 
be drawn for each data point with one side being the vertical line representing the residual. 
Dragging the line to minimize the total area of these squares illustrates the principle of least 
squares (Finzer et al., 1998). Dragging one point in a scatterplot to make it an outlier is also an 
effective way to demonstrate the concepts of leverage and influence (Lock, 2002). 

Figure 1(a) represents a data set with repeated response measurements at each x as a set 
of histograms in a 3-dimensional diagram, motivating the corresponding normal linear model for 
the data in Figure 1(b). Both diagrams are easiest to understand when the diagram can be 
dynamically rotated; dragging the centre of each diagram in CAST rotates it. For example, the 
ideas of linearity and constant variance can be explained for both the data and model by rotating 
to make all histograms or normal curves coincide as closely as possible. 

Finally, simulations are effective ways to demonstrate the sampling distributions of the 
least squares coefficients and the properties of related confidence intervals and p-values. These 
are easiest to understand by students if interaction is involved by clicking a button to generate 
each sample and build up the relevant sampling distribution. 
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(a) Sample distributions of y at each x 

 
(b) Possible normal linear regression model  

 
Figure 1: Diagrams motivating the simple linear regression model 

 
LEAST SQUARES WITH TWO EXPLANATORY VARIABLES 

Simple linear regression is relatively easy to teach, in part because most concepts can be 
illustrated so well with 2-dimensional diagrams. Many students find it much harder to extend 
these ideas to multiple regression, in part because it is much harder to illustrate the concepts with 
diagrams; many textbooks abandon graphical illustrations in favour of formulae and equations. 
However although multiple regression data sets and models cannot be represented well 
graphically if there are three or more explanatory variables, graphical displays are possible for 
models with two explanatory variables. Many of the additional complications when moving from 
one explanatory variable to many are present when there are only two explanatory variables, so 
ideas such as multicollinearity can be illustrated effectively using two explanatory variables. 

Most diagrams illustrating regression concepts are based on a 3-dimensional scatterplot 
of the response, y, against x and z. The third dimension must be effectively represented and this 
can only be done well in computer-based interactive diagrams where the scatterplot can be 
rotated, either by dragging with the mouse or automatically spinning the diagram. It is best to 
restrict the rotations to prevent the y-axis from pointing left or right since completely free 
rotations do not help to explain regression concepts. Appropriate shading of elements in the plot, 
such as dimming axes and crosses behind the regression plane, helps to reinforce the 3-
dimensional nature of the diagrams. 

As a preliminary to multiple regression, students must be taught that the linear equation 
y = β0 + β1x + β2z  

corresponds to a plane in three dimensions. In Figure 2(a), students can click anywhere in the 
yellow x-z plane and the diagram will show the value of y generated by the equation to verify that 
the predictions lie on a plane. In Figure 2(b), the three arrows can be dragged up and down to 
adjust the intercept and two slope parameters, showing in particular how the sign and magnitude 
of the slope parameters affect the position of the regression plane. 
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(a) Using a linear equation to predict y from x and z 

 
(b) Meaning of the intercept and slope parameters 

 
Figure 2: Diagrams representing a linear equation as a plane 

 
The representation of residuals as vertical distances from the data points to the regression 

plane is shown in Figure 3(a). Clicking on a cross displays the actual and fitted response. Figure 
3(b) shows squares representing the squared residuals and illustrates how the parameters can be 
adjusted (by dragging the arrows) to minimise the residual sum of squares. As in the other 
diagrams shown here, dynamic rotation and shading helps to support the 3-dimensional nature of 
the diagrams. 

 

 
(a) Fitted values and residuals for a plane (not the 

least squares plane) 

 
(b) Adjusting parameters to minimise residual sum of 

squares 
 

Figure 3: Diagrams showing residuals and illustrating the method of least squares 
 
REGRESSION MODEL AND INFERENCE 

Figure 1(b) cannot be extended to represent the normal linear model with two explanatory 
variables, 

yi  =  β0  +  β1xi + β2zi + εi    where  εi ~ normal(0, σ ) 
A simpler display of the normal distribution is needed to replace the normal density curve. Figure 
4(a) does this with a line extending 2σ on each side of the response mean at each (xi, zi) 
combination. Planes 2σ on each side of the regression plane are also shown in outline. The button 



ICOTS-7, 2006: Stirling (Refereed) 

 4

“Take Sample” in the diagram simulates response values from the model and shows the data as 
crosses. Such samples demonstrate that approximately 95% of the crosses are within the bands at 
±2σ. 

Figure 4(b) simulates data from the same model and shows the sampling variability of the 
least squares plane and the individual parameter estimates. 
 

 
(a) Normal regression model with bands 2σ on each 

side of the mean plane 

 
(b) Sampling distribution of least squares planes and 

coefficients 
 

Figure 4: Representation of normal regression model and the resulting sampling variability 
 
MULTICOLLINEARITY 

Figures 2 to 4 all explain or illustrate concepts in multiple regression that mirror ones in 
simple linear models. The effects of correlated explanatory variables are harder to explain since 
there is no analogue in the simple linear model. The simulation in Figure 5 demonstrates the 
higher standard errors of the two slope estimates when the explanatory variables are correlated. 
 

 
(a) When x and z are uncorrelated 

 
(b) When x and z are highly correlated 

 
Figure 5: Simulations showing how multicollinearity increases the standard errors of the slopes 
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The simulation in Figure 6(a) shows the sampling variability of the least squares planes 
for multicollinear data. Rotating the diagram to look down the ‘cylinder of data’ shows the extra 
variability in two corners as ‘flapping wings.’ In Figure 6(b), the plane can be tilted with the two 
arrows to show that the residual sum of squares is relatively insensitive to moving two of the four 
corners. 
 

 
(a) Sampling distribution of LS planes 
 

 
(b) Sensitivity of residual sum of squares to moving 

the plane 
 

Figure 6: Diagrams explaining some consequences of multicollinearity 
 
PARTITIONING VARIABIILITY 

As a final example of the use of 3-dimensional diagrams to illustrate concepts in 
regression models with two explanatory variables, note that the sequential sums of squares in 
analysis of variance are sums of squared differences between the fitted values for different 
models. The components that are squared can be represented as distances between regression 
planes, as in Figure 7(a). 

Figure 7(b) shows the sequential sums of squares for a data set in which the correlation 
between x and z can be altered, illustrating that the two sets of sequential sums of squares are only 
equal when the explanatory variables are uncorrelated. 
 

 
(a) Representation of sums of squares as vertical lines 

between planes 

 
(b) Sums of squares for different orders of adding x 

and z 
 

Figure 7: Diagrams about analysis of variance 
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INTERACTION AND FACTORS 
Although most multiple regression models with three or more explanatory variables 

cannot be displayed in rotating plots, a few extensions to the two-explanatory-variable model can 
represented effectively. Figure 8(a) represents a model with a linear-by-linear interaction term as 
a grid. The corresponding model without interaction is shown in grey. In the diagram, the four 
arrows can be used to drag the four parameters of the model. The model with a quadratic term in 
either variable could be shown in a similar way as a curved surface. 

Figure 8(b) represents a linear model with one numerical variable and a factor. The user-
interface is not as obvious as in Figure 8(a), but the parameters of the model can be adjusted by 
dragging the four bars in the upper bar-chart and the leftmost bar in the lower bar chart. This 
diagram also shows a data set and the squared residuals, so the parameters can be adjusted to 
minimise the residual sum of squares. 
 

 
(a) Linear-by-linear interaction 

 

 
(b) Linear variable and a factor 

 
Figure 8: Some extensions to the regression model with two explanatory variables 

 
CONCLUSION 

Most concepts that can be illustrated on a scatterplot for simple linear regression can be 
illustrated in a similar way for regression with two explanatory variables by replacing the 2-
dimensional scatterplot with a rotating 3-dimensional one. Concepts such as multicollinearity, 
sequential sums of squares and interaction have no counterpart in simple linear regression, so it is 
particularly useful to illustrate their effects graphically. 

The interactive diagrams that are shown in this paper are only a selection of these about 
simple and multiple regression in CAST; many further concepts and points can be effectively 
illustrated with interactive diagrams. CAST is an online web application that is available at no 
charge (after registration) from the reference below. Real data sets are used wherever possible. 
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