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Dynamic manipulation of mathematical objects in a computer-learning environment allows a 
learner to build an intimate, visceral relationship with those objects. Dynamic manipulation is 
direct and continuous. Dragging data allows the learner to experience the affect of data change 
on statistical measures and their visual representations such as the vertical line and the computed 
value in the plot above. A systematization of the very large set of opportunities for dragging data 
and the kinds of learning fostered is presented. 
 
INTRODUCTION 

Imagine that children were taught to ride bicycles that had, 
instead of handlebars, a calculator-like keypad into which they typed 
the angle in degrees to which they wished the wheel to turn. (And 
remember to press Enter!) Would anyone learn to ride? 

Immediate, intimate, visceral feedback is accepted as 
essential to much learning. Why do we implicitly assume that it is 
not essential to learning data analysis and statistics? If all bicycle 
steering were accomplished through keypads, a few “expert” cyclists 
would emerge to amaze the rest of us cycling “illiterates.” It may be 
that as controls for the exploration of data continue to evolve, we will find that the barriers to 
entry and expertise become much lower. Such is the hope underlying this paper. 

For more than twenty years, using a mouse to drag things on computer screens has 
become an increasingly popular pastime. We are talking here about a subset of dragging things 
we choose to glorify with the label “dynamic manipulation of mathematical objects” (Finzer, 
1998). This manipulation is direct in that the thing you wish to change is the thing you drag. It is 
continuous in that changes take place during the drag, and everything else on the screen that 
depends on the object being dragged also changes. Finally, the environment in which you are 
doing this is immersive, that is to say, it draws you in so that you feel part of it, with the computer 
interface only minimally getting between you and the achievement of your mathematical goals. 

This paper describes the potential for dynamic manipulation to foster increased under-
standing of statistical concepts. The author draws on his experience as a software developer and 
as a teacher; i.e., the claims made are speculative rather than based on research. Also, though the 
examples are based on usage of Fathom (Finzer, 2005), there are other data analysis environ-
ments—for example TinkerPlots (Konold, 2005)—that have similar dynamic manipulation 
features. The general plan of the paper is to present examples of dragging and, for each, to draw 
attention to the kinds of concept building that could be taking place for the learner so engaged. 
 
THE MEAN 

We begin in the middle; that is, with the mean. A rich literature surrounds the learner’s 
conceptualization of the mean. (Mokros, 2000; McClain, 2000). 

What happens to the mean when data are changed? For example, in Figure 1, each dot in 
the plot represents one mean salary of full professors at a single university or college in the U.S. 
As one point is dragged, the mean changes both as a numerical value shown below the plot and as 
a vertical line drawn in the plot. 

Consider various actions the learner can execute. For each action we list possible 
realizations the learner could have. 
• Dragging a single point: The mean always changes, no matter which point. The change is 
always in the same direction as the direction the point is dragged. The change in the mean is 
always less than the change in the point (except when there is only one point). The change in the 
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mean is always 1/N of the change in the point, no matter which point it is; therefore an outlier has 
the same “influence” as any other point.  
 

 
 

Figure 1: The lowest value in a dot plot is dragged to become the highest value 
 
• Dragging points sequentially: Moving one point a certain distance in one direction can be 

balanced by moving any other point the same distance in the opposite direction.  
• Dragging multiple points: The influence of multiple points is proportional to the number of 

points being dragged. The influence of all the points together is one. Dragging N–1 points to 
the right has the same relative effect as dragging 1 point N–1 times as far to the left. 

• Adjusting multiple points and considering the position of the mean relative to the distribution: 
For a symmetric distribution, the mean is necessarily in the middle. The mean can never lie 
outside all the values. The mean may be made to be arbitrarily far from any of the actual data 
values. If there is a single model clump and there are no extreme outliers, the mean will lie 
within the clump. 

 
All measures are susceptible to this kind of characterization. It is instructive to compare 

the mean with the median. 
 

Mean Median 
Always changes, no matter which data point 
you drag. 

Only changes when the middle one or two 
points are dragged. 

The change in the mean is always 1/N of the 
change in the point, no matter which point it is; 
therefore an outlier has the same “influence” as 
any other point. 

The amount of change in the median is either 
zero, half the change in the point, or equal to 
the change in the point. 

A single point can, by itself, determine the 
value of the mean. 

Only one or two middle points determine the 
value of the median.  

 
WHAT CAN I DRAG AND WHAT CAN I LEARN? 
Translating an Axis Scale 

Let’s start with something apparently straight-
forward—changing the scale of a graph axis through trans-
lation with no data present. In Fathom the user can do this 
by clicking anywhere in the middle third of an axis and 
dragging in either direction. Could anything be simpler? 

We postulate that through repeated encounters 
with axis translation a student absorbs certain useful ideas. 
A student’s inner dialog might sound like this: “The axis 
number line goes on forever in both directions. Any one part is just like another.” These would 
not be new ideas to a student, but encountering them again while working with data can help 
students more deeply understand a powerful data analytic concept: The position of data values on 
a number line is largely irrelevant without an external context, a measuring rod of some sort that 
gives meaning to the numbers. The numbers 198, 213, and 216 by themselves have no meaning. 
Knowing that they are heights of people measured in centimeters brings them into focus. 

 
 
Figure 2: Dragging the middle portion 

of an axis scale translates it 
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The act of dragging an axis scale is so related to transforming data that it may help build 
the foundation on which an understanding of the process of transforming data comes to rest. But 
another act of dragging gets more directly to the heart of transformation. 
 
Translating Data 

Normally, applying a translation to data would be done by 
formulaically computing the transformed values in a new attribute. 
To center the transformed data on zero, for example, we might use 
the formula Height – mean(Height). But in a dynamic manipula-
tion environment, the learner can select all the data points and drag 
them to a new position approximately centered on zero. While in 
the long run this may not be good data analysis practice to encour-
age, as an introduction to data transformation it gives the student a 
chance to notice that the shape of the distribution remains constant 
and to explain this constancy as a consequence of the fact that the 
data values all move together, maintaining their relative positions. 

Understanding that a linear transformation is reversible 
comes naturally from the realization that the data can be dragged 
back to where they started. Watching the data move as we drag 
produces a certain knowledge that nearly all of what is important 
about the data values remains intact and that if the amount of the 
drag is known, the original data can be reconstituted. 

 
The Shape of a Histogram 

A central task confronting a learner in data analysis is that of becoming comfortable with 
talking about and reasoning with distributions. A key component of distributional thinking 
(Rubin, 2005) is dealing with the shape of a distribution. Histograms are frequently the graph of 
choice for displaying a distribution, but they have a quirk that can catch learners unaware. 
Consider the uniform distribution shown in the dot plot of Figure 4. The middle graph, a 
histogram, does as well as the dot plot does at revealing the uniformity of the distribution. But as 
the user drags a bin boundary, increasing the width of the bars, the histogram dramatically and 
surprisingly changes shape, and no longer looks uniform at all!  

 

 
 

Figure 4: Three views of a uniform distribution. The selection of cases with values 3 and 4 shows the 
mechanism by which the histogram becomes nonuniform as the bins get wider 

 
Does this “aliasing” quirk of histograms hinder learners in their efforts to establish a 

stable concept of a distribution’s shape? Does the ability to dynamically change a histogram’s bin 
width help learners come to see that there is an underlying shape that persists across a range of 
bin widths? Consider an example. The distribution of 500 people drawn from the year 2000 U.S. 
Census illustrates a typical distribution question: Does the bump in the distribution around age 45 
represent baby boomers, or is it an aliasing artifact? As learners drag the edge of a histogram bin 
and experience the persistence of the boomer cluster, we hope they are learning to focus on shape 
and discount spurious artifacts. 

 
 

Figure 3: Dragging all the data 
values accomplishes a 

translation by a constant 
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Figure 5: Continuously changing the histogram’s bin width shows that the baby boomer “feature” is stable 
 
Movable Lines 

It is pedagogically useful to provide users with tools for 
“eyeball” estimation of distribution statistics, and movable lines 
(either univariate or bivariate) are important examples of such 
tools. Figure 6 shows the one-dimensional case in which the user 
is estimating the “center” of a distribution. In Figure 7, the user 
has placed two movable lines in a bivariate distribution to 
estimate the slopes of each of two subgroups of points. 

As the user drags a movable line, it moves across the 
distribution and the one or two values that define it update. There 
are many ways learners can use movable lines. In reading the 
statements that follow, imagine the user dragging the movable 
line, the word “here” indicating a particular placement of the line. 
• About here is the axis of symmetry. 
• Here is the expected mean, but the actual mean is much 

lower. 
• There seem to be two groups, one here, and the other here. 
• I’ll put the movable line on top of the least squares line and 

the drag an outlier. I can easily see how much influence the 
outlier has by the change in the least squares line compared 
to the movable line. 

• The edge of the points in the scatter plot is about here. 
 
Sliders as Draggable Parameters 

A slider is a named value whose magnitude can be 
changed by dragging. Sliders most often function as 
parameters in a model. In Figure 8, sliders determine the 
mean and standard deviation of a population from which a 
sample is taken. Dragging a slider causes samples to be 
drawn from the newly defined population. 

The movement of the slider itself holds little 
interest, but the effect of that movement, allows the learner 
to observe a continuous change in a model. In the standard 
deviation example, the learner experiences a great many 
samples in rapid succession, each with slightly different 
spread. This experience of repeated sampling must, we 
postulate, help build a foundation that leads to a better 
understanding of data analysis and inference. 

 
 

Figure 6: A distribution of 
heights with a movable line 

 
 

Figure 7: Two movable lines help 
describe a train trip across Russia 

 
 

Figure 8: Sliders m and sd control the 
mean and standard deviation of 100 
numbers from a normal distribution  
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Curve Fitting with Sliders 
Sliders serve extremely well as 

coefficients in plotted functions, allowing the 
learner to gradually adjust the shape of a 
curve and experience the commonality of 
functions belonging to a family. Automatic 
curve fitting may serve experienced practi-
tioners well, but “eyeball” fitting by dragging 
gives beginners a chance to interact with the 
model they are building. And, as in the 
example of Figure 9, it allows fitting of 
features such as the edges of point clusters. 

 
Sliders as Input to Inference Objects 

A slider can serve as a parameter to 
an inference; e.g., a t-test, as shown in Figure 
10. Dragging the slider causes 
computed quantities in the inference 
and any derived displays to update. 
Eavesdropping on the learner’s inner 
dialog: 
• The standard deviation doesn’t 

depend on count. Is that because 
it’s an estimate of something in 
the population? 

• The p-value and the shaded area 
under the curve vary together. 
Bigger n, smaller p-value. 

• For small values of n, the shape of 
the t-distribution changes, too. But once n > ~10, the curve doesn’t seem to change at all. For 
small n, the curve is lower and more spread out. 

 
Dragging Data and the Effect on an Inference 

We began by looking at the 
effect of dragging data on one of the 
simplest of measures—the mean. 
We end by looking at its effect on 
statistical tests of significance. For 
the data shown in Figure 11, we 
have two groups of values, G1 and 
G2. We can compare the mean of 
one group with the mean of another, 
or, if we can treat the values as 
paired, we can test whether the 
mean of the differences is 
significantly different from zero. 
Both tests are shown. Notice the p-
values. 

Now, we reach in and drag 
the values of G1 until the greatest 
and least values are approximately 
interchange, resulting as shown. 
This results in the situation shown 
in Figure 12.  

 
 
Figure 9: Dragging a slider allows the user to adjust a 

curve to fit a feature of a scatterplot 

 
 

Figure 10: A slider allows the user to dynamically explore the 
effect of sample size on a t-test 

 
 

Figure 11: In a fictitious dataset with three cases, each of which 
represents a pair of measurements, the difference of means is not 

significant, but the mean of the differences is significantly 
different than zero 
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It’s informative to watch the p-
values change during this drag. At some 
point the p-value for the significance of the 
mean of the differences becomes greater 
than that for the difference of means. Most 
of us, accustomed as we are to believe that a 
paired t-test is more sensitive than an 
unpaired t-test, feel somewhat perplexed by 
this result. Going back to dragging the data 
gives us a manipulative tool to help solve 
the puzzle. For the author, the necessary 
insight came from watching the spread of 
the values of the differences increase. 
 
BUILDING A FOUNDATION FOR 
UNDERSTANDING 

One important difference between 
learning to ride a bicycle and becoming 
statistically literate is that while the kinesthetic ability suffices for the former, statistical literacy 
rests on cognition. Few cyclists can explain how they stay upright, but explanation lies at the heart 
of data analysis. What about the kinesthetic experience of dynamic manipulation helps build a 
foundation for statistical understanding? 
• First is the multiplicity of frames. Recall the situation of Figure 8 in which dragging a slider 
caused new samples of numbers drawn from a normal distribution whose standard deviation was 
determined by the slider value. In fifteen seconds of manipulation, the learner sees perhaps fifty 
sample dot plots. We imagine a visual storehouse from which the learner can draw in the future, 
not exact images, but impressions of shape and, most importantly, variability. When confronted 
with a particular set of sample values, the learner can compare it with past visual experience and 
decide whether the distribution from which it came was likely normal, or whether an outlier 
deserves more than passing notice. 
• Second is the association of magnitude and direction of the drag with the magnitude and 
direction of the effect. Consider the observation, “When a point in a dot plot is dragged to the 
right, the mean moves to the right, but less far than the point was moved.” With repeated 
experience dragging points, we suppose that the association of change in mean with change in 
data value becomes intuitive. Most of what we mean by a “foundation” for understanding is the 
accumulation of intuitions, the set of things we know without having to think deeply about them. 
• Third is the effect of immersion. Dynamic manipulation draws people in—to explore, to play, 
and to ask “what if.” The more time you spend working with data and statistical objects, the more 
you will become adept and the stronger your foundation will become for continued learning. 
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Figure 12: With G2’s max and min values interchanged, 
the p-value of the paired t-test changes dramatically 


