
ICOTS-7, 2006: Konold

 1

HANDLING COMPLEXITY IN THE DESIGN OF
EDUCATIONAL SOFTWARE TOOLS

Clifford Konold

University of Massachusetts - Amherst, United States
konold@srri.umass.edu

Designers of educational software tools inevitably struggle with the issue of complexity. In
general, a simple tool will minimize the time needed to learn it at the expense of range of
applications. On the other hand, designing a tool to handle a wide range of applications risks
overwhelming students. I contrast the decisions we made regarding complexity when we
developed DataScope 15 years ago with those we recently made in designing TinkerPlots, and
describe how our more recent tack has served to increase student engagement at the same time it
helps them see critical connections among display types. More generally, I suggest that in the
attempt to not overwhelm students, too many educational environments managed instead to under
whelm them and thus serve to stifle rather than foster learning.

INTRODUCTION

Put five statistics educators in a room with the objective of specifying what should be in a
data analysis tool intended for young students. The list of essential capabilities they generate is
guaranteed to quickly grow to an alarming length. And no matter how many capabilities are built
into a tool, teachers and curriculum developers — even students — will still find things they want
to do, but can’t. If as a software developer you try to be helpful by including most of what
everyone wants in a tool, it becomes so bloated that users then complain they can’t find what they
want. Thus when it comes to the question of whether to include lots of features in a software tool,
it’s generally “damned if you do, damned if you don’t.”

Biehler (1995) refers to this as the “complexity-of-tool problem.” He suggests that one
approach to addressing it is to design tools that become more sophisticated as the user gains
expertise. This is just what successful computer games manage to do through a number of means
(Gee, 2003), but it is hard to imagine implementing this in an educational software tool. The Mini
Tools developed by Cobb, Gravemeijer and associates comprise three separate applications that
the developers introduce in a specified order according to their understanding of how rudimentary
skills in data analysis might develop over instruction (cf., Bakker, 2002). Perhaps this suite of
tools is a simple example of the kind of evolving software Biehler had in mind.

In developing DataScope 15 years ago, we took a different approach to the complexity
problem (Konold and Miller, 1994; Konold, 1995). DataScope is data analysis software intended
for students aged 14-17. We conceived of it as a basic set of tools that would allow students to
investigate multivariate data sets in the spirit of Exploratory Data Analysis (Tukey, 1977). To
combat the complexity problem, we implemented only five basic representations: histograms (and
bar graphs), box plots, scatterplots, one and two-way tables of frequencies, and tables of
descriptive statistics. Our hope was that by limiting student choices, more instructional time could
be focused on learning underlying concepts and data inquiry skills.

In many ways, we accomplished our goal with DataScope. Students took relatively little
time to learn to use it, and it proved sufficiently general to allow them to flexibly explore
multivariate data (Konold, 1995). However, one persistent pattern of student use troubled us. To
explore a particular question, students would often select the relevant variables, then choose from
the menus one of the five display options, often with only a vague idea of what the option they
selected would produce. If that display did not seem useful, they’d try another, and another, until
they found a display that seemed to suit their purposes. If they were preparing an assignment or
report, many students generated and printed out every possible display. There are undoubtedly
several reasons for this behavior; Biehler (1998) reports similar tendencies among older students
using software with considerably more options. However, it seemed clear that the limited number
of displays in DataScope explained in part this trial-and-error approach, as there was little cost in
always trying everything. Had this behavior been prevalent only among novice users, it would
have not been of much concern. But, it persisted as students gained experience.

ICOTS-7, 2006: Konold

 2

When we were field testing DataScope, I had a fantasy that students would want to work
with it outside of class — just for the fun of it, if you will. One day I walked into a class to
discover that a student was already there. She had fired up the computer and was so engrossed
that she didn’t notice me. Trying not to disturb her, I quelled my excitement and tiptoed around
her to see what data she was exploring. Alas, it was not the glow of DataScope lighting her face,
but one of the rather mindless puzzles that early Macs included under the Apple menu. This was
the closest I got in the DataScope days to realizing my fantasy.

We recently completed the development of TinkerPlots, a data analysis tool for students
ages 10-14 (Konold and Miller, 2005). Many of our design decisions were driven by our view of
what data analysis is and how students learn it. In this article, however, I focus on design
decisions that were driven more by the fantasy of students enjoying it and using it purposefully.
These decisions resulted in a tool that in some ways is a complete opposite of DataScope. Rather
than working to reduce the complexity of TinkerPlots, we purposely increased it. With rare
exceptions, students are extremely enthusiastic with TinkerPlots and frequently ask to work with
it outside of class. I believe that a big part of TinkerPlots’ appeal has to do with its complexity. In
what follows I attempt to describe how we managed to build a complex tool that motivates
students rather than overwhelms them.

CONSTRUCTING DATA DISPLAYS USING TINKERPLOTS

On first opening the plot window in TinkerPlots, individual case icons appear in it
haphazardly arranged (see Figure 1). Given the goal of answering a particular question about the
data, the immediate problem facing students is how to impose some suitable organization on the
case icons. TinkerPlots comes with no ready-made displays — no bar graphs, pie charts, or
histograms. Instead, students build these and other representations by progressively organizing
data icons in the plot window using basic operators including order, stack, and separate.

 Figure 1 shows data I typically use as part of a first introduction to TinkerPlots. I ask the
class whether they think students in higher grades carry heavier backpacks than do students in
lower grades. I then have them explore this data set to see whether it supports their expectations.
Figures 2 - 4 is a series of
screen shots showing one way
in which these data might be
organized with TinkerPlots to
answer this question.

In Figure 2, the cases
have been separated into four
bins according to the weight of
the backpacks. This separation
required first selecting the
attribute PackWeight in the
Data Cards and then pulling a
plot icon to the right to form
the desired number of bins. To
progress to the representation
shown in Figure 3, the icons
were stacked, then separated
completely until the case icons
appeared over their actual
values on a number line. Then the attribute Grade was selected (shown by the fact that the plot
icons now appear various shades of red). With Grade selected, the grade-five students were
separated vertically from the other grades. If we were to continue pulling out each of the three
other grades one by one, we’d then see the distributions of PackWeight for each of the four grades
in this data set (grades one, three, five, and seven). We could go on to place dividers to indicate
where the cases cluster, or to display the location of the means of all four groups (see Rubin,
Hammerman, Campbell, and Puttick (2005) for a description of the various TinkerPlots options
that novices used to make comparisons between groups).

Backpack

case 3 of 79

Attribute Value Unit

Name Sadie

Gender F

Grade One

BodyWeight 32 lb

PackWeight 3 lb

Backpack

Circle Icon

Figure 1: Information on 79 students along with their backpack
weights displayed in TinkerPlots. Each case (student) is represented
in a plot window (right) as a case icon. Clicking the Mix-up button
(lower left of the plot window) sends the icons into a new random
arrangement. The case highlighted in the plot window belongs to
Sadie, whose data appears in the stack of Data Cards on the left.

ICOTS-7, 2006: Konold

 3

Making these displays
in TinkerPlots is considerably
more complex than it would be
in DataScope, Tabletop,
Fathom, or most any
professional or educational
tool. In almost all of these
packages, one would simply
specify the two attributes and
the appropriate graph type
(e.g., stacked dot plot). As we
have seen, making such a
stacked dot plot in TinkerPlots
requires perhaps ten separate
steps. What is important to
keep in mind, however, is that
the students, particularly when
they are just learning the tool,
typically do not have in mind a
particular graph type they want
to make as they organize the
data. Rather, they take small
steps in TinkerPlots, each step
motivated by the goal of altering slightly the current display to move closer to their goal — in this
case of being able to compare the pack weights of the different grades. Because each of these
individual steps is small, it is relatively easy for students to evaluate whether the step is an
improvement or not. If it is not a productive move, they can easily backtrack. The fact that with
each step the icons animate into
their new positions also helps
students to determine the nature
of, and evaluate, each
modification.

There are a number of
reasons we designed TinkerPlots
as a construction set. A primary
objective was that by giving
students more fundamental
choices about how to represent
the data, they would develop the
sense that they were making
their own graphic representation
rather than selecting from a set
of pre-formed options. When I
have students investigate the
backpack data with TinkerPlots,
I give them the task of making a graph that they can use to answer the question posed above.
Having a specific task, especially when first learning TinkerPlots, is crucial. Without a clear goal,
students would have no end to inch toward and thus no basis for evaluating their actions.

After about 30 minutes, most of the students have answered the question to their
satisfaction. I then have them walk around the room to observe the displays that other students
have made. What they see is an incredible variety, which immediately presents them with the
problem of learning how to interpret these different displays, all of which are purportedly
showing the same thing. But more importantly, seeing all these different graphs makes it clear to
them that TinkerPlots is not doing the representational work for them. Rather, they are using it as
they might a set of construction blocks to fashion a design of their own making. They are in the

Figure 3. Cases have been stacked, then fully separated on the x
axis until there are no bins. Then the grade five students have
been separated out vertically, forming a new y axis. The cases
are now colored according to Grade, with darker red indicating

higher grade levels.

Figure 2: Plot icons separated into four bins according to the weight
of students’ backpacks. Shown above the plot window is a tool bar
which includes various plotting options. When one of these buttons
is pressed, it appears highlighted (as the horizontal Separate button
currently is). Pressing that button again removes the effects of that

operation from the plot.

ICOTS-7, 2006: Konold

 4

driver’s seat, which means they have to make thoughtful decisions; mindlessly pressing buttons
will most likely give them a poor result. Indeed, it is quite easy in TinkerPlots to make cluttered
and useless displays.

There are numerous factors that affect the interpretability of a data display (Tufte, 1983).
Many of these factors are ordinarily controlled by a software tool. In TinkerPlots, we chose to
leave some rather fundamental display aspects under direct user control. Figure 4 shows the four
levels of Grade separated out on the y axis.
But the plot icons are so large that they
spill over the bin lines, and any subtle
features of the four distributions are
obscured. This sort of plot crowding
routinely occurs as students are making
various graphs in TinkerPlots, and it is up
to them to manually control the size of
icons, which they quickly learn to do. It is
a control they seem to enjoy exercising.

Note, too, in Figure 4 that the four
levels of Grade are not ordered sensibly.
The current order resulted from the
particular way each group was pulled out
of the “other” category visible in Figure 3.
In creating this data set, we intentionally
entered the values of Grade as text rather
than as numbers so that students would
tend initially to get a display like this, with values of Grade not in an order ideal for comparing
them. The ordering can be quickly changed, however, by dragging axis labels to the desired
locations. Once ordered, students can sweep their eyes from bottom to top to evaluate the pattern
of differences among the groups without having to continually refer back to the axis labels. In
fact, it is this type of ordering from which graphic displays of data derive much of their power.

Leaving such details to the student further increases the complexity of the program.
However, having to take control of things like icon size, bin size, and the ordering of values on an
axis helps students to become explicitly aware of important principles that underlie good data
display. Furthermore, leaving these fundamental responsibilities to the student is yet another way
of communicating to them that they, and not the software tool, are ultimately in control of what
they produce. Finally, these are factors which most students seem to enjoy having direct control
over. Part of this satisfaction undoubtedly comes from the fairly direct nature of the control, and
would be lost if instead we had used dialogue boxes.

MAKING THE COMPLEXITY MANAGEABLE

Certainly, it is not the complexity itself that makes TinkerPlots compelling, but the nature
of that complexity. Indeed, one of the ways Biehler (1995) suggested to make a complex tool
manageable is to build it around a “conceptual structure … which supports its piecewise
appropriation.” We chose the operators separate, order, and stack after having observed how
students (and we ourselves) organized data on a table when it was presented as a collection of
cards with information about each case on a separate card. We then worked to implement these
operation in the software in a way that would allow students to see the computer operations as
akin to what they do when physically arranging real-world objects. This sense — that one already
knows what the primary software operators will do — becomes important in building up
expectations about how the various operators will interact when they are combined, because it is
this ability to combine operators in TinkerPlots that makes it complex, and powerful.

Implementing these intuitive operators in the software was harder than we initially
expected, however. In our first testable prototype, about half of the representations that students
would make by combining operators were nonsensical. To remedy this, we had to reinterpret what
some of the operations did in various contexts. Stack, for example, works as one might expect
with the case icon style used in Figures 1-4. However, there are other icon styles where the stack

Backpack

Three

One

Seven

Five

0 10 20 30 40

PackWeight (lb)

Circle Icon

Figure 4. The plot icons in this graph are so large they
obscure much of the data. Their size is under user

control via the slider located on the tool bar below the
plot.

ICOTS-7, 2006: Konold

 5

operation behaves a bit differently so as to produce reasonable displays. For example, icons can
be changed to fuse rectangular, a style used to make histograms (see bottom of Figure 5). In this
case, stack not only places case icons on top of one another, but also widens them so that they
extend across the entire length of the bin they occupy. With the icon style fuse circular, case
icons become wedges that fuse together into a circle (pie graphs). In this case, stack has no
function and thus if it is turned on, it does nothing. In general, the user is unaware of these
differences, but pays no price for this ignorance.

Figure 5: These graphs display the percentage the backpacks are of body weight. The top left graph shows
the location of the median (inverted red T) at 13. In the binned dot plot on the top right, the median now

appears as a red line below the bin, indicating that the median is in the interval 12 – 16. Changing the icon
style to “fuse rectangular” makes a histogram, which now again displays the precise location of the median.

We avoid using error messages to instruct students, primarily because we worried that

they would erode the attitude we are working hard to create — that the student, not the software,
is in control. In some cases, applying an operator does nothing to the plot, and the button dims to
indicate that it is in a suppressed state (as happens with stack in the context of pie graphs). Again,
this goes mostly unnoticed.

However, whenever we can, we show some change in the plot, even if it is of only limited
use. For example, when a numeric attribute is fully separated on an axis, students can click the
median button to display the location of the median below the axis (see top of Figure 5). With a
binned dot plot, however, it would be misleading to show the median as a specific point on an
axis. But rather than have nothing happen when students turn on the median in this state, we
display the median as a line running the length of the interval in which the median occurs (middle
graph in Figure 5). While not providing much information about the value of the median, this
display does help communicate the fact that when we place different values into the same bin we
are, for the moment, considering them to be the same. This binned dot plot can be changed into a
histogram by selecting the icon style fuse rectangular (see bottom graph of Figure 5). Now the
median symbol once again appears at a precise location on a continuous axis. The animation from
the binned dot plot to the histogram shows the cases growing in width to the edges of the bin
lines, hinting at yet another change in how we are thinking of the values in a common bin.

CONCLUSION

In helping students learn a complex domain such as data analysis, we inevitably must find
effective ways to restructure the domain into manageable components. The art is in finding ways
to do this that preserve the essence and purpose of the pursuit. It is all too common in classrooms
to find students succeeding at learning the small bits they are fed, but never coming to see the big
picture nor experiencing the excitement of the enterprise. Of course, TinkerPlots by itself cannot
change this, and much depends on how teachers and curriculum developers put it to use. Just as I

ICOTS-7, 2006: Konold

 6

have watched in frustration as students in traditional classrooms spend months learning to make
simple graphs of single attributes and never get to a question they care about, I now have had the
experience of watching students work through teacher-made worksheets to learn TinkerPlots
operations one at a time, “mastering” each one before moving on to the next. This despite the fact
that the parts cannot be mastered in isolation or out of context.

After class, I spoke with the teacher who had created the worksheets and gently offered
the observation that students could discover and learn to use many of the commands he was
drilling them on as a normal part of pursing a question. He informed me that they didn’t have
time in their schedule to have students “playing around.” While his response added to my despair
about the direction education in the US seems to heading under the pressures of the
testing/accountability movement, I also took it as another indicator that we succeeded with
TinkerPlots in developing the tool we had hoped to — that in the absence of the strict regime of a
worksheet, students seem to actually enjoy using it to explore data.

ACKNOWLEDGMENTS

I am grateful to Amy Robinson for her comments on an earlier draft. TinkerPlots is
published by Key Curriculum Press and was developed with grants from the National Science
Foundation (ESI-9818946, REC-0337675, ESI-0454754). Opinions expressed here are my own
and not necessarily those of the Foundation.

REFERENCES
Bakker, A. (2002). Route-type and landscape-type software for learning statistical data analysis.

In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching of
Statistics, Cape Town. Voorburg, The Netherlands: International Statistical Institute.

Biehler, R. (1995). Toward requirements for more adequate software tools that support both:
Learning and doing statistics. Revised version of paper presented at ICOTS-4. Occasional
Paper 157. Bielefeld: University of Bielefeld.

Biehler, R. (1998). Students - statistical software - statistical tasks: A study of problems at the
interfaces. In L. Pereria-Mendoza, L. S. Kea, T. W. Kee, and W-K. Wong (Eds.), Statistical
Education - Expanding the Network: Proceedings of the Fifth International Conference on
Teaching Statistics, (pp. 1025-1031), Singapore. Voorburg: The Netherlands: International
Statistical Institute.

Gee, J. P. (2003). What Video Games Have to Teach Us About Learning and Literacy. New York:
Palgrave Macmillan.

Konold, C. (1995). Datenanalyse mit einfachen, didaktisch gestalteten Softwarewerkzeugen für
Schülerinnen und Schüler. Computer und Unterricht, 17, 42-49. (English version: “Designing
data analysis tools for students.”)

Konold, C. and Miller, C. (1994). DataScope. Santa Barbara: Intellimation Library for the
Macintosh.

Konold, C. and Miller, C. D. (2005). TinkerPlots: Dynamic Data Exploration. Emeryville, CA:
Key Curriculum Press.

Rubin, A., Hammerman, J., Campbell, C., and Puttick, G. (2005). The effect of distributional
shape on group comparison strategies. In K. Makar (Ed.), Reasoning about Distribution: A
Collection of Current Research Studies. Proceedings of the Fourth International Research
Forum on Statistical Reasoning, Thinking, and Literacy (SRTL-4), [CD-ROM]. Brisbane:
University of Queensland.

Tukey, J. W. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.
Tufte, E. R. (1983). The Visual Display of Quantitative Information. Cheshire, CT: Graphics

Press.

