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Many statistics educators use simulation to help students better understand inference. Simulations
make the link between statistics and probability explicit through simulating the conditions of the
null hypothesis, and then looking at sampling distributions of an appropriate measure. In this
paper we review how we use simulation to help understand hypothesis testing, and lay out the
relevant steps. We illustrate how using simulation and technology can make these difficult ideas
more visible and understandable, through making processes more concrete, through unifying ap-
parently disparate tests, and through letting the learners construct their own measures to study
phenomena.

INTRODUCTION

Statistical inference is a tricky subject to learn. Inference is so hard that even professional
researchers use it inappropriately. Why is inference so difficult to grasp? Partly because it’s a
minefield of difficult, contrafactual ideas, not unlike the subjunctive mood in some languages.

The idea of using simulations in teaching inference will be familiar to many readers. Why
is it effective? It is easy to say simply, “because it makes things more concrete for the learner,”
and that is true. But let’s look again, in order to draw our attention to some essential points. In this
paper, we’ll focus on hypothesis testing. We start with a “polling” problem, which will lead us to
a test of proportions.

There is a proposition on the ballot in the upcoming election which, if passed, will make
it legal to keep capybaras as pets. As president of the local Free the Capybaras League,
you hope that this proposition will fail. In a poll of 50 likely voters, only 19 say they will
vote yes. What does that tell you?

Our first, naive reaction is to be happy: only 38% of the voters are in favor of the proposi-
tion; surely it will fail. We decide to do a test of proportions, so we calculate z = -1.697, and find
P =0.09, so we are sad, remembering that we want P < 0.05. Then (after consulting with a statis-
tician) we hear that we should have done a one-sided test, so that really P = 0.045, and we are
happy again.

We have used statistics blindly. In turning the crank on the test, we may not have under-
stood what was going on, or the actual meaning of those P-values. One of the underlying concepts
is that of the null hypothesis, which is hidden if you just calculate z and look up the results in a
table. Another is the test statistic z itself: Why do we use it? Where does it come from, really?

SIMULATING PROPORTIONS

We can make things clearer if we make the analysis more concrete. We can do that
through simulation. But what, precisely, should we simulate, and why?

We have to ask what end result we really care about. In this case, we’re worried that even
though the poll was 38%, the true proportion—and the end result—might be more than 50%. That
figure 50% is the threshold, the situation that marks the border between success and failure.

So we let 50% define our null hypothesis; we want to ask, if the true population propor-
tion were 50%, how likely is it that we get a result as low as 38%?

That is the contrafactual, subjunctive-mood question at the heart of this problem. And it is
one we can answer empirically. If we use a (fair) coin to represent a voter, we can simulate a uni-
verse in which 50% of the voters are in favor of the Capybara Law. We say that “heads” means a
person will vote “Yes” in the election. To simulate a poll, we flip the coin 50 times and record the
results.



ICOTS-7, 2006: Erickson

Suppose we do that and get 23 heads. Does that mean our poll of 19 is so low that we can
feel secure that the law will not pass? No. We have to do the simulation many times, and see
where 19 falls in the distribution of poll results.

The key point for students is that a single trial in this simulation is a poll of 50 voters, not
an individual opinion. The relevant outcomes range from 0 heads to 50 heads, not from heads to
tails. That is, the underlying intellectual structure of the situation is layered and hierarchical in
addition to being contrafactual: students have to hold in their minds the individual voter and its
representation (a single coin flip) as well as the model for a poll (50 coin flips and the result).

So we flip 50 coins repeatedly, recording the numbers of heads, and plot the distribution
of those results. Now we see that 19 is in the tail of the distribution, but not completely outside it.
That is, it is possible, but unlikely, that if the population were evenly split (there’s that subjunc-
tive again) we would get our result of 19. This is a key understanding students can get from simu-
lation that too often eludes them when they approach the problem solely from calculation.

In practical terms, however, if we flip 50 coins repeatedly, we will get tired before we
build up a very large distribution. So we get computational help. Ignoring the exact mechanism
for doing this—it is different for different programs—we use Fathom (Finzer, 2000) to simulate
flipping 50 coins 1000 times. The resulting distribution appears in Figure 1.
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Figure 1: The results of 1000 polls of 50. Results with 19 or fewer “yes” votes are shaded somewhat darker;
there are 52 such cases in this set of trials.

Our empirical result (this time) is P = 0.052. Let’s reflect on how this is the same and dif-
ferent from getting a traditional P-value.

« Because of random variation, different students typically get different results for the same
simulation.

« There is no need to use a normal approximation; this simulation, by its nature, uses the
binomial procedure. It doesn’t make much difference numerically, but conceptually, stu-
dents do not have to worry whether the approximation is acceptable.

» Students have to grapple with two N’s: the sample size (50) and the number of samples
that contribute to the distribution (1000). The latter is not statistically relevant except that
the empirical P-value will be closer to the theoretical as this N grows.

« Perhaps most important, the simulation—or rather the process the students go through to
get the results—makes it clearer what, precisely, the graph shows: the probability that
you would get a result at least as extreme as the poll, if the population were evenly split.

This also differs from the traditional test in that the student uses absolute numbers (19 out
of 50) rather than proportions (p = 38%). Why would this matter?

« The absolute number is more concrete, closer to the context. It is easier to imagine 19
people saying “yes” to capybaras than 38%.

« With a clearer connection to the context, it’s easy to see that the relevant area is one tail
rather than two.

« Even though we want students to use proportional reasoning effectively, in this case the
absolute numbers—both the numerator and denominator—are important conceptually. I
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1900 out of 5000 respondents said yes, it would still be 38%, but the meaning would be
vastly different.

(A Bayesian would point out that neither procedure gives us the answer we’re really in-
terested in—the probability that the measure will fail—and that’s true. But we claim that at least
in simulation, students are less likely to confuse (1 — P) with that value.)

SIMULATING DIFFERENCE OF MEANS

Let’s look at a different inference situation so that we can try to generalize.

Suppose we want to test whether plants grow taller with plant food A than with plant food
B. We measure each plant and store the value in a variable called height. Next, we construct a
measure that tells how much taller the A plants are than B, for example,

M = mean(height) from group A — mean(height) from group B.

This value is our test statistic. The next—and critical—step is to scramble (or permute)
the group memberships, leaving the height data alone, and compute the measure M on the scram-
bled data set. This simulates the null hypothesis: that group membership has no influence on
height. We rescramble and compute this measure repeatedly, building up the sampling distribu-
tion to which we will compare our test statistic.

This may be familiar to the reader as a “permutation test” or “randomization test,” and
has an illustrious history going back to Fisher (1935) and Pitman (1937).

Looking at both of these examples (the poll and the plants) we have an important insight:
We have to simulate the situation in which the null hypothesis is true. Thinking about other ex-
amples we could just as well have described, a common structure emerges for hypothesis testing
through simulation, which follows Gnanadesikan et al. (1987):

1. Collect data from the situation of interest—data that seem to reflect some phenomenon.

2. Design a measure of that phenomenon that you can calculate from the data. Ideally, this
measure is a large number if the phenomenon is strong and present, and small—even
zero—when the phenomenon is absent. The value for this measure, using the real data, is
the test statistic.

3. Simulate the condition of the null hypothesis, and collect those data.

4. Compute the measure from simulated data, and repeat to build up a sampling distribution
for the measure in question.

5. Compare the test statistic to the sampling distribution. The empirical P-value is the frac-
tion of cases in the sampling distribution that are at least as extreme as the test statistic.

These steps have special consequences for learning. Steps 2 and 3 are not mechanical;
they both require some craft. To make such a simulation, a student has to design a measure, and
has to figure out how to simulate the null.

DESIGNING MEASURES

If we are to build up a sampling distribution and compare a test statistic, we need a statis-
tic. So the student must derive a single number from the experimental data that somehow ex-
presses the phenomenon of interest. In the case of the plant food, the difference of mean heights
makes sense. But we could also use the ratio of mean heights, or the difference in maximum
heights, depending on what was most important. All that is required is a reliable way to calculate
the statistic.

Pedagogically, this is a constructivist’s dream. Students have to build a mathematical ex-
pression that embodies a meaning that they desire. They don’t need to use somebody else’s solu-
tion (Student’s t, for example), but later, when they are introduced to t (and chi-square and F),
they will be able to see that these venerable and powerful statistics serve a purpose just as theirs
do. This opens up the critical idea that we can compare how different statistics perform. Some
are, after all, better than others at revealing the effects we are trying to study.
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It is also useful (and heartening) to see that if you do a test with a home-grown differ-
ence-of-means statistic, the P-values you get are about the same as you get if you use a t-test. Of
course, t generalizes to any sample by assuming normality. This simulation procedure, on the
other hand, assumes that the population distribution is the same as that of the sample, so a particu-
lar simulation works only for a particular data set. With computers, that lack of generality is not
as important now as it once was. Furthermore, using simulation avoids abstractions that come
with assuming normal distributions—abstractions such as degrees of freedom.

Practically, it is often initially hard for students to get the idea that their statistic has to be
a single number that describes what they are interested in, and that really it is a procedure for
finding a number given any set of data. Perhaps this is because they are not looking ahead to the
sampling distribution.

SIMULATING THE NULL

Even though each problem gives rise to its own specific model, there are common strate-
gies for simulating a null hypothesis. As we have seen, polling suggests binomial trials with
p = 0.5, whereas comparing two groups suggests scrambling. What about association?

Interestingly, we can test for any sort of association using scrambling techniques. For ex-
ample, if we have x and y values, and wonder if there is a correlation, it is really the same ques-
tion as with the plants: is there a relationship between the two variables? We can use Pearson’s r
(or any statistic we devise, parametric or no) as our test statistic. Then we scramble x or y and
compute r for the scrambled data set. We do so repeatedly to build up the sampling distribution,
and compare our test r to the distribution. The same logic applies to situations in which we would
traditionally use a chi-square test or one-way ANOVA.

Sometimes, a particular situation suggests a different simulation strategy. Fisher’s (1935)
analysis of Darwin’s (1892) corn data is a good example. In that experiment, plants were paired in
order to control for confounding variables. Each pair consisted of a self- and cross-fertilized plant
of Zea mays. The conjecture was that the cross-fertilized plants would be generally taller. A rele-
vant quantity is the difference of heights in each pair, so a suitable measure is the average or the
sum of these differences.

We could shuffle the heights of the plants, but here we are juggling three variables (fer-
tilization, the “pair number,” and height) so we risk getting confused. Instead, Fisher used only
the height difference within each pair, and, for the simulation step, randomly assigned an arithme-
tic sign to each value. A bit of reflection convinces us that this is equivalent to shuffling the fer-
tilization “labels” within each pair, but from a student’s point of view, that equivalence may not
be clear. Once we can accept the sign trick, the problems of getting the computer to do the simu-
lation we want become much easier. It makes sense to use this randomization/sign strategy with
many paired comparisons.

THE ROLE OF TECHNOLOGY

We have mentioned both computer simulation and manual simulation here; what is the
role of each? Perhaps it is best to start with Freedman et al. (1997), who used a consistent meta-
phor of drawing slips of paper from a hat—a Gedankensimulation, if you will—to explain basic
statistical concepts. This was especially effective because they could use the slip-drawing process
as a unifying idea for many apparently dissimilar principles and techniques.

When people first began using simulations in statistics education, computers were not as
ubiquitous as they are today. We usually expected students to perform these simulations manually
if at all. Students would roll dice, flip coins, or draw those slips of paper out of a hat. In some cir-
cumstances, they would look up numbers in a random-number table. Even in those far-away
times, however, Gnanadesikan (1987) and his colleagues saw the promise of computers for speed-
ing up the process, and the first bits of simulation software had already appeared.

Extra speed is so alluring and fun, and makes so many things possible, that one is tempted
to abandon manual simulations entirely. This is probably not a good idea, however: manual simu-
lations—Iike using manipulatives and graphing by hand—give students hands-on experiences
they can refer to as they move on to more abstract and technology-dependent activities. In addi-
tion to being more kinesthetic, manual simulations give students alternate representations for con-
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cepts, provide for collaboration with others, and, importantly, slow things way down, giving more
time for thought.

That said, usually simulation means simulation with technology. We expect that students
will do enough manual simulation to understand the principles, and move on to the computer im-
mediately after. Why? Because speed matters. There are three fundamental reasons this is so:

«  First, the speed of the computer makes it possible to do many more trials—and retrials—
of a simulation than we could imagine doing by hand.

« Second, the computer helps the student move up the ladder of abstraction. Without the
speed, each of the 50 coin flips, or each of the shuffles, occupies our attention. With the
speed, we can encapsulate the individual trials and focus on the sampling distribution.

« Finally, the internal speed of calculation makes it possible for computers to display more
about the process and results. This is more than just convenient or cosmetic. We see more
and learn new things about the phenomena we’re studying, and about inference in gen-
eral, when we use good technological tools.

COMMENTS

Others have written entire books about this (e.g., Simon 1993; Edgington 1995), so we
will not press much further except to make a few comments.

First, it is interesting to compare a student using a traditional approach with a student
constructing a test using simulation. Traditionally, the student has to look at the variables, decide
on a test, see if the data meet the requirements for the test, perform the relevant calculations or
table look-ups, and interpret the results. In simulation, the number of things to be done is about
the same. How do they differ?

Simulation is more computing-intensive, and demands more creativity. And simulation
may seem more unified: even though each measure may be different, and each null hypothesis
must be simulated anew, the task simulate the null hypothesis is the same no matter what the form
of the variables; a student may rightly get the impression that, at a deep level, a chi-square test is
really the same as a two-sample t. After the equivalent traditional task, choose an appropriate
test, the student can ignore the context completely, making the whole endeavor more abstract in a
way that simulation does not.

Second, we have been talking exclusively about hypothesis testing. The reader is proba-
bly familiar with bootstrapping as a technique for generating interval estimates that behave more
or less like traditional confidence intervals. That is, we can use simulation (in this case, perhaps
better called resampling) in many inference tasks—not just in hypothesis testing.

Finally, the reference to bootstrapping highlights a commonality among many of the
strategies we have mentioned so far. Whereas a traditional approach often assumes some distribu-
tion of the data—usually normal—and derives its results from the theoretical sampling distribu-
tion that arises under that assumption, a simulation strategy often implicitly assumes that the
population has exactly the same distribution as the sample. As a consequence, worries about nor-
mality go away. (Worries about representativeness arise, of course, but are usually no worse than
when using traditional tests.)

CONCLUSION

Why simulate? The first reason for us as teachers is that the entire process—simulating
the null hypothesis, building up a distribution of statistics, and comparing our test statistic to that
distribution—illuminates the underlying meaning of a hypothesis test. It replaces the struggle
with the strange, subjunctive mantra (“...the probability that, if the null hypothesis were true, the
statistic would be at least this extreme...”) with something more concrete: over here the null hy-
pothesis is true. When students see that 52 times out of 1000, the statistic was as weird as they got
in the actual experiment, they can reason more clearly about the meaning of their result.

But, as we have seen, there are other advantages to using randomization tests as we have
described them, especially: they don’t require normality; and they are effective with any reason-
able statistic, even ones the students devise themselves.

On the other hand, there is a great deal of inertia behind the tried-and-true parametric
methods, which, after all, work well in many situations and are easy to use, even if they are often
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misinterpreted. And we, as teachers, have taught them before and know how. Simulation seems
like a plausible educational tool, but there are challenges: designing measures; identifying and
simulating the null hypothesis; understanding how to build up the sampling distribution; and in-
terpreting the results.

But as these factors change, and we learn to meet the challenges, the balance will shift for
more and more teachers. It’s curious: Fisher (1935) used these methods (although looking at all
possible permutations instead of a sample) to show that the time-saving parametric methods
worked. Now computing has made simulation practical and fast. Stochastic methods are becom-
ing more widely used professionally. So why do we need the traditional techniques? Will we
eventually think of parametric methods as a brilliant but outmoded twentieth-century phenome-
non? Will we think of them as tools we used to use, like log tables, the slide rule, and Napier’s
bones?

Probably not. We still teach calculus even though we solve most practical problems nu-
merically. There is a beauty in crisp functional relationships—once we understand why they
work—that contributes to our intuition about the phenomena we study. For example, the root-n
that appears in so many formulas helps us think about the effects of sample size.

As with so many things, then, we need to seek a balance. The concrete and practical
leaven the abstract and analytical. The statistics course has long been too formal for most stu-
dents. With technology, backed up by new thinking about how to use simulation effectively in
education, we can create a new equilibrium, one that respects tradition but also opens doors for
new understanding.
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