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For teaching purposes it is sometimes useful to be able to provide the students in a class with different 
sets of regression data which, nevertheless give exactly the same estimated regression functions.  In 
this paper we describe a method showing how this can be done, with a simple example.  We also note 
that the method can be generalized for situations where the regression errors are not independently 
distributed with a constant covariance matrix. 
 
INTRODUCTION 

For coursework and examination purposes it will sometimes be useful to be able to give students 
regression data sets that appear to be different, and yet give exactly the same estimates for the regression 
function.  This can be done using a method originally proposed by Huh and Jhun (2001) for testing the 
significance of regression coefficients using randomization methods.  In brief, Huh and Jhun proposed 
transforming the residuals from a multiple regression into uncorrelated variables with a constant 
variance, putting the residuals into a random order, and then transforming back to the scale of the original 
residuals.  The new residuals then replace the original residuals to provide a set of data with new values 
for the dependent variable.  As it happens, the regression estimates for the new data are exactly the same 
as for the original data. 
 
THE METHOD 

Consider the usual multiple regression model 
 yi = β1xi1 + β2xi2 + ... + βpxip + εi, i = 1, 2, ..., n, 
where εi is a random error with mean zero and constant variance σ2, and where xi1 = 1 if there is a 
constant in the model.  In matrix notation this becomes 
 Y = XB + E, 
where Y is an n by 1 vector of y values, X is an n by p matrix of x values, B is an n by 1 vector of 
regression coefficients, and E is an n by 1 vector of the regression errors. 

With this notation it is well known that the least squares estimator of the regression coefficients 
is 
 b = (X'X)-1X'Y. 
The estimated regression residuals are then 
 e = Y - Xb  = (I - X(X'X)-1X') ε, 
and it can be shown that the covariance matrix for these estimated residuals is 
 Ve = [I - X(X'X)-1X'] σ2 
where I is an n by n identity matrix and σ2 is the variance of the true regression residuals.  

The last equation shows that in general the variances of the estimated residuals are not equal, 
and the estimated residuals are correlated.  This is because Ve has to be an identity matrix multiplied by a 
scalar constant for these conditions to hold, which will not usually be the case.  The residuals are 
therefore not generally exchangeable as needed for a randomization test. 

To overcome this problem, Huh and Jhun (2001) suggested that a linear transformation of the 
estimated residuals should be carried out to obtain uncorrelated variables with a constant variance.  For 

example the residual variance can be estimated by the mean square error σ̂2 in the usual way matrix Veσ̂
2 

 can be input to a principal components analysis.  The principal components obtained will then be 
uncorrelated, and have equal variances (Manly, 2005, Chapter 6).  Because of the relationship between 
the estimated residuals caused by fitting the regression model, p of the principal components will be 
identically zero, in which case they must be fixed at zero for the randomization stage of Huh and Jhun’s 
analysis. 
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Once the uncorrelated variables with a constant variance are obtained these can be put in a 
random order.  The randomized values can then be back-transformed to obtain randomized residuals for 
the original regression model.  These are then added to the expected Y values to obtain a randomized set 
of data to compare with the observed data.  In their paper, Huh and Jhun show that this new set of data 
will have exactly the same regression estimates as the original set. 
 
EXAMPLES 

Consider the data in Table 1, which is ten observations on the natural logarithms of chlorophyll-
a, phosphorus and nitrogen from the lakes in a region.  It represents a subset of the results for 74 lakes 
that were published by Smith and Shapiro (1981). 

 
Table 1: Example regression data were Y is log(chlorophyll-a concentration), X1 represents a 
constant term, X2 is log(phosphorus concentration), and X3 is log(nitrogen concentration).  

 
Y X1 X2 X3 Fit Res 

4.5 1.00 5.80 2.08 4.77  -0.22 
3.6 1.00 5.35 1.79 3.90  -0.24 
3.3 1.00 4.68 2.40 3.75  -0.45 
2.5 1.00 3.03 2.77 2.14  0.42 
3.5 1.00 4.10 2.20 2.82  0.73 
2.7 1.00 3.27 2.83 2.50  0.20 
5.0 1.00 6.39 1.39 4.73  0.33 
1.6 1.00 3.66 2.56 2.68  -1.05 
2.3 1.00 3.74 2.40 2.60  -0.24 
4.5 1.00 4.60 2.77 4.06  0.50 

     SSE  2.57 
    MSE  0.37 

 
For these data the estimated regression coefficients for X1 to X3 are -4.613, 1.223 and 1.098, 

respectively.  The error sum of squares is 2.57, the error mean square is 2.573/7 = 0.368 and the 
estimated covariance matrix for the residuals is 

 ┌           ┐
 │  0.233  -  -  0.036  0.019  0.002  -  0.006  0.024  - │
 │  -  0.274  -  -  -  0.011  -  -  -  0.031 │
 │  -  -  0.312  -  -  -  -  -  -  - │
 │  0.036  -  -  0.261  -  -  0.045  -  -  - │
│  0.019  -  -  -  0.285  -  -  -  -  0.049 │Ve = 
│  0.002  0.011  -  -  -  0.279  0.053  -  -  - │
 │  -  -  -  0.045  -  0.053  0.168  0.007  -  0.037 │
 │  0.006  -  -  -  -  -  0.007  0.308  -  - │
 │  0.024  -  -  -  -  -  -  -  0.293  0.026 │
 │  -  0.031  -  -  0.049  -  0.037  -  0.026  0.160 │
 └           ┘

This matrix has seven eigenvalues equal to the error mean square 0.368, with corresponding 
eigenvectors.  If the 10 by 10 matrix with the ith eigenvector in the ith column is denoted by H, then the 
residuals transformed to uncorrelated variables with equal variances are given by 
 e* = H'e, 
where e is the vector of original residuals.  For the present data this gives the uncorrelated values 
 (e*)' = ( -0.582, 0.954, 0.477, -0.298, 0.947, 0.296, 0.000, 0.000, 0.0000, 
where the last three values correspond to the zero eigenvalues. 

To obtain a new set of data with the same regression estimates, the non-zero transformed 
residuals are put in a new order.  For example, this might be -0.298, 0.954, 0.947, 0.152, 0.477, -0.582, 
0.296, 0.000, 0.000, 0.000.  These values then need to be back-transformed to find the residuals that they 
correspond to with the original data.  As the matrix H is orthogonal the back-transformation is simply 
given by 
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 e1 = He*1, 
where e*1 is the reordered vector of uncorrelated variables.  The new residuals are then added to the fitted 
values in Table 1 to get the new set of data. 

With the reordered uncorrelated variables shown above, the back-transformed residuals are -
0.16, -0.64, -0.35, -0.83, 0.09, -0.07, 0.28, 0.31, 0.99, and 0.39, in order.  Adding these to the fitted 
values shown in Table 1 gives the new Y values, which are 4.60, 3.26, 3.40, 1.30, 2.91, 2.43, 5.01, 2.99, 
3.59 and 4.44, in order.  It is easy to verify that the regression with these Y values gives the same 
estimated regression coefficients, standard errors, and error mean square as the Y values in Table 1. 

We note that the matrix H is not unique.  Different algorithms for choosing a transformation to 
uncorrelated residuals may therefore change the details of this example, whilst still producing different 
sets of data with the same regression estimates. 

As another example, consider the quadratic regression model 
 y = β0+ β1x + β2x

2 + ε 
and the X values {0.0, 0.5, 1.0,.. . ,4.5, 5.0}.  Figure 1 shows scatter plots and fitted models for different 
data sets with the estimates 12, 4, and  -1 for β0, β1, and β2.  This illustrates again how rather different 
sets of data can lead to an identical fitted regression model 
 

 
 
DISCUSSION 

 The emphasis in this paper has been on the use of the Huh and Jhun method to generate 
alternative data sets that give the same regression estimates.  However, other applications may also be 
useful, such as generating the alternative data sets for some sort of simulation study.  Also, of course, 
there is Huh and Jhun’s original application with randomization tests for the significance of the estimated 
regression coefficients. 

The above theory may also be of interest in an any advanced course involving regression to 
demonstrate that different sets of data may give the same regression estimates, or just as an interesting  
coursework example on an aspect of regression theory. 

Finally, we note that it is not difficult to generalize the results presented here to situations where 
the regression errors are correlated, and may have unequal variances.  These extensions will be discussed 
more fully elsewhere (Zocchi and Manly, in preparation). 
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