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For teaching purposesit is sometimes useful to be ableto providethe studentsin a classwith different
sets of regression data which, neverthel ess give exactly the same estimated regression functions. In
this paper we describe a method showing howthis can be done, with a simple example. We also note
that the method can be generalized for situations wherethe regression errorsare not independently
distributed with a constant covariance matrix.

INTRODUCTION

For coursework and examination purposes it willstimmes be useful to be able to give students
regression data sets that appear to be diffenediyet give exactly the same estimates for thessgn
function. This can be done using a method oritimabposed by Huh and Jhun (2001) for testing the
significance of regression coefficients using randation methods. In brief, Huh and Jhun proposed
transforming the residuals from a multiple regressinto uncorrelated variables with a constant
variance, putting the residuals into a random qutett then transforming back to the scale of tiggnait
residuals. The new residuals then replace theatigesiduals to provide a set of data with nelues
for the dependent variable. As it happens, theessipn estimates for the new data are exacthatine
as for the original data.

THE METHOD

Consider the usual multiple regression model

Yi= leil + Bszz + ... +Bpxip +g,i=1,2,..n
whereg; is a random error with mean zero and constanaimegic®, and wheres; = 1 if there is a
constant in the model. In matrix notation thisdraes
Y =XB +E,

whereY is ann by 1 vector ofy values,X is ann by p matrix ofx values,B is ann by 1 vector of
regression coefficients, afdis ann by 1 vector of the regression errors.

With this notation it is well known that the leasfuares estimator of the regression coefficients
is

b= (X'X)'X'Y.
The estimated regression residuals are then
e=Y -Xb =( -X(X'X)X") &,
and it can be shown that the covariance matrithese estimated residuals is
Ve=[I - X(X'X)X1] 6

wherel is ann by n identity matrix and? is the variance of the true regression residuals.

The last equation shows that in general the vaggmp€ the estimated residuals are not equal,
and the estimated residuals are correlated. $lhiedaus¥ . has to be an identity matrix multiplied by a
scalar constant for these conditions to hold, wiidhnot usually be the case. The residuals are
therefore not generally exchangeable as neededriondomization test.

To overcome this problem, Huh and Jhun (2001) sstgdehat a linear transformation of the
estimated residuals should be carried out to obt@inrrelated variables with a constant variafae.

example the residual variance can be estimateddayean square erretin the usual way matrh*.(eé\s2

can be input to a principal components analyJike principal components obtained will then be
uncorrelated, and have equal variances (Manly, 2088pter 6). Because of the relationship between
the estimated residuals caused by fitting the ssjwa modelp of the principal components will be
identically zero, in which case they must be fiaédero for the randomization stage of Huh and’3hun
analysis.
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Once the uncorrelated variables with a constarianee are obtained these can be put in a
random order. The randomized values can thendletbansformed to obtain randomized residuals for
the original regression model. These are thendaddihe expected Y values to obtain a randomizied s
of data to compare with the observed data. Im trager, Huh and Jhun show that this new set af dat
will have exactly the same regression estimatebleasriginal set.

EXAMPLES

Consider the data in Table 1, which is ten obsematon the natural logarithms of chlorophyll-
a, phosphorus and nitrogen from the lakes in @nedit represents a subset of the results foakds|
that were published by Smith and Shapiro (1981).

Table 1: Example regression data wéige log(chlorophyll-a concentrationy; represents a
constant termXz is log(phosphorus concentration), aqds log(nitrogen concentration).

Y X4 X5 X3 Fit Res
4.5 1.0C 5.8C 2.0€ 4.77 -0.22
3.6 1.0C 5.3t 1.7¢ 3.9C -0.24
3.3 1.0C 4.6¢ 2.4C 3.7¢ -0.4t
2.5 1.0C 3.0z 2.77 2.14 0.4z
3.5 1.0C 4.1C 2.2C 2.82 0.7z
2.7 1.0C 3.27 2.83 2.5C 0.2C
5.0 1.0C 6.3¢ 1.3¢€ 4,73 0.3z
1.6 1.CO 3.6€ 2.5€ 2.6€ -1.0&
2.3 1.0C 3.74 2.4C 2.6C -0.24
4.5 1.0C 4.6C 2.77 4.0€ 0.5C

SSE 2.57
MSE 0.37

For these data the estimated regression coefficfenX; to X; are -4.613, 1.223 and 1.098,
respectively. The error sum of squares is 2.5& fnor mean square is 2.573/7 = 0.368 and the
estimated covariance matrix for the residuals is

0.23¢ - - 0.03¢ 0.01¢ 0.00z - 0.00¢ 0.02¢ -

- 0.27¢ - - - 0.011 - - - 0.031

- - 0.312 - - - - - - -

0.03¢ - - 0.261 - - 0.04¢ - - -

Ve=1 0.01¢ - - - 0.28¢ - - - - 0.04¢
0.00z 0.011 - - - 0.27¢ 0.05¢ - - -

- - - 0.04¢ - 0.05¢ 0.16¢ 0.007 - 0.037

0.00¢ - - - - - 0.007 0.30¢ - -

0.02¢ - - - - - - - 0.29¢ 0.02¢

- 0.031 - - 0.04¢ - 0.037 - 0.02¢ 0.16(

This matrix has seven eigenvalues equal to ther en@an square 0.368, with corresponding
eigenvectors. If the 10 by 10 matrix with fleigenvector in the" column is denoted biyt, then the
residuals transformed to uncorrelated variables &gfual variances are given by
e =H'e
wheree is the vector of original residuals. For the preslata this gives the uncorrelated values
(e =(-0.582,0.954, 0.477, -0.298, 0.947, 0.28600, 0.000, 0.0000,
where the last three values correspond to theeigemvalues.

To obtain a new set of data with the same regressitimates, the non-zero transformed
residuals are put in a new order. For examplg niight be -0.298, 0.954, 0.947, 0.152, 0.47782).5
0.296, 0.000, 0.000, 0.000. These values thentodsiback-transformed to find the residualsttiet
correspond to with the original data. As the mdittiis orthogonal the back-transformation is simply
given by
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e =He
wheree*; is the reordered vector of uncorrelated variabldse new residuals are then added to the fitted
values in Table 1 to get the new set of data.

With the reordered uncorrelated variables showwvabitie back-transformed residuals are -
0.16, -0.64, -0.35, -0.83, 0.09, -0.07, 0.28, 0829, and 0.39, in order. Adding these to thedit
values shown in Table 1 gives the new Y valueschvhie 4.60, 3.26, 3.40, 1.30, 2.91,2.43,5.09, 2.
3.59 and 4.44, in order. It is easy to verify ttied regression with thedévalues gives the same
estimated regression coefficients, standard eram error mean square as Yhalues in Table 1.

We note that the matri is not unique. Different algorithms for choosagansformation to
uncorrelated residuals may therefore change tladiglef this example, whilst still producing diféeat
sets of data with the same regression estimates.

As another example, consider the quadratic regnessodel

y = Bot X+ P +¢
and theX values {0.0, 0.5, 1.0,.. . ,4.5, 5.0}. Figurehbws scatter plots and fitted models for different
data sets with the estimates 12, 4, and -Bdd@, andp,. This illustrates again how rather different
sets of data can lead to an identical fitted regoesmodel
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DISCUSSION

The emphasis in this paper has been on the ube éfuh and Jhun method to generate
alternative data sets that give the same regressiomates. However, other applications may aéso b
useful, such as generating the alternative dasaf@esome sort of simulation study. Also, of cmr
there is Huh and Jhun’s original application wahdomization tests for the significance of thewestid
regression coefficients.

The above theory may also be of interest in anaaiwanced course involving regression to
demonstrate that different sets of data may gigesttime regression estimates, or just as an interest
coursework example on an aspect of regressionytheor

Finally, we note that it is not difficult to genéra the results presented here to situations where
the regression errors are correlated, and mayureegal variances. These extensions will be disdus
more fully elsewhere (Zocchi and Manly, in prepiaralt
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