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Both at the School of Engineering of Universidad Nacional de La Matanza and Universidad de 
Buenos Aires, the teaching of statistics is considered to be highly important. The aim of this 
presentation is to show the advantages and disadvantages of the Bayesian estimation of the “p” 
parameter in a Bernoulli Process, in particular in a binomial distribution (n ; p).  The similarities 
and differences between the classical estimation of such parameter and the Bayesian estimation 
will be established. The predictions which can be carried out as a result of the obtained 
estimations will also be developed. In order to teach both Bayesian and classical estimation of 
population parameters, mathematical and statistics software is used as a tool to help the 
understanding of the concepts. In this presentation Matlab and Excel have been used.  
 
INTRODUCTION 

In the teaching of statistics it is important that the learners clearly understand both the 
differences and similarities between the conventional and Bayesian paradigms for different 
reasons: 

• unlike the classical estimation method, the Bayesian estimation method incorporates 
initial information; 

• it will help the learner to decide which method is the most convenient to be applied in 
specific problems regarding Engineering or any other subject. 

Following a short description of Bayesian estimation of “p” in a Binomial (n; p), examples of 
how to estimate in a Bayesian way the probability of defective integrated circuits (I.C.) are 
presented. The results of these estimations are then compared to the results obtained through the 
classical estimation method. 
  
BAYESIAN ESTIMATION OF “p” IN A BINOMIAL ( n ; p ) 

• A function of prior uniform density of “p” is considered [0 ; 1], i.e., Beta ( 1 ; 1) 
• A single sample is taken 
• “r” successes in “n” Bernoulli experiments are observed (dichotomic) 
• Therefore, the posterior density function of “p” is: 
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It is observed the following similarity between the classical estimation of such parameter and the 
Bayesian estimation: 

the mode of the posterior density function of “p” in this case coincides with the maximum 
likelihood estimator of “p.” 

 
CONFIDENTIAL INTERVAL TO ESTIMATE A “p” 

A credibility interval of (1-α) % credibility to estimate (in Bayesian way)  “p” is sought, 
i.e., 

[ ] α−=≤≤ 1LSpLIP  
The limits of such interval can be obtained, for instance stating that:  
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Example 1: In the following example two cases are shown in order to estimate, in a Bayesian 
way, the “p” probability of defective integrated circuits (I. C.), and are compared to the results 
obtained through the conventional estimation method. In these two cases, there is a similarity 
between a credibility interval for “p” obtained in a classical way and in a Bayesian way when a 
big sample is taken. 

In order to achieve this, in each of the two cases: 
• A uniform distribution [0; 1] as prior distribution of “p” is assumed. 
• A single sample of “n” I.C. in which “r” defective ones are observed is taken.  
• The intervals of 95% credibility in each of the two cases are:  

 
Bayesian Estimation Conventional Estimation 

n = 100 r = 10 n = 100 r = 10 
Mean of posterior density function = 0.1078 
  

 

Mode of posterior density function = 0.1 Maximum likelihood estimation of “p” = 0,1 
LI = 0.0556                LS = 0.1746 LI = 0.0412                LS = 0.1588 

n = 1000 r = 10 n = 1000 r = 10 
Mean of posterior density function = 0.0110  
Mode of posterior density function = 0.01 Maximum likelihood estimation of “p” = 0.01 
LI = 0.0055                LS = 0.0183 LI = 0.0038             LS = 0.01617 
 
Example 2: In this example the difference between a credibility interval for “p” obtained in a 
classical way and in a Bayesian way is shown. 

• A uniform distribution [0;1] as prior “p” distribution is assumed. 
• A single sample of 100 I.C. in which one defective is observed is taken. 
• The intervals of 95% credibility are:  

LI Bayes =   0.0024   LS Bayes =   0.0539 
LI conventional =  -0.0095  LS conventional =  0.0295 

It is observed that the interval obtained in a classical way produces as inferior limit a negative 
value, which is impossible as likelihood value of defective I.C. 
 
Example 3: The following example shows two cases to estimate (in a Bayesian way) the “p” 
likelihood of defective I.C.  
In order to achieve this in each of the cases: 

• A Uniform distribution [0;1] as prior distribution of “p” is assumed. 
• A single sample of 100 I.C. is taken, in which in the first case “r=0” defective ones and in 

the second “r=100” defective ones are observed. 
• The interval of 95% credibility in the first case “r=0” is:   LI = 5.0773 e-4     LS = 0.0359 

In this case it is more logical to provide a unilateral credibility interval of 95% to estimate “p,” 
i.e.,: LI = 0    LS = 0.0292 

• The interval of 95% credibility in the second case “r=100” is:   LI = 0.9708   LS = 0.9997 
In this case it is more logical to provide a unilateral credibility interval of 95% to estimate “p,” 
i.e.,: LI = 0.9995  LS = 1 
It is worth pointing out that in these cases a credibility interval for “p” cannot be found by means 
of the classical estimation. 

 
PREDICTIVE FUNCTION OF THE BINOMIAL (n ; p) 

The aim is to search the likelihood function of the “r” amount of defective I. C. 
conditional on the first obtained sample in order to predict the likelihood of obtaining “r” 
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defective I.C. in a second sample. The predictive function is:  Beta-Binomial: 
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Examples: A first sample has been taken of n1=50 I.C. obtaining r1=1 defective ones. The 
posterior function of “p” has been calculated (which provides information about all the possible 
values of “p”) The aim is to predict the likelihood of obtaining “r” defective I.C. in a posterior 
sample of n2=10 I.C. 
Therefore: 

 Bayesian estimation Conventional estimation 
r P( r / n2,n1,r1) P( r / n2; pMLE ) 
0 0.696721311 0.817072807 
1 0.236176716 0.166749552 
2 0.054972167 0.015313734 
3 0.010287189 0.000833401 
4 0.001607373 2.97643E-05 
5 0.00021042 7.28922E-07 
6 2.27305E-05 1.23966E-08 
7 1.96058E-06 1.44567E-10 
8 1.2725E-07 1.10638E-12 
9 5.54464E-09 5.0176E-15 

10 1.21982E-10 1.024E-17 
 
A second sample has been taken of n1 = 50  r1 = 0  Second sample:  n2 = 10 
 

 Bayesian estimation Conventional estimation 
r P( r / n2,n1,r1) P( r / n2, pMLE ) 
0 0.836065574 1 
1 0.139344262 0 
2 0.021255904 0 
3 0.002931849 0 
4 0.000360052 0 
5 3.8577E-05 0 
6 3.507E-06 0 
7 2.59778E-07 0 
8 1.47044E-08 0 
9 5.65553E-10 0 

10 1.10893E-11 0 
 
In this second example it is observed that the advantage of the Bayesian estimation of the “p” 
parameter in a binomial distribution (n ; p) 
 
POSTERIOR DENSITY FUNCTION  OF “p” WITH “M” SAMPLES OF A  BINOMIAL (n ; p)   
AND PRIOR BETA (a ; b) 

It can be proved in this process that if M samples { } 1
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If a prior beta likelihood distribution is considered, ( , )Beta a bα β= = ,  the function of 
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Remark 1:  If a Beta distribution as prior of “p” is considered, the posterior distribution is also 
Beta. This enables to make an iterative estimation, taking the posterior Beta distribution of “p” of 
iteration “i,” as the prior distribution of “p” in iteration “i+1.” This is very useful in cases where it 
is difficult to take big samples in one go and it also allows to process on line the samples as they 
arrive.  
 
Remark 2: The similarity between the classical estimation of such parameter and the Bayesian 

estimation, is:  when M →∞ ,  ( ) → = mv
M

rpE pr n
.  

 
CONCLUSION 
 With simple examples like the ones presented in this paper, one can show the similarities 
and differences between the classical estimation of population parameters and the Bayesian 
estimation, as well as the predictions which can be carried out as a result of the obtained 
estimations. It is important to teach both estimation methods and how they compare, so that the 
learner can apply them in real situation. 
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