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Purpose 

 
In this chapter we provide some answers to the following questions: 
 
• What is combinatorics and what role does it play in teaching and learning probability?  
• What components of combinatorial reasoning should we develop and assess in our 

 students? 
• Are there any task variables that influence students’ reasoning and provoke mistakes 

when solving combinatorial problems?  
• What are the most common difficulties in the problem-solving process? How should we 

consider these variables in the teaching and assessment of the subject? 
 
We illustrate these points by presenting some examples and test items taken from different 

research work about combinatorial reasoning and samples of students’ responses to these tasks.  
 
 

WHAT IS COMBINATORICS? 
 

The scope of combinatorics is much wider than simply solving permutation, arrangement, and 
combination problems. In his “Art Conjectanding,” Bernoulli described combinatorics as the art 
of enumerating all the possible ways in which a given number of objects may be mixed and 
combined so as to be sure of not missing any possible result. According to Hart (1992), 
combinatorics is the mathematics of counting. It is concerned with problems that involve a finite 
number of elements (discrete sets), with which we perform different operations. Some of these 
operations only modify the set structure (e.g., a permutation of its elements) while others change 
the set composition (taking a sample). We are usually interested in a combinatorial configuration 
or composition of the result of some of these operations, and we attempt to answer the following 
questions: 

 
• Does a specific combinatorial configuration exist? 
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• How many combinatorial configurations are there in a given class? 
• Is there an optimum solution to a (discrete) problem? 
 
These questions correspond to three different categories of combinatorial problems: existence 

problems deal with whether a given problem has a solution or not; counting problems investigate 
how many solutions may exist for problems with known solutions; optimization problems focus 
on finding a best solution for a particular problem. Considering Bernoulli’s description, we must 
add enumeration problems that correspond to the question of whether we can produce a 
procedure for systematically listing all the solutions for a given problem. 

The teaching of combinatorics is currently not considered necessary by many statistics 
teachers, probably because they restrict its meaning to counting problems and to combinatorial 
operation formulae. Nevertheless, in our teaching proposal (Batanero et al., 1994) we have 
distinguished the following components in the teaching and assessment of combinatorics. 

 
Basic combinatorial concepts and models: 
 

• Combinatorial operations: combinations, arrangements, permutations, concept, notation, 
 formulae;  

• Combinatorial models:  
  Sampling model: population, sample, ordered/non-ordered sampling, replacement; 

  Distribution model: correspondence, application;   
  Partition model: sets, subsets, union. 
 

Combinatorial procedures: 
 

• Logical procedures: classification, systematic enumeration, inclusion/exclusion principle, 
 recurrence; 

• Graphical procedures: tree diagrams, graphs; 
• Numerical procedures:  addition, multiplication and division principles, combinatorial and 

 factorial numbers, Pascal's triangle, difference equations; 
• Tabular procedures: constructing a table, arrays; 
• Algebraic procedures: generating functions. 
 
Most of these contents are also linked to probability. Moreover, we can easily identify relevant 

statistics and probabilistic questions in each of the aforementioned combinatorial problem 
categories, as we can observe in the following classical situation of experimental design: 

 
Example 1:  
 

Suppose you want to assess the effect of two different fertilizers on the improvement of tomato 
production. You have two types of tomato available and you would like to evaluate simultaneously the 
effect of low/high humidity degree on the production. Is it possible to design such an experiment using 
only 4 experimental plots?  

 
In this situation, we can easily identify an example of a combinatorial existence problem. 

When trying to list all the different combinations of factors, we would be dealing with a 
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combinatorial enumeration problem. If we ask for the total number of the three-factor 
combinations, we would be interested in a counting problem, for which the solution is 2x2x2=8, 
because in each factor (tomato plant, fertilizer, humidity) we have only two possible values.  
Finally, an optimization problem can be proposed when asking the number of different two-
values factors that could be evaluated with only 4 experimental plots.  

We may note in this example some features of many combinatorial problems that Kapur 
(1970) highlighted: 

 
• Since it does not depend on calculus, it poses suitable problems for different grades. 
• Usually very challenging problems can be discussed with students. 
• It can be used to train students in enumeration, making conjectures, generalization, 

 optimization, and systematic thinking. 
• Many applications in different fields: chemistry, biology, physics, communications, 

 number theory, etc., can be presented. Because of the interconnections between 
 combinatorics and probability, which we shall discuss in the following section, this may 
 serve to show students the applicability of probability in these different subjects. 

 
 

THE ROLE OF COMBINATORICS IN                                       TEACHING AND 
LEARNING PROBABILITY 

 
Combinatorics is not simply a calculus tool for probability, but there is a close relationship 

between both topics, which is why Heitele (1975) included combinatorics in his list of ten 
fundamental stochastical ideas which should be present, explicitly or implicitly, in every teaching 
situation in the stochastic curriculum. This connection is noticeable in the main probabilistic 
topics of the primary and secondary mathematics curriculum, so an adequate level of 
combinatorial reasoning is linked to the attainment of the main curricular aims. 

For grades 5-8, the Curriculum and Evaluation Standards of the National Council of Teachers 
of Mathematics (NCTM, 1989) recommended that the curriculum should allow students to: 

 
• Model stochastical situations by devising and carrying out experiments or simulations to 

 determine probabilities. 
 
• Model stochastical situations by constructing a sample space to determine probabilities. 
 
• Appreciate the power of using a probability model by comparing experimental results 

with  mathematical expectations. 
 
The concept of random experiment is the starting point in the study of probability at these 

levels. Two main aspects of a random experiment, according to Hawkins et al. (1992), are the 
clear formulation of the experiment and the identification of all its possible outcomes (the sample 
space). When describing simple experiments it is easy to list (enumerate) all the different 
outcomes of the sample space, but when we increase the number of trials, the enumeration 
processes can become very complex, and we may prefer to compute (count) the number of 
events. In both cases, we are dealing with a combinatorial problem. 
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The connection between combinatorics and the definition of probability is clear when using 
the “equally likely” approach to probability (Laplace’s definition), which strongly relies on 
combinatorial techniques. In this approach, the probability of an event A is defined as the fraction 
P(A)=N(A)/N, where N is the total number of possible outcomes and N(A) is the number of 
outcomes leading to the occurrence of A. According to Piaget and Inhelder (1951), if the subject 
does not possess combinatorial capacity, he or she is not able to use this idea of probability, 
except in cases of very elementary random experiments. The Curriculum and Evaluation 
Standards of the NCTM (1989) recommended the following (combinatorial) procedures for 
students to obtain these mathematically derived probabilities: building a table or tree diagram, 
making a list, and using simple counting procedures. 

The frequentist approach to probability is based on experiments and simulations. Young 
children may use manipulative materials to determine experimental or empirical probability. By 
actually conducting an experiment several times, children determine the number of ways an event 
occurred, and by comparing those with the total number of experiments they obtain an 
experimental estimate of probability. Students in grades 9-12 can also do simulations, in which 
urn models and computer simulation are used to describe real experiments. Urn models are based 
on the idea of sampling, in which the definition of the combinatorial operations might be based. 
Moreover, students should develop a real comprehension of the power and limitations of 
simulation and experimentation only by comparing experimental results to mathematically 
derived probabilities, which frequently require combinatorial reasoning. 

For grades 5-8, some examples of compound experiments, which are linked to combinatorial 
operations, are also suggested in the Standards of the NCTM (1989). The inventory of all the 
possible events in the sample space of a compound experiment requires a combinatorial 
constructive process from the elementary events in the single experiments. On the other hand, 
arrangements and combinations may be defined by means of compound experiments (ordered 
sampling with/without replacement or non-ordered sampling with/without replacement). 

For grades 9-12, new probabilistic topics are included, in particular, discrete probability 
distributions. These distributions are expressed in many cases by means of combinations or 
permutations, as is the case of binomial or hypergeometric distributions.  

To finish this section off, we recall that many probability misconceptions are related to the 
lack of combinatorial reasoning that often provokes the erroneous enumeration of the sample 
space in the problem. This suggests the need to help students develop their combinatorial 
capacity. 

In the next section we shall analyze the main points on which the teaching and assessment 
should be focused. We use the following notation: ARm,n for the arrangements with repetition of m 
things, taken n at a time (respectively, Am,n for the arrangements without repetition, CRm,n for the 
combinations with repetition, and Cm,n for the ordinary combinations). 

 
 

STUDENTS’ COMBINATORIAL REASONING AND ITS ASSESSMENT 
 

Besides its importance in developing the idea of probability, combinatorial capacity is a 
fundamental component of formal thinking. According to Inhelder and Piaget (1955),  
combinatorial operations represent something more important than a mere branch of 
mathematics. They constitute a scheme as general as proportionality and correlation, which 
emerge simultaneously after the age of 12 to 13 (the formal operation stage in Piagetian theory). 
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Combinatorial capacity is fundamental for hypothetical-deductive reasoning, which operates by 
combining and evaluating the possibilities in each situation. According to these authors, 
adolescents spontaneously discover systematic procedures of combinatorial enumeration, 
although for the permutations, it is necessary to wait until they are 15 years old. 

More recent results, such as Fischbein’s (1975), show that combinatorial problem solving 
capacity is not always reached, not even at that late age, without specific teaching. However, 
Fischbein and Gazit (1988) studied the effect of specific instruction on combinatorial capacity, 
and discovered that even 10-year-old pupils can learn some combinatorial ideas with the help of 
the tree diagram. Engel et al. (1976) have also been successful in teaching combinatorics to very 
young children and describe different games and activities to introduce this topic.  
 
The role of problem solving in assessment 
 

According to recent trends in mathematics education, mathematics is not just a symbolic 
language and a conceptual system, but mainly a human activity involving the solution of  socially 
shared problems. The vision of the Curriculum and Evaluation Standards is that mathematical 
reasoning, problem solving, communication, and connections must be central in teaching and 
assessment. As stated in Garfield (1994), it is no longer appropriate to assess students’ 
knowledge by having students compute answers and apply formulas. According to Romberg 
(1993), an authentic assessment should be developed by determining the extension in which the 
student has increased his/her ability to solve non-routine problems, reason, communicate, and 
apply mathematical ideas in a variety of related problems. 

Consequently, both the teaching and assessment of combinatorics should be based on solving 
different combinatorial problems in which students need systematic enumeration procedures, 
recurrence, classification, tables, and tree diagrams. For example, let us consider the following 
item taken from Green’s research concerning 11 to 16 year-old students’ probabilistic reasoning 
(Green, 1981): 

 
Example 2: 
 

Three boys are sent to the headmaster for cheating. They have to line up in a row outside the 
headmaster’s room and wait for their punishment. No one wants to be first, of course! Suppose the 
boys are called Andrew, Burt, and Charles (A, B, C for short). We want you to write down all the 
possible orders in which they could line up. How many ways can the boys be lined up in? 

 
Some students may use a tree diagram to write down all the solutions. In other cases, they may 

locate the boy to be lined up in first place (for example, Andrew), so that they reduce the problem 
to listing all the permutations of the two remaining boys, using recurrence (solving the problem 
with the help of a simpler version of the original problem). Even if some students proceed by trial 
and error, by writing down the possible permutations of the three boys without any systematic 
procedure, they may try to classify all the permutations produced according to the boy lined up in 
the first place, to check whether there is any forgotten permutation. 

In this item, Green increased to four and five the number of boys to be lined up, to check 
whether students used recurrence and generalized their first solution to new parameter values. 
Using this item with our students, we found a typical mistake, consisting of giving solutions 8 
and 10 for the permutations of four and five elements, after finding the correct number of 
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permutations for using three-elements enumeration. Such reasoning is similar to that of the 
following student:  

 
Teacher:  You have written ABC/ BCA/ CAB/ ACB/ BAC/ CBA for the different ways the  

 three boys may be lined up. Why do you think there are just 8 different ways for   the four 
boys to be lined up? 

Student 1:   As I have one more boy, I can put him in first or last place. So I have six and  
 two that is equal to eight different ways. 

Teacher:  I see..., but, What about the five boys? 
Student 1: Because you have eight ways with four boys, when you add another new boy,  

 you can place him in first or last place, so you must add two to the eight possible   ways 
and you obtain ten different ways. 

 
To solve counting problems, students could start by enumerating some cases to discover the 

problem structure with or without the help of a tree diagram. They might use multiplication to 
count grouped collections instead, by formulating and applying addition and multiplication rules. 
As an example, we shall analyze the solution given by a 14-year-old girl, who had not been 
taught combinations and arrangement formulae, to the following counting problem: 

 
Example 3:   
 

Four children: Alice, Bert, Carol, and Diana go to spend the night at their grandmother’s home. She 
has two different rooms available (one on the ground floor and another upstairs) in which she could 
put some or all the children to sleep. In how many different ways can the grandmother put the children 
into the two different rooms? (She could put all the children in one room). For example, she could put 
Alice, Bert and Carol into the ground floor room and Diana in  the upstairs room. 

 
This girl (Jessica) enumerated all the ordered  decomposition of the number 4 into two 

addends (a partition of the four children in two groups), that is, 4=4+0 = 3+1= 2+2=1+3=0+4. 
Then she counted the number of possibilities for each of these decompositions, and, finally, she 
applied the addition rule. If the students had been taught the combinatorial operation, they might 
have recognized  the combinatorial operation that is the solution to the problem, here AR 2,4 ,i.e., 
the arrangements with replacement of two elements (the available rooms) taken four at a time 
(one room for each child).  

Besides solving verbal problems, it is possible to ask students to prove combinatorial 
statements or to generalize the solutions found for a given problem. For example, we could ask 
the students to generalize the solution to Example 2, when there were n boys to be lined up. Both 
instruction and assessment should emphasize combinatorial reasoning as opposed to the 
application of analytic formulae for permutations and combinations. Instead of establishing the 
identity Cn, r= Cn. n-r by algebraic manipulations, it is preferable for the students to reason that if you 
take a sample of r objects from n given objects there are still n-r objects left. If we encourage 
students to formulate their own problems, we also will improve the quality of instruction as 
recommended in the NCTM (1991). On the other hand, Gal and Ginsburg (1994) noticed that the 
creation of a problem-solving environment requires an emotionally supportive atmosphere, 
where students feel safe to explore, are motivated to work longer, feel comfortable with 
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temporary mistakes and are not afraid to apply different tools to the same problem, so we should 
try not to be too rigid in our teaching methods. 

 
 
 
 
 
CLASSIFICATION OF COMBINATORIAL PROBLEMS AND IMPLICATIONS FOR 

TEACHING AND ASSESSMENT 
 
As Webb (1993) stated, the interpretation of a student’s responses implies making inferences 

about what a student knows. The items in the assessment instruments form a sample of the 
possible tasks concerning a specific concept or procedure, so obtaining more accurate inferences 
requires drawing as much varied information as possible. In this section, we analyze the main 
task variables in combinatorial problems in order to help teachers when selecting representative 
samples of problems for teaching and assessment purposes. 

 
Implicit mathematical model in simple combinatorial problems  

 
According to Dubois (1984), simple combinatorial configurations may be classified into three 

models: selections, which emphasize the concept of sampling; distributions, related to the 
concept of mapping; and partition or division of a set into subsets. 
 
The selection model 
 

In the selection model, a set of m (usually distinct) objects are considered, from which a 
sample of n elements must be taken, as asked in the following problem (Fischbein & Gazit, 
1988): 

 
Example 4:  
 

There are four numbered marbles in a box (with the digits 2, 4, 7, 9). We choose a marble and note 
its number. Then we put the marble back into the box. We repeat the process until we form a  three-
digit number. How many different three-digit numbers is it possible to obtain? For example, the 
number 222 is a possible combination. 

 
The keyword “choose,” included in the statement of the problem, suggests to the student the 

idea of sampling marbles from a box. Other key verbs that usually refer to the idea of sampling 
are “select,” “take,” “draw,” “gather,” “pick,” etc. 

For the student of probability it is easy to model counting methods by performing n drawings 
of m numbered balls from an urn. In selecting a sample, sometimes students are allowed to repeat 
one or more elements in the sample, as in example 4, and other times they are not. According to 
this feature and whether the order in which the sample is drawn is relevant (example 4) or not, 
we obtain four basic sampling procedures: a) with replacement and with order (ARm,n), b) with 
replacement and without order (CRm,n), c) without replacement and with order (Am,n) and d) without 
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replacement and without order (Cm,n) (permutations are a particular case of arrangements when 
m=n). 

 
The distribution model 

 
A second type of problem refers to the distribution of a set of  n objects into m cells, such as in 

the following problem, in which each of the three identical cards must be introduced (placed) into 
one of four different envelopes (Batanero et al., to be published): 

 
Example 5:  
 

Supposing we have three identical letters, and we want to place them into four different colored 
envelopes: yellow, blue, red, and green. It is only possible to introduce one letter into each different 
envelope. How many ways can the three identical letters be placed into the four different envelopes? 
For example, we could introduce a letter into the yellow envelope, another into the blue envelope, and 
the last letter into the green envelope. 
 
Other key verbs that could be interpreted in the distribution model are “place,” “introduce,” 

“assign,” “store,” etc. The solution to this problem is C4,3 , but there are many different 
possibilities in this model, depending on  the following features: 

 
• Whether the objects to be distributed are identical (as in this problem) or not. 
• Whether the containers are identical or not, as in the example. 
• Whether we must order the objects placed into the containers (this makes no sense in 

 example 5 since the objects are identical). 
• The conditions that you add to the distribution, such as the maximum number of objects 

in  each cell, or the possibility of having empty cells and so on. (In the problem proposed you 
 may only introduce one letter into each envelope and there is an envelope left empty, but 
 these conditions could be changed.)  

 
Assigning the n objects to the m cells is equivalent, from a mathematical point of view, to 

establishing an application from the set of the n objects to the set of the m cells. For injective 
applications we obtain the arrangements; in the case of a bijection we obtain the permutations. 
Nevertheless, there is no direct definition for the combinations using the idea of application. 
Moreover, if we consider a non-injective application, we could obtain a problem for which the 
solution is not a basic combinatorial operation, so there is not a different combinatorial operation 
for each different possible distribution. For example, if we consider the non-ordered distribution 
of n different objects into m identical cells, we obtain the second kind Stirling numbers Sn, m. 
Consequently, it is not possible to translate each distribution problem into a sampling problem.  
The reader may find a comprehensive study of Stirling numbers in Grimaldi (1989) and for the 
different possibilities in the distribution model in Dubois (1984). 

 
The partition model 

 
Finally, we might be interested in splitting a set of n objects into m subsets, i.e., performing a 

partition of the set, as in the following problem (Batanero et al., in press):  
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Example 6:  
 

Mary and Cindy have four stamps numbered from 1 to 4. They decide to share the stamps, two for 
each of them. In how many ways can they share the stamps? For example, Mary could keep the 
stamps numbered 1 and 2 and Cindy the stamps numbered 3 and 4. 

 
We may visualize the distribution of n objects into m cells as the partition of a set of m 

elements into n subsets (the cells).Therefore, there is a bijective correspondence between the 
models of partition and distribution, though for the student this may not be evident. Other key 
verbs associated with partition are “divide,” “distribute,” “split,” “decompose,” “separate,” etc. 

In our research, (Batanero et al., to be published) we showed that the three types of problems 
we have described (selections, distributions, and partition) are not equivalent in difficulty for the 
students, even after being taught combinatorics. Other task variables that have affected students’ 
responses in Fischbein and Gazit's research (1988) are the combinatorial operation involved in 
the problem (combination, permutation, or arrangement), the sizes of parameters m and n, and the 
type of element to be combined (letter, numbers, people, objects).  

Consequently, all these problem features should be considered as fundamental task variables 
in teaching and assessing combinatorics. As regards the sampling model, Hawkins et al. (1992) 
suggested that the attempt to describe a particular combinatorial problem by one of the sampling 
models will force the student to look carefully at the mechanism underlying random experiments. 
This proposal ought to be extended to the distribution and partition models. Suggesting that 
students conceptualize probabilistic and combinatorial problems using these three prototype 
models (selection, distribution, and partition) may not guarantee that the counting will be correct, 
but it will prevent some probabilistic misconceptions amongst the students. It may also help 
students to develop probabilistic reasoning, problem solving, heuristic strategies, communication 
and connections with other mathematical ideas, suggested as central points in the mathematics 
curriculum. 

 
 

ASSESSING STUDENTS’ DIFFICULTIES IN  
SOLVING COMBINATORIAL PROBLEMS 

 
New assessment approaches are intended to better capture how students think, reason, and 

apply their learning. This requires focusing the problem of assessing mathematical knowledge 
from a new perspective, as “the comprehensive accounting of an individual's or group's 
functioning within mathematics or in the application of mathematics” (Webb, 1992, p. 662). The 
goal is assessing the implied processes and not only measuring the degree to which students have 
acquired a given content. A wider range of measures, most of them qualitative ones, would be 
needed (Romberg et al., 1991). Assessment is not the aim of educational experiments but rather a 
continuous and dynamic process that can be used by teachers to help students attain curricular 
goals. Therefore, a key point in assessing combinatorial reasoning is identifying the students' 
difficulties in solving combinatorial problems, some of which shall be described in this section. 

 
Non-systematic enumeration 
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This difficulty consists of trying to solve the problem by enumeration using trial and error, 
without any recursive procedure leading to the formation of all the possibilities. Consider, for 
example, the interview with student 2 (15-years-old, who had not studied combinatorics yet) to 
explain his solution to the following problem (Batanero et al., 1994): 

 
Example 7:  
 

The garage in Angel's building has five spaces numbered from 1 to 5. Because the building is very 
new, there are only three different residents: Angel, Beatrice, and Carmen (A, B, and C) who park their 
cars in the garage.  For example, Angel could park his car in place number 1, Beatrice in place number 2, 
and Carmen in place number 4. In how many different ways could Angel, Beatrice, and Carmen park their 
cars in the garage? 

 
Teacher:  How would you solve this problem? 
Student 2:  We have three cars: A, B, C, don’t we? So I can park Angel’ s car in the first  

 space, Beatrice’ s car in the second, and Carmen’s in the third, so I write down   A=1, 
B=2, C=3.  Then, another position could be that I put Angel’s car in the   second space: A=2, 
B=3, C=1, or, perhaps,  

  A=3, B=1, C=2; 
  A=1, B=3, C=2; 
  A=2, B=1, C=3; 
  A=4, B=3, C=1; 
  A=3, B=1, C=4; 
  A=1, C=4, B=3; 
  A=3, C=4, B=1. 
Teacher:  Do you think there is any other possibility? 
Student 2:   I don’t know... I suppose I could continue in different positions, because I haven’t  

 used 1, 2 and 4 yet, and I could change the order. What I mean is that it is not the  
 same thing when Angel put his car in place number 2 as when it is Carmen who   parks 
her car in space number 2. Do you see what I mean? 

 
In spite of understanding the type of combinatorial configuration he was asked to produce, this 

student was unable to find all the different possibilities, because he did not follow a systematic 
procedure. To assess if he could solve the problem with a smaller value of the parameters, we 
asked him to solve the same problem with only two people (Angel and Beatrice) and three spaces 
in the garage. Below we reproduce what the student wrote as the solution to this new problem: 

 
A=1, B=2; 
A=2, B=1; 
A=1, B=3; 
A=3, B=1; 
A=2, B=3; 
A=3, B=2. 
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 With this smaller number of elements the student followed a system. Nevertheless, he was 
unable to use recurrence to link the original problem of parking three cars with the solution 
obtained for this simpler version. 

 
Incorrect use of the tree diagram 

 
Tree graphs are one of the most useful resources for visualizing both combinatoric and 

probabilistic situations. In Fischbein’s terminology they belong to “diagramatic models” and 
present important intuitive characteristics. They offer a global representation of the situation 
structure and this contributes to the immediacy of understanding and to finding the problem 
solution. In spite of this importance, Pesci (1994) proved that students found it difficult to build 
suitable tree diagrams to represent problem situations and, so, the same graph is the cause of 
many errors. 

 
Error of order 

 
This mistake consists of confusing the criteria for combinations and arrangements, i.e., 

distinguishing the order of the elements when it is irrelevant or on the contrary, not considering 
the order when it is essential. Here is one example taken from a student’s written solution to the 
following example. 

 
Example 8: 
 

In how many ways can a teacher select three pupils to rub out the blackboard, if five students 
(Elisabeth, Ferdinand, George, Lucy, and Mary) have offered to do it? 

 
E= Elisabeth, F= Ferdinand, G= George, L= Lucy, and M=Mary 
E F G, E F L, E F M, E G F, E G L, E G M, E LM, E L F, E L G, E M F, E M G, E M L; 
12 x5= 60; therefore, you have 60 different ways. 
 

Error of repetition 
 

The student does not consider the possibility of repeating the elements when it is possible, or 
he/she repeats the elements when there is no possibility of doing so. This is an example in a 
student’s written answer to the following item, adapted from Fischbein and Gazit (1988), in 
which we also note the lack of systematic enumeration: 

 
Example 9 :  
 

In an urn there are three marbles numbered with the digits 2, 4, and 7. We extract a marble from the 
urn and note its color. Without replacing the first marble, we extract another one and note its number. 
Finally, we extract the last marble from the urn. How many three-digit numbers can we obtain with this 
method? For example, we could obtain the number 724. 

 
 724, 742, 722, 772, 744, 472, 427, 477, 444, 422, 274, 247, 277, 222, 244; 
 you can have 15 different numbers. 
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Confusing the type of object 
 

This type of error occurs when students consider that identical objects are distinguishable or 
that different objects are indistinguishable. Below we reproduce the interview that we carried out 
with a student about his solution to the following problem (Fischbein et al., 1970): 

 
 
 
 
 

Example 10: 
 

Each one of five cards has a letter: A, B, C, C and C. In how many different ways can I form a row by 
placing the five cards on the table? For example, I could place the cards in the following way: ACBCC. 

 
Student 3:  It is a permutation of five elements without repetition. 
Teacher:  Why do you think it is a permutation? 
Student 3:  I do not remember very well... It is the same thing as when you need to place five  

 books on a shelf, because you cannot repeat the book. The different ways in which  
 you may line up the letters. That would be permutation. 

 
The teacher asked the student to write down all the different possibilities for placing the three 

letters ACC on the table, thereby reducing the size of the parameters in order to simplify the 
problem and to better understand the student’s reasoning. The student started writing: 

 
Student 3:  AC1C2. 
Teacher:  Why do you write C1C2? I wanted you to use A, C and C! 
Student 3:  But I need to differentiate between the two Cs, because you have two different  

 cards, although each has the same letter C. So, these are all the possibilities: 
  AC1C2, AC2C1, C1AC2, C2AC1, C1C2A, C2C1A; there are six in total. 
 

 
Confusing the type of cell (the type of subsets)                                         in partition or 
distribution models 
 

This mistake consists of believing that we could distinguish identical (subsets) cells, or that it 
is not possible to differentiate the distinguishable cells (subsets). For example, in the following 
item some students only consider the three different ways in which the set of the four students 
can be divided into two groups. So they do not differentiate which group was going to complete 
the mathematics project and which was going to undertake the language project.  

 
Example 11:  
 

Four friends: Ann, Beatrice, Cathy, and David, must complete two different projects: one in 
mathematics, and the other one in language. They decided to split up into two groups of two pupils, so 
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that each group could perform a project. In how many different ways can the group of four pupils be 
separated to perform these projects? For example, Ann and Cathy could complete the mathematics 
project, and Beatrice and David the language project. 
 

Misunderstanding the type of partition required 
 
This can occur in the following two ways: The union of all the subsets in a partition does not 

contain all the elements of the total set, or some possible partitions are forgotten. We can observe 
these two errors in the answer provided by a student to the following problem, in which he only 
considered two types of partitions: giving all the cars to one child or giving only one car to each 
child. 

 
Example 12:  

 
A girl has four different colored cars (black, orange, white, and gray) and she decides to share the 
cars with her brother John, and her sisters Peggy and Linda. In how many different ways can she 
share the cars? For example, she could give all the cars to Linda. 

 
Student 4:  black, orange, white, gray for Peggy; 
  black, orange, white, gray for John; 
  black, orange, white, gray for Linda; 
  black for Peggy; black for John; black for Linda; 
  orange for Peggy; orange for John; orange for Linda; 
  white for Peggy; white for John; white for Linda; 
  gray for Peggy; gray for John; gray for Linda. 
 
 

IMPLICATIONS 
 
In this chapter we have shown that combinatorial reasoning is not restricted to solving verbal 

combination and arrangement problems, but that it includes a wide range of concepts and 
problem-solving abilities. Most of these components are fundamental tools in developing 
probabilistic reasoning and in attaining the curricular probabilistic goals for primary and 
secondary education. With the help of manipulative materials and tree diagrams, meaningful 
activities linked to probability may be proposed, even to very young children. These activities 
may also serve to develop and assess problem solving and communication skills and connections 
to other mathematical topics.  

Some of the task variables we have described in this chapter, especially the implicit 
mathematical model, have shown their strong effect on both the difficulties of the combinatorial 
problems and the types of errors in different research work. Consequently, we need to consider 
these task variables when we assess students’ combinatorial reasoning if we want to get a more 
comprehensive idea of students’ capabilities and conceptions. 

These variables also need to be recognized when organizing our teaching, which should also 
emphasize the modeling process, the recursive reasoning and the systematic procedures of 
enumeration, instead of merely concentrating on algorithmic aspects and on the definitions of the 
combinatorial operations. 
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We have also presented some examples of tasks used to assess combinatorial reasoning in 
different experimental research, which we proposed to students in written questionnaires or in 
interviews with and without the help of manipulative material. Other teachers may want to use 
our examples to build their own items for teaching or assessment purposes, changing the values 
for task variables as needed. Or, our various examples could be included in different assessment 
methods, such as questions, exams, homework, portfolios, interviews, classroom discussion, and 
individual or collective projects (Garfield, 1994). As stated by Webb (1993), any form of 
assessment includes not just the task, but the students’ responses, the interpretation of these 
responses, the meaning given to them, and the report on the assessment findings. 

The careful reporting and analysis of our students’ responses is an essential part of our success 
as teachers. Of particular benefit to our understanding of student difficulties with combinatorial 
reasoning is the classification of such responses into clearly defined categories. A thorough 
appreciation of the information in this chapter will assist us as teachers as we assign suitable 
meanings to our students’ progress in combinatorics and probability. 
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