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Research and classroom experience identify topics with which students in introductory statistics 

struggle such as interpreting box plots, standard deviation or z-scores and the normal curve. One 

reason is that many core statistical concepts are subtle and difficult to sort out. Dynamic 

interactive technology can provide opportunities for learners to begin to make sense of these 

concepts by enabling them to generate large amounts of data, explore distributions, examine 

probability models and investigate the nuances that often seem to obscure reasoning and sense 

making in statistics. Interactive technology allows learners, using real and motivating data that 

stem from questions about ways of reasoning in statistics, to move between representations, 

looking for patterns and generating models related to hypotheses and to informed decision 

making. 

 

INTRODUCTION 

In 1998 David Moore described statistics as the science of reasoning from data in the 

presence of variability. He went on to suggest that the advance in technology at that time forced us 

to focus on big ideas and general strategies for dealing with data rather than procedures and 

formulas. Nearly 12 years later, new and continually evolving technology has again raised the 

threshold of what is possible. The discussion below argues that one possibility is to use the 

technology to help us rethink how students learn statistical concepts. 

 

Student misconceptions 

Students often enter and leave introductory statistics courses–both secondary and post 

secondary courses–with misconceptions, and the literature is rife with examples. Researchers have 

identified school students’ tendency to perceive data as individual points rather than as an 

aggregate whole with its own characteristics, and thus they have difficulty using descriptors of a 

data set that do not match any of the individual data points (i.e., Ben-Zvi & Arcavi, 2001; Bakker 

& Gravemeijer, 2004). Students at the school level often describe distributions using what Bakker 

(2004) calls “local views” on spread (i.e., “the dots are close together here and spread out there”) 

and do not view spread as dispersion from a mean or median value. This view is still in evidence at 

the university level. Cooper and Shore (2008) suggest that students in introductory statistics 

courses have a “tenuous” understanding of variability. Chance, delMas and Garfield (2004) agree, 

noting students did not understand how key concepts such as variability and shape are integrated 

and were not able to reason about sampling distributions until they had a sound understanding of 

both variability and distribution. Lunsford, Rowell and Goodson-Espy (2006) found that students at 

the end of a post calculus statistics course still confused variability with frequency, had problems 

with the “averaging reduces variation” concept and did not fully understand that for a fixed sample 

size, the sample mean was a random variable with a distribution having a shape, center, and spread.  
School students often struggle when using data analysis techniques to judge whether two 

groups are different (Watson & Moritz, 1999; Konold et al., 1997). Students at all levels believe 

the law of large numbers applies to small numbers: that a short sequence of random events will 

show the kind of average behavior that occurs only over the long run (Tversky & Kahneman, 1971; 

Innabi, 1999). According to Innabi, the believer in the law of small numbers has problems with the 

size of confidence intervals and determining significance in tests of hypothesis, is over-confident 

that the same results will be obtained in replicating the experiment and does not see sample size as 

affecting the validity of conclusions or generalizations. The authors of a review of misconceptions 

in inferential statistics provide a comprehensive list of students’ misconceptions related to 

statistical inference and suggest the cumulative evidence indicates that, while students may be able 

to manipulate and carry out calculations with statistical data, they have difficulty interpreting the 

results from inferential techniques (Sotos et al., 2007). 
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The research makes very visible the problems students at all levels have learning to think 

and reason statistically. However, student learning is clearly mediated by the instructor: the tasks 

instructors choose, how they frame the tasks and what they do with the responses to pave the way 

or inhibit the path for developing student understanding. The next section points to difficulties 

teachers themselves have with statistical concepts. 
 

Teacher misconceptions 

Moore (1998) suggested that intellectually sophisticated people are not automatically adept 

at statistical thinking, and many are more apt to believe an anecdote than the data. In fact, Haller 

and Krauss (2002) claimed a large number of statistics instructors share the misconceptions of their 

students and consequently have a large influence on fostering the misconceptions. Haller and 

Krauss’s claim is supported by the discussions on a statistics teachers list serve sponsored by the 

College Board (“AP Statistics” ap-stat@lyris.collegeboard.com) and designed to provide support 

and advice for statistics teachers who are teaching an Advanced Placement program in which 

students take, and can receive university credit for, university level courses while still in secondary 

school. Questions raised on the list serve relate to nuances such as why divide by n-1 for the 

standard deviation of a sample; should np should be greater than 10 or 5 or…; why should a sample 

be less than 10% of the population (after all, the more you can ask the better). Issues of 

interpretation are raised almost daily: what can you say about a confidence interval, what is the 

difference between accepting and failing to reject the null hypothesis; what is the difference 

between practical and statistical significance?  

Many ask questions about the design of experiments: what is blocking, how can you 

explain the difference between an outlier and an influential point; what is the difference in 

confounding, lurking and extraneous variables. One teacher commented, “I’m getting better at 

talking about experimental design–it took me years–but I still get things wrong.” They ask 

questions to sort out the array of tests: why are assumptions necessary, which test should be used 

when and how do you know, why should you use a t-test? In most cases, the teachers are asking 

their peers and the professional statisticians on the list serve for clarification or to get a better 

understanding of what to say to their students. In some cases, they have things wrong–interpreting 

the fit of a model by the strength of the correlation coefficient, ignoring residuals, fitting a model to 

nonlinear data without transforming the data. 

Sotos and colleagues (2007) suggested that their review of the literature around 

misconceptions related to inference made clear the need for more empirically based studies to shed 

light on the reasons for misconceptions and called for empirical studies to specifically address and 

help students overcome the misconceptions. The use of dynamic interactive technology seems to be 

a possibility for addressing some of the misconceptions described above, and the remainder of the 

paper describes this potential and offers some examples. 
 

DYNAMIC INTERACTIVE TECHNOLOGY 

Dynamic interactive technology adds new dimensions to what is possible to do in 

classrooms with students in an introductory statistics course. Using this technology, students can 

interact with data in two ways: 1) investigating data from a given contextual situation to make 

informed decisions related to that context and 2) generating their own data to develop and 

illuminate important statistical concepts. The most common usage is the first, where the technology 

is perceived as a toolbox to perform procedures and carry out calculations on sets of data. Dynamic 

interactive technology has opened up opportunities for the second use, where the technology is a 

tool for learning by enabling the creation of “environments” in which students can play with a 

statistical idea in a variety of ways but where the opportunity to go astray, both mathematically and 

operationally, is limited. 

By imposing constraints on what is possible, teachers and students actually have more 

freedom to explore central statistical concepts in deeper ways. Such environments are similar to 

using applets, (see for example, the applets developed by Rossman and Chance at 

www.rossmanchance.com/applets/ or the Rice University Virtual Lab in Statistics at 

onlinestatbook.com/rvls.html) and have certain characteristics: 
  

• Little knowledge about the operation of the handheld or software is required. 
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• The fundamental idea is simple and straightforward. The development has both statistical 

fidelity (is statistically sound and accurate) and pedagogical fidelity (does not present 

obstacles such as cluttered screens or too many decimal places that interfere with learning). 

• The design is based on an action consequence principle, where students take an action on a 

statistical object, immediately see the consequences, and reflect on the implications of 

these consequences for a particular statistical objective (Dick, Burrill & Brady-Gill, 2007). 

• The interaction is typically driven by one object such as a point, slider, shape or graph. 

• The action/consequence document in which students operate is usually composed of two or 

three carefully sequenced pages designed to have students investigate a core statistical 

concept.  
 

The following examples illustrate how data driven “action/consequence” documents might 

be used as tools for developing understanding of fundamental statistical concepts. 
 

LEARNING THROUGH DATA 
 

Normal Curve 

How many normal curves are there? This question can produce surprising answers. 

Students often think there is one normal curve, with mean 0 and standard deviation 1. They have 

trouble understanding that, just as other functions have a basic structure with the characteristics 

determined by parameters, a family of normal curves is determined by the mean and standard 

deviation. Investigating the relationship between the graph, the mean and the standard deviation 

can help students identify defining characteristics of normal curves (area, symmetry, point of 

inflection) and recognize that normal curves form a family of curves that share these same 

characteristics (Figure 1). To understand how any member of the normal curve family behaves, 

students can consider questions such as “How is the curve the same or different from f(x) = 

ax
2
+bx+c?”; “Look at the equation. What would you expect to happen to the distribution when the 

mean is changed? Why? To the standard deviation?” Answering questions such as these will help 

students connect the concept of distribution to other mathematics they have studied. Estimating the 

area for a variety of normal curves plotted on a grid as in Figure 2 where μ and  can be changed 

sets the stage for understanding that the area under a normal curve is the same for any combination 

of standard deviations and means. 
 

 
 

Figure 1. The Normal Curve 
 

Figure 2. Area & the Normal Curve 
 

Distributions 

Students are not clear about the difference between a frequency distribution and a relative 

frequency distribution nor are they clear about the nature of the distribution with which they are 

working, often not specifying a distribution of what–the population, the elements of the sample 

from that population or the sampling distribution of a statistic calculated from samples drawn from 

the population. Chance, delMas and Garfield (2004) point out that it is hard for students to 

recognize that making inferences from one sample from an unknown population is based on 

understanding how samples from a known population behave. In a summary of the research and 

based on their own experience (as well as this author’s), their findings included the following 

misconceptions about sampling distributions: the sampling distributions have the same amount of 
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variability for large and small sample sizes, large samples have more variability; one sample is 

confused with all possible samples for a distribution or potential samples; a sample is only 

representative if a large percentage of the population is in the sample. 
An action/consequence document can allow students to visualize the population, the 

sample and the sampling distribution simultaneously, while changing the sample and generating 

the sampling distribution of the sample statistic (Figure 3). While others have suggested beginning 

with concrete experiences, then using applets (e.g., the Reese’s Pieces in Garfield & Ben-Zvi, 

2008), including sampling distributions of a variety of sample statistics such as the median, the 

maximum (Figure 4) or the standard deviation can not only help develop an understanding of what 

a sampling distribution of a sample statistic is but also help students get a better sense of what it 

means to be predictable. 
 

  
 

Figure 3. Sampling distribution of sample means 
 

Figure 4. Sampling distribution of sample max 
 

Students can be asked to predict the shape and characteristics of the sampling distribution for a 

particular statistic, then generate several, record the results and compare with classmates. 

Questions such as, “How do you think the sampling distribution of the median of the samples will 

compare to the sampling distribution of the mean of the samples?” can help students focus on the 

sampling distribution and on the sample statistic as differentiated from the population. The 

question “Do you think the sampling distribution of the maximum will be skewed as seems to be 

happening in Figure 4?” can help students review characteristics of the shape of a distribution. 

Students should discuss what is similar and what is different among populations, samples, and 

sampling distributions, justifying their reasoning in each case. 
 

What are p-values and alpha levels? 

The concepts of “p-value”, “alpha level” and “significant” are often misinterpreted or 

confused by students in introductory courses. When the decision is to reject the null hypothesis, 

they often refer to p-value as the probability of making the wrong decision (Haller & Krauss, 

2002). They also tend to define significance as the probability of being wrong when deciding to 

reject the null hypothesis (Vallecillos, 2002). Giving students explicit simulation experiences with 

these concepts can help them confront their misconceptions and ground their understanding in a 

visual way. 

For example, assuming the null hypothesisμ =10 (Ha : μ <10), for a sample of fixed size 

students can generate an observed outcome, 9.26 in Figure 5, which determines the p-value, 0.88, 

represented by the shaded region in the sampling distribution for the sample means. Assuming it 

were possble to generate more samples, students then generate additional samples of the same size 

from the hypothesized population (Figure 6) and observe where the means of these samples fall. 

From the simulated sampling distribution of sample means, they can estimate the likelihood of 

getting by chance a sample mean at least as extreme as the original observed sample mean, 9.26, if 

the null hypothesis is true (0.13 in Figure 6). After students have repeated the simulation for the 

same observed outcome and corresponding p-value (Figure 7) and compared their results with 

others, questions such as “Assuming the mean is actually 10, are you very likely to get a sample 

mean at least as large as 9.26? Why or why not?” Changing the observed sample mean (Figure 8) 

Pop distribution 

Sample 
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and repeating the process allows instructors to ask where a p-value comes from or to give some p-

values that seem to support the null hypothesis and some that do not, justifying their reasoning. 
  

  
 

Figure 5. Observed sample mean of 9.26 & 

corresponding p-value 

 

Figure 6. Chance of sample means 

at least as great as 0.88 

 

  
 

Figure 7. Chance of sample mean 

at least as great as 9.26 

 

Figure 8. Observed sample mean of 10.8 & 

corresponding p-value 
 

Going through a similar set of tasks related to alpha can help students see the subtle but key 

differences in reasoning in these two situations.  
 

CONCLUSION 

If teachers use technology only as a tool to do the same things they have already done, they 

will get the same results as they did before (Ehrmann, 1995; Belfort & Guimaraes, 2004). Moore 

(1998) suggested that, “To get different results, you must add new thinking to new technology. The 

reason: Technology empowers. But thinking enables.” (p. 1258). The claim made in this paper is 

that, given the fragile understanding of many statistical concepts by students and often by their 

teachers, we need different results and that we now have new technology that can help us get those 

results. While a few researchers are using this technology in seemingly productive ways, we need 

to revisit core statistical concepts particularly with elementary and secondary teachers, including 

the nuances and subtle points that often elude students, with new thinking about how learning 

activities centered on action/consequence documents can make a difference in what students take 

from their study of statistics.  

The examples above are only illustrative of a much larger possible set. Similar activities 

can be created around questions such as: What is power and how is it related to the types of error? 

Why do we restrict np to some minimum? What is a degree of freedom and why are degrees of 

freedom important? And the list goes on. Documents focused on such questions should become a 

core part of instruction in statistics classes–which means that statistics instructors must be familiar 

with the concepts and the questions that need to be asked to make sure that the ideas emerge from 

the explorations. This has serious implication for the statistics education community in terms of the 
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design and delivery of professional development. In addition, we need to look across the research 

that already exists about promising uses of interactive dynamic technology to see what we can 

learn and begin to act on this knowledge. We also need to design and implement research to 

determine whether action/consequence or comparable documents do make a difference in what 

students learn and what factors might influence the results. It seems it is time for us to stop 

documenting the same errors and misconceptions related to student understanding of statistical 

concepts and begin to look for interventions that can prevent these from happening. 
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