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Amongst the many types of medical scientific investigation that are possible, the randomized 

double-blind controlled clinical trial has a very high reputation. Without control there can be no 

randomization and without randomization no convincing blinding, It seems, therefore, that control 

is the key feature of such trials. Yet the way in which such trials are analyzed, including the way in 

which they are presented, shows that many trialists do not understand the value of what they have 

done. I illustrate the problem with various examples. One possible reason that trialists may 

underestimate the value of concurrent control is that they do not understand what a powerful 

source of bias regression to the mean constitutes. I consider how physicians can be taught to 

understand this difficult phenomenon. I also present a striking example of differences between 

populations, which can be used to teach care in using control information appropriately. 

 

BACKGROUND 

The purpose of a randomized controlled clinical trial is to compare treatments. The 

standard statistics that are used to do this, whether a difference in mean response, a hazard ratio or 

a log-odds ratio (as the case may be), reflect the idea of comparing on a suitable scale, the 

investigational treatment to some comparator studied concurrently. The fact that commonly, in an 

investigation of a new treatment, half the patients are allocated to some other treatment, whose 

effects are already well known, only makes sense if one fears that differences in patient populations 

from trial to trial may be important, and perhaps large enough to introduce serious bias if historical 

controls are used. Hence, the use of concurrent controls and the elimination of bias through 

comparison.  

Sample size programs in common use reflect this philosophy. You are required to input the 

ratio of patients on one arm to another, the common standard deviation, the type I and type II error 

rates and clinically relevant difference and the software will then deliver the numbers of patients 

that you need to study on each arm. 

So much for the theory. In practice, however, any observer of the literature on clinical 

trials will note a curious phenomenon: in numerous articles, many paragraphs and most 

illustrations will be devoted to showing not the difference between groups but the mean values 

within groups. Thus, it is very common to show traces over time of the mean response in each 

group together with standard error bars. The standard error bars are commonly calculated by 

dividing the standard deviation by the square root of, n, the number of observations. Thus the error 

of not comparing the treatments is compounded by calculating a statistic that only applies when 

simple random sampling occurs, which is never the case in clinical trials. 

One can speculate as to the reasons for this unfortunate situation. One, no doubt, is habit. 

Journals habitually publish articles that concentrate on results within groups rather than differences 

between them so that young researchers in copying what has been published perpetuate the 

practice. Another may be that researchers pay lip service to the possibility of bias but do not 

understand that it can be important in practice. In this paper I discuss two possible sources of bias, 

regression to the mean and variation between populations, of which researchers ought to be aware, 

and present some possible material which may be used to teach understanding of this phenomenon. 

I start with regression to the mean.  

 

REGRESSION TO THE MEAN 

Regression to the mean is the tendency of items that have been selected on the basis of an 

extreme measured value to have a result, which, whilst higher than average, is lower than it was on 

selection. Most statisticians understand that clinical trials are inherently subject to regression to the 

mean, since entry to them is typically on the basis of some extreme measured value. It has been 

often been discussed, for example, that the so-called placebo effect may in many cases be due to 
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the purely statistical phenomenon of regression to the mean(McDonald, Mazzuca et al., 1983; 

Senn, 1988; Hrobjartsson & Gotzsche, 2001; Hrobjartsson & Gotzsche, 2004). 

An investigation of regression to the mean can involve deep matters and difficult algebra. 

Fortunately, however, a simple graphical approach exists that make it possible to illustrate the 

phenomenon extremely effectively(Senn, 2009). Figure 1 shows simulated data for diastolic blood 

pressure (DBP) readings (mmHg) from a population of 1000 individuals measured on two 

occasions. The X axis show their readings when first measured (‘baseline’) and the Y axis their 

readings when measured again (‘outcome’). What the plot shows is that for this population there is 

no real difference between the two occasions. The mean DBP reading is about 90mmHg on both 

occasions and the correlation between measurements is about 0.77. 

 
Figure 1. Simulated values for diastolic blood pressure (DBP) 

for patients measured on two occasions 
(Patients whose DBP was consistently less than 95mmHg are marked x, those whose DBP was consistently 

greater than or equal to 95mmHg are marked + and those whose DBP was greater than or equal to 95mmHg 

on one occasion but below on another are marked O.) 

 

Figure 2 shows the same scatter plot but with all those subjects whose DBP was less than 

95mmHg at baseline removed. This might be the case for a clinical trial in which patients who 

were suspected to be hypertensive were screened for possible entry into a clinical trial and only 

those with a DBP of at least 95mmHg were selected. It can now be seen that the mere act of 
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sampling in this way induces a difference in the shape of the plot depending on whether it is looked 

at in the X or the Y dimension. The baseline values are all greater than 95mmHg by definition 

because of the selection process. However, there is no requirement by definition for all values at 

outcome to be greater than 95mmHg and since the correlation is less than one, some are, indeed, 

lower than this. The net result is that whereas the mean value at baseline is about 100mmHg, the 

mean value at outcome is just about 98mmHg. 

 

 
Figure 2. Diastolic blood pressure (DBP) at baseline and outcome for patients selected 

because their baseline value was greater or equal to 95mmHg 
 

A GOOD PRACTICAL EXAMPLE FOR TEACHING CONTROL 

The TARGET study (Farkouh, Kirshner et al., 2004; Schnitzer, Burmester et al., 2004) was 

a trial in osteoarthritis involving a comparison of lumiracoxib 400mg once daily, ibuprofen 800mg 

three times daily and naproxen 500mg twice daily. Studies comparing different treatments can 

often involve complicated blinding schemes in which each patient receiving a given treatment will 

also have to be given placebos to all of the others in order to avoid revealing which treatment is the 

genuine one. If different schedules are involved, as was the case here (once, three times and twice 

daily therapy), this can be particularly complicated. To simplify this, the trial was run as two 

substudies: one comparing lumiracoxib and ibuprofen and the other comparing lumiracoxib and 

naproxen (Hawkey, Farkouh et al., 2004). Because, apart from these differences, the same protocol 



ICOTS8 (2010) Invited Paper  Senn 

International Association of Statistical Education (IASE)  www.stat.auckland.ac.nz/~iase/ 

was employed and because the way in which patients were allocated to treatment was at random 

within substudies but not between substudies, the TARGET trial is an ideal guinea pig to exemplify 

the value of randomization and concurrent control. 

Table 1, which is taken from (Senn 2008) shows the distribution of patients at baseline in 

the TARGET study by various binary demographic characteristics. It can be seen that there is 

excellent balance between treatment arms within substudies but very poor balance between 

substudies. 

 

Table 1. Distribution of selected demographic characteristics in the TARGET study. 

(Based on Farkouh, Kirshner et al., 2004)) 

 

 Sub-study 1 Sub-study 2 

Demographic 

characteristic 

Lumiracoxib 

n = 4376 

Ibuprofen 

n = 4397 

Lumiracoxib 

n = 4741 

Naproxen 

n = 4730 

Use of low-dose 

aspirin 

975 (22%) 966 (22%) 1195 (25%) 1193 (25%) 

History of 

vascular disease 

393 (9%) 340 (8%) 588 (12%) 559 (12%) 

Cerebrovascular 

disease 

69 (1.6%) 65 (1.5%) 108 (2.3%) 107 (2.3%) 

Dyslipidaemias 1030 (24%) 1025 (23%) 799(17%) 809(17%) 

 

Table 2 shows an analysis of the baseline demographic dichotomies using logistic 

regression. Since baseline measures are taken before treatment, in a randomized study we only 

expect to find chance differences between treatment arms. However, randomization did not occur 

between substudies and a logistic regression model for each of the four dichotomies shows a 

significant reduction in deviance (on one degree of freedom) if substudy is fitted compared to the 

null model in which no factors are fitted. If treatment, which has two degrees of freedom, is added 

to the model including substudy, the reduction in deviance is not significant. In other words, in the 

TARGET study there are, indeed, only chance differences between treatment arms provided that 

we include substudy in the model. However, if we fail to include substudy in the model, then the 

reduction in deviance fitting the treatment effects compared to the null model is significant for all 

demographic characteristics. This has clear implications for the way in which outcome variables 

for the trial should be analyzed (Senn, 2008). Here we should have substudy in the model first with 

treatment as a subsequently added factor. 

 

Table 2. Results of carrying out significance tests on the baseline demographic variables 

 

Deviances for the four demographic variables 
  

 Effect   Aspirin Vascular History Cerebrovascular Dyslipidaemias 

 substudy  23.57  70.14  13.538  117.98 
treatment-given-substudy  0.13  5.23  0.144  0.17 

 treatment  13.40  47.41  7.745  54.72 

  

Approximate chi square probabilities for the four demographic variables 
  

 Effect   Aspirin Vascular History Cerebrovascular Dyslipidaemias 

 substudy  0.0000  0.00000  0.0002  0.0000 
treatment-given-substudy  0.9365  0.07332  0.9304  0.9194 

 treatment  0.0012  0.00000  0.0208  0.0000 
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CONCLUSION 

The essence of the classical randomized clinical trial is the use of concurrent control. The 

value of this is often taken by default. It is assumed to be so obvious that it does not require 

discussion. However, in the way in which they analyze and present clinical trials, trialists 

frequently undermine the value of concurrent control. A graphical lesson in the dangers of 

regression to the mean and a practical example of the value of concurrent ‘control’ may provide the 

means of imparting some valuable lessons. 
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