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WHAT ENGINEERS NEED TO LEARN
ABOUT STATISTICS

George Box
Center for Quality and Productivity Improvernent
University of Wisconsin-Madison
610 Walnur Streer; Madison, Wisconsin 53705, USA

1. Introduction

Lwill begin by asking three questions and supplying three brief answers
which are elaborated on in the rest of my talk. The questions are:

a) Why
b) - Whac should we teach engineers, scientists (and statisticians)
¢ How about statistics?

I believe the answers are:

a) To catalyze and robustify

by Methods which catalyze the process-of problem solving
and robustify and scientific discovery

<)  Engage the studentin

2. Why?

Ensuring that graduating enginecers and scientists are familiar with
statistical methods of design and analysis is; in the United States at least,
an uphill battle (see; for example, Bisgaard, 1991). Remarkably lictle
headway has been made in requiring that these techniques are raught to
students in engineering and the sciences. This is partly because many
scientists and engineers regard the statistics that they fave been taught as
totally irrelevant to the problems they face. 1 believe thac they are often
quite right abeour dhis.

2.1. Discovery is an iterative process

Scientific investigation has two aspects: discovery (problem solving)
and zesting the solution. Consider a scientific investigation intended to
provide a drug which can cure a particular disease. Such an investigation
involves: a) the discovery of an effective and manufacrurable chemical
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substance; b) the festing of this substance to ensure its effectiveness and
safety for human uge.

The process of discovery must be undertaken in the same spirit as a
detective solves a mystery and finds a criminal. It is necessarily a
seqiential ftevative procedure.

Testing the final product is a much more formal process. It parallels
the trial of the accused within very strict rules of admissible evidence. It
is usually a one shor affair.

Unfortunately, the modern statistician, who is often also the teacher of
engineers and scientists, hias frequently been trained only for the role of
designer and analyzer of the one shot trials appropriate to testing the
solution after che work of discovery has been done. Consequently, ‘ac least
in recent timies, statistics has often not been allowed to play its critical
role-as a caralyst to the process of discovery jself.

Empbhasis (Tukey, 1977) on the importance of exploratory data analysis
addresses this problem. However, exploratory ingniry invelves not only
data analysis buc the whole process of investigation and, in particular, the
sequential use of designs:

2.2. Contindous never eim’iﬂg improvenent

We can understand the critical importance of sequential investigation if
we consider a central principle of modern quality technology - that of
“Continuous Never Ending Improvement”. This.idea seems at first to be
in conflict wich the law of diminishing returns: Suppose, for example, you
have a response curve like Fig. 1(a) or morce generally a response sutface
defined by y= flx) and you want to find the levels of x which maximize y.
When you have (nearly) achieved this maximization, shouldn’t exper-
imentation stop?

This reasoning applies to a fixed model. But (Box, 1993) in real
investigations neither the functional form of the model, nor the identity of
the variables x, nor even:the tature of the résponse y is fixed. They evolve as
new knowledge comes to light. As-is illustrated in Fig. 1(b), experi-
menters must be allowed to learn as they go. Whereas a fixed model leads
inevitably to the barrier posed by the law of diminishing returns, the
developing model provides for expanding feturns and the possibility of
never ending improvement,

In practice, some level of improvement will be adequate for present
purposes and the improvement process will temporarily hale bue chis
quiescent period will last only undl external circumstances again renew the
incentive for-change.
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3. What?

The data needed to “solve a problem may, at different stages of
investigation: a) already exist - for example in the libraty, or in past
operating records; b) be obtainable by ebserving but not interfering with
the operation of the process; ¢) need to be generated by experimental
intéfvention,

3.1. Data from passive observation

We can regard any operdting system (whether it be a system for
admission to a hospital or a system for producing transistors) as
continually generating potentially useful information - racher as a wircless
transmitter-transmits radio signals. But just as radio receivers are needed
to-hear radio signals so tools of analysis ate needed to understand whav che
process has to tell us about how it can be improved. The sinipler
(graphical) techniques such as those employed in Ishikawa's (1976) seven
tools are of particular importance. This is because not only can the
engineer use them, bur s'he can also teach the whole workforce how to-use
them. The idea is llustrated in Fig. 2 which shows the “seven rools” plus a
few more.

Whether by such simple methodsor by more sophisticated techniques,
effective problem solving necessarily requires a sequential approach. In
such a strategy each step uses information gained at previous steps to
follow an iterative course.
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Model weg-Deduction we—-gpData wwwsprInduction

This process of learning as you go involves a constant interaction
between statistical considérations and subject matter (engineering) know-
how. As ‘the investigation proceeds it frequently turns out chat the data
suggests ideas {new variables, different responses, new levels of variables;
etc.) that wete not in mind the beginning of the investigation.

Stratification

ScanerPlot

Control ‘Chart

Figire 2. Some simple statistical tools for guality improventens by the workforce. Fram wp lefi:
Elow Diagram, Cauwse:Effecy Chary, Check Sheet; Pareto Chars, Histogram, Stratification,
Run Chart; Control Chars, Scavter Plot, Cisun: Chayt.
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Statisticians whe have been trained only to run one shot trials may be
uncomfortable-with the idea that they should teach engineers that scientific
investigation requires an- indetérminate and flexible model; the
responsibility for whose evolution must be shared with the experimenter.
Certainly in the Unired ‘Staves, the tole of scientific iteration in statistics
is usually dealt ‘with by pretending it deesn’t exisc and discussing only
one-shot investigations. By doing this statistics can be rigorously
mathematicized. Unforrunately the process of scientific induction which
cantiot be modeled mathematically is the only way in which teuly sew
ideas can be introduced. By cutding a living process of investigation in
two, you kill it
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Figure 3. Hlustration of sequesitial experimentation for the three variable case: Depending on

the results from the initial design and snbsequent designs, various different courses might be
saken.



IASE/ISI Satellite, 1993: George Box

78 WIAT ENGINEERS NEED TO LEARN ABOUT STATISTICS

3.2. The use of sequential experimentation

For problems that cannot be solved by using data already available or
obtainable from passive obscrvation of the process designed
experimentation is needed. At the beginning of an investigation the
experimenter knows least about the identizy of the imporeant variables, the
location of the experimental region of interest, the appropriate scaling and
transformation of the variables, the degree of sophistication required to
model the system and so forth, Thus “one-shot” experimentation which
attempts to cover all bases with a single large experiment planned at the
beginning of the investigation is likely ro be extremely inefficient.
Sequential experimentation with associated sequential assembly of
designs which at each stage builds on information already obrained is
usually much better.

3.3, Informed extrapolation

It must be made clear to the student engineer that the scientific
process, involves not only the investigational iteration shown on the left of
Fig. 4 but also informed extrapolation indicated on the right of that figure.
Such extrapolation can be from the small scale to the full scale, from one
location to another, from one investigator to another, and so on. As has

Casreni Statistiénl T Statistical Resals Informed
e Design Analysis; e Extrapolatio
Knowledge LS8 Dia AL From - Applicadon
Tdeas : Asalysis i
[ E——

Figure 4. Peedback awid linkages in the process of problene solving and in agplicarion of the
resulls. ‘

been emphasized by Deming (1950, 1986), except in enumerative studies
the final link wich practice is not made using statistics or formal
probability. It is made by using technical judgment. It is important to
understand however that the basss for this extrapolative technical judgment
can be very strong or very weak depending on how the investigation was
conducted. Consequently, although no absolute guarantees are possible, by
taking certain precautions in the design process we can make the job of
informed extrapolation less perilous. The precautions for strengthening the
analytical and judgmental links that connect investigation and applicarion
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involve issues of philosophy, analysis, and design and have been discussed
more fully clsewhere (Box, 1993). Briefly we need to consider:

Philosophy a) The investigational process as an iteration

b) The state of control and null behavior of the system
Analysis ¢) The contribution of “distribution frec” analysis
d) The need for exploratory data analysis

e) The purposes of planned experimentation
f) The role of randomization and blocking

Design g) The advantages of comparative experimentation
) The rationale of factorial and orthogonal design
1) The purposes of robust design

(@) Nature of the investigational process. Iterative investigation, of the
kind illustrated in Fig. 1(b) and Fig. 4, itself makes an importanc
contribution to extrapolability.

(8) State of control and null bebavior of a system.The 11D state is one
that does not occur naturally but can sometimes be approximately induced
artificially, for example, by a steady elimination of the larger disturbing
factors and/or by feedback control (see, for example, Box and Kramer,
1992). Whether any real process has ever existed in the D state seems
dubious. While every effort must made to ensure thar an experimental
system is in the best state of control we can get, we would be sanguine
indeed to rely absolutely on an assumed state of control to make our
experimental conclusions valid.

() “Distribution free” analysis. The role of deductive mathemarical
analysis in providing a wider base for excrapolation has been greadly
overrated. In particular, the so called “distribution free” tests, although
free of the assumption of normality, continue to make the same
devastatingly dangerous (see, for example, Box and Newbold, 1971)
distributional assumption that errors are independent or at least
interchangeable,

(d) Exploratory data analysis. Such analysis is of great value at cvery
phase of an investigation, both for providing clues to unexpected
phenomena and for warning of situations where standard analysis will be
misleading.

(&) Need for planned experimentation. Fisher, encouraged by Gosset,
tealized in the 1920's that it would be necessary to design cxperiments o
address specific questions of interest. Two concepts were of particular
importance - minimizing experimental error and maximizing extrap-
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olability. Fisher’s (1935) principles of planned experimentation are
designed to solve these problems simultaneously.

() Randomization and blocking. Randomization makes the statistical
conclusions robust against any kind of non HD disturbance and in
particular against a non-stationary disturbance (see, for example, Box,
1990).

(g) Comparative experimentation. Experiments which most strain
extmpoiauon are those concerned with an absolute measurement.
Comparative experiments, from which you wish to Jearn if A and B are
different and by how much, are less troublesome. Whenever possible,
therefore, a problem of absolute measurement should be transformed into
one of relative measurement. For example, in che manufacture of certain
automobile parts, a robot grasps each item as it comes off the line and
makes a series of measurements. However, these megsurements are not
compared with standard values. Instead, after measuring each
manufactured item, the robot maves back to measure a standard “perfect
part” which is available for continnous reference. The differences in the
measurements of the manufactured parcand the standard pare are used to
decide whether or not the part is in conformance. The advantage of this
procedure is that you do not have to have the robot in a perfect state of
calibration - any bias will be equally reflected in both. the measured part
and the reference past.

(B) Factorigl and orthogonal experimentation. Facrorial experiments are
simultancously smtxst;cally efficient and provide estimates of inter-
actions; in addition they can be run so that the advantages of random-
ization, blocking and ‘comparative experimentation are maintained. Bug
Fisher (1935) also had in mind the questions of extrapolation and
robustness. He remarked “(extraneous factors) may be incorpomted in
{factorial) experiments designed primarily to test other poines; with the
real advantages that, if cither general effects or interactions are detecred,
that will be so.much knowledge gained at no expense to the other objects
of the experiment; and that, in any case, there will be no reason for
rejecting the experimental results on the ground that the test was made in
conditions differing in one or other of these respects from those in which it
i§ proposed to-apply the resihts”.

These ideas were-extended further by Youden (1961a,b) who was then
working at the Bureau of Standards to develop what he called “rugged”
methods of chemical analysis. His experiments used fractional factorial
designs (introduced by Finney, 1945) to further increase the number of
extrancous factors that could be tested.

(4) Robust design. Thus the concept of using statistics to design a
product that will operate well in the conditions of the real world clearly
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has 2 long history going back at least.to Gosset in the early part of the
century. Early industrial examples are due to Motrison (1957) and to
Michaels (1964). We owe to Taguchi (1986) demonstration of the wide
industrial importance of these robust:design ideas.

In the courses we teach engineeting students at- Madison, we discuss all
the above points which impinge on extrapolation but, in teaching the
section on robust design, we do not employ Taguchi’s techniques (Box,
Bisgaard and Fung, 1988). Instead we use what we belicve ate simpler and
more efficient methods which, in particular rake account of the imporrant
points made by Morrison and Michaels. Also, in short courses, we have
successfully raught these ideas to engineers and scientists in many patts of
the world.

4, How?

Of prime importance to the engineer investigator is the philosophy of
the sequential generation of appropriate data. In particular differenc
design approaches ate required at different stages of investigation:

Screening  designs. When we do not know which of the number of
possible factors are the important ones fractional factorial designs and
other orthogonal arrays (Plackett and Burman, 1946) are of great
importance for screening out what Juran has called the wital few factors
from the trivial many.

Empirical modeling. Sometimes, possibly-as a result of previous
screening or because of previous knowledge, the important varjables are
believed to be already known but we wish to find out how they affect a
particular response or a number of responses. At this stage of
experimentation, factorial designs, mild fractions and response surface
methods (see, for example, Box and Wilson, 1951 and subsequent
publications) are particularly important. The models used at this stage are
more or less empirical and are often based on polynomials sometimes in
suitably transformed variables.

Mathematical modeling. When sufficient physical knowledge of the
system is available mechanistic model building techniques may be used.
Possibly as a consequence of previous empirical experiment, the process
functions derived from a supposed physical mechanism are employed.
Such relationships are frequently represented by differential equations or
integral equations. They often employ numerical methods of solution and
non-linear least squares and non-linear design, together with model
checking and model discrimination techniques (see, for example, Box and
Draper, 1987; Bates and Watrs, 1988).
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Experimental design and analysis can also have different objectives.
Among these are:
i) to raise {change) the mean value of some quality characteristic
i1} ro reduce the variance
iii) vo find conditions which in some sense produce a robust product or
process. * ‘

4.1. Hands-on experience

In teaching the arvof catalyzing scientific investigation with statistical
methods the most vital component is hands-on experience. One way of
achieving this (Hunter, 1977) is to require individual projects in which
students carry through investigations using statistical methods at home and
in the lab. In addition some simple experimental device can be employed
for demonstration in the classroom. We have found the paper helicopter
shown in Fig. 5(a) to bea very convenient means of teaching expetimental
design and analysis at many different stages of instruction (see, for
example, Box, 1992).

In this first example I will show how a “play acting” scenario may be
used 1o teach the class some fundamental ideas. Three student volunreers
are needed to play the parts. T will call these Tom, Dick and Mary.

Tom stands on a ladder and drops the helicopter from a height of
wwelve feet or so while Dick times its fall with a stopwatch. We explain to
the class that we would like to'find an improved helicopter deszgn that has
a longer flight time.

Mean and variation. We start by Tom' dropping 2 helicopter made
from-blue paper. He drops it four times. We put the results up on the
overhead projector and we see that the flight imes vary somewhat. This
leads to a discussion of variation and to the introduction of the average as
a measure of central tendency and the range and standard devxauon as
mieasures of spread.

Comparing mean ﬂzg/zt times. At this point Dick says “I don’t think
much of the blue helicopter demgn I ' made this red helicopter yesterday
of a different design. I dropped it four times and got an average flight
time considerably longer than you just got”. So we put up the two sets of
data - the four runs made with the blue helicoprer and the four runs made
with the red helicopter-and show the two averages and standard deviations.
Then we demonstrate a simple test that shows that there is indeed a
st:ansncally significant dlfference in means, in favor of the runs made with

the red helicopter.

Validity  of the expériment. Then Maly says “So- the difference is
statistically significant. So' what? It doesn’t necessanly miean it’s because
of the different helicopter design. The runs with the red helicopter were
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made yesterday when it was cold and wet, the runs with the blue helicopter
were made today when it’s warm and dry. Perhaps it’s the temperature or
the humidity that made the difference, What about the paper? Was it the
same kind of paper used to make the red helicopter as was used to make
the blue one? Also, the blue helicopter was dropped by Tom and the ved
one by Dick. Perhaps they don’t drop them the same way, And where did
Dick drop his helicopter? I bet it was in the conference room, and T've
noticed that in that particular room there is a draft which tends to make
themn fall cowards the door. That could increase the flight time. Anyway,
are you stire they dropped them from the same height?”. So we ask the
class if they think these criticisms have merit and they mostly agree that
they have, and they add a few more criticisms of their own.

We tell the class how such considerations led Fisher some seventy years
ago to consider the precautions necessary in running an experiment so that
it can provide data which leads ro unambiguous conclusions rather than to
an argument. We show how his ideas can be used to compare the blue-and
the red helicopter by making a series of paired comparisons. Each pair
(block) of experiments involves the dropping of the blue and the red
helicopter by the same person at the same location. The decision as o
which helicopter should be dropped first is made randomly by tossing a
penny. The conclusions are based on the differences in flight time within
the pairs of runs made under identical conditions, We go on to explain
however that different people and different locations could be used from
pair to pair and how, if this were done it would suengthen the
extrapolability or as Fisher (1935) said “widen the inductive basis” of the
experimental resules, If the red helicopter design appeared to be better,
one would, for example; like to be able to say that it seemed to be betrer
no matter who dropped it or where it was dropped.

A fractional factorial design. As another example of the use of this
device; at a later stage in the course it is used to illustrate the value of
fractional factoriul designs as screening devices. Tv is supposed that a
brainstorming session by an engineering design team has led to the
selecdon of cight factors to be studied. These selected factors are listed av
the top of Fig. 5(b} together with the two conditions (indicated by minus
and plus signs) at which each will be tested. It is thought likely that only a
few of these factors will have important large effects. We are thus in the
familiar “Pareto” situation where, as Dr. Juran says, we want to screen out
“the vital few from the trivial many”. The design used in Fig. 5(b) isa 2%/
fractional facrorial. The student may be raught something of the theory of
chese: desions; however, w use them, all they really need is a table such as
has been supplied by Bisgaard (1988) which gives this and other eightand
sixteen-run designs with a succiner deseription of their properties and
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analysis. As is well known, the 2% design has two very valuable
chagacteristics:

a) if there are interactions between pairs of factors they will not bias
any of the 8 main effects of the factors;

b) if only upto 3 factors are of importance, the design will produce a
complete 23 factorial design replicated twice in those three important
factors no matter which ones they are (see, for example, Box, Hunter and
Hunter, 1978).

Flight times for the sixteen helicopter types obtained from an
experiment run in random order are also shown in Fig. 5(b). From these
Hight times, 8 main effects and 7 strings of two-facror interaction may be
calculated on the assumption that interactions between 3 or more factors
may be ignored. The effects are plotred on probability paper in Fig. 5(c)
suggesting that real effects are associated with: W (wing length) and, less
certainly, L (body length). On the basis that the remaining effects falling
around the straight line are ‘mostly due to noise, we cani summarize the
data simply in terms of the inser diagram in Fig. 5(c). The experiment
immediately provides not only an improved helicopter design but also
indicates the direction in which further experimentation should be carried
thus initiating a sequential process of experimentarion which can be carried
as far as one desires.

Another aspect of this approach is highlighted by discussing with the
class whether they are satisfied with flight zime as the sole criterion. In
carlier lectures we have emphasized to-the class that what happens in each
run of an experiment must be carefully documented - for example the fact
that helicopter #7 hit the table leg and that the run had to be repeated. The
need for careful observation is emphasized, perhaps leading to the
conclusion that an additional criterion such as flight stability should be
considered in future experimentation. This teaches the lesson that
appropriate and feasible objectives cannor always be determined in
advance. The criteria to be used in assessing the results may need to be
modified or totally changed during an investigation as more is learned.
The helicopter can also be used to illustrate the process of iterative
experimentation at later stages. For example (a) to demonstrate the use of
experimental design to reduce variance, (b) to illustrate the importance of
estimating variance components and of using the appropriate error term
and (¢) to consider the problems of obtaining a robust product or process.
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