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The idea of data being a mixture of signal and noise is perhaps one of the most fruitful and 

fundamental ideas of statistics. To enable future mathematics teachers to educate students to 

become statistically literate, we propose an integrative approach connecting central topics of 

school mathematics with the signal-noise idea. A course on modeling functional relationships–a 

core topic in any mathematics curriculum–confronts students with the signal-noise idea when 

looking at the deviation between model and data. We provide empirical evidence that students of 

such a course acquire implicitly important statistical thinking skills.  

 

INTRODUCTION 

While in primary and secondary schools probability and statistics are part of the 

mathematics curriculum, it is often pointed out that mathematics teachers frequently lack specific 

preparation in stochastic education. It is argued that general principles that are valid in areas like 

arithmetic, geometry or algebra may not apply to probability and statistics anymore (e.g. Gattuso 

& Pannone, 2002; Batanero, Godino & Roa, 2004). Despite the acknowledged fact that statistics 

is distinct and different from other areas of mathematics and the implied need to provide 

mathematics teachers with a special preparation to teach statistics, mathematics and statistics also 

have very much in common and there are many synergy effects between mathematics and 

statistics education. The quality of instruction in either field can greatly benefit from each other. 

Statistics instruction following activity based methods (see, e.g., Scheaffer et al., 1996 or 

Rossman et al., 2001) may be considered as a paradigm for learning how to apply mathematics. 

The field of statistics provides ample opportunities to teach important concepts of applied 

mathematics and modeling (Engel, 2002). In fact, an activity-based statistics course may meet all 

the major demands that apply to modern mathematics instruction (NCTM, 2000), such as 

preparing students to: 
 

• represent and analyze real situations; 

• solve problems; 

• make decisions using mathematical reasoning;  

• communicate their thinking; 

• make connections. 
 

Vice versa, some core concepts of statistics can well be integrated in a data-based applied 

mathematics context. A fundamental idea of mathematics is the notion of function. Modeling 

functional relationships confronts students with finding structure – the underlying function – in 

data corrupted by noise. A data-based course on modeling scatterplot data contains implicitly 

important statistical aspects when focusing on the deviation between model and data. Plotting 

bivariate data, selecting appropriate functional models, fitting curves, drawing and analyzing 

residual plots: for the training of future teachers these activities help to connect and integrate 

mathematical and statistical knowledge. As modern technology allows the focus to be on 

conceptual understanding instead of formal derivations–in many examples curve fitting with 

drawing free hand curves or by adjusting sliders suffices–this applies to the training of future 

teachers for the middle grades onwards, not just for upper grade teachers who may actually have 

to teach formal regression techniques. Do these activities also enable future teachers to transfer 

acquired data analytic thinking skills to new statistics problems that were never part of the 

course? Does it help to improve statistical thinking skills? We report about an empirical study on 

statistical thinking of 2
nd

 year university students preparing to be teachers who attended an 

applied mathematics class that focused on modeling functional relationships.  

 



STATISTICAL THINKING AND THE SIGNAL-NOISE METAPHOR 

While there is an intense discussion on the nature of statistical thinking and how it differs 

from statistical reasoning and statistical literacy (see, e.g., Ben Zvi and Garfield, 2004), for the 

purpose of our paper we rely on the definition by Wild and Pfannkuch (1999): 
 

Statistical thinking is concerned with learning and decision making under uncertainty. 

Much of that uncertainty stems from omnipresent variation. Statistical thinking 

emphasizes the importance of variation for the purpose of explanation, prediction and 

control.  
 

Variation is the reason why complex statistical methods were devised in order to filter out 

signals from noisy data. Konold & Pollatsek (2002) characterize data analysis as the search for 

signals in noisy processes. A core concept of modeling statistical data is what Borovcnik (2005) 

calls the structural equation that represents data as decomposed into a signal to be recovered and 

noise. This split is our human response to deal with an overwhelming magnitude of relevant and 

irrelevant information contained in the observed data. Probability hereby acquires more the 

character of a heuristic tool to analyze reality. Figure 1 shows different versions of Borovcnik’s 

equation that expresses the signal-noise idea from different perspectives. 
 

Signal Noise 

Pattern Deviation 

Structure Randomness 

Model Fit Residual 

Data = 

Explained 

+ 

Unexplained variation 

 

Figure 1. Different versions of Borovcnik’s structural equation 
 

It may be surprising and is – from an epistemological point of view – far from obvious 

that the patterns of variation in careful measurements or in data of many individuals can be 

described by the same type of mathematics that is used to characterize the results of random 

experiments. Indeed, it is Borovcnik’s structural equation where data meet chance, i.e., where 

statistics as the science of analyzing data and probability as the study of random phenomena come 

together to build the powerful foundation of statistical inference. Interviews with students reveal a 

prevailing inclination to attribute even small variation in observed phenomena to deterministic 

causes as the following quote from a school student, age 17, expresses: “I accept the idea of 

randomness when I ask for the sum of two dice, but what is random about the weight loss of a 

person following a particular diet plan?”  

A perspective on loosing weight as a noisy process may resolve the problem for the 

student: sticking to a particular diet plan may have an influence on body weight over time, 

described by a (deterministic) function, which, however, is perturbated by individual, unforeseen 

and unpredictable influences. Wild and Pfannkuch (1999) state that the tendency to search for 
specific causes is very deep-seated and leads people to search for causes also if an individual’s 
data are quite within the bounds of the expected when acknowledging random variation. This is in 
particular true for secondary school students whose adherence to a mechanistic-deterministic 
view of the world is well documented and doesn’t seem to fade with increasing years of schooling 
(Engel & Sedlmeier, 2005 and the literature therein).  

The importance of the signal-noise concept for statistical thinking has been described by 

Konold & Pollatsek (2002) and Groth (2005). Does emphasizing these ideas enable students to 

allow for random variation in their thinking? As illustrated in the next section, the signal-noise 

idea can be introduced in the mathematics curriculum in the context of modeling functional 

relationships, hence connecting fundamental statistical ideas with other core mathematical topics.  
 

MODELING SCATTERPLOT DATA 

A key concept in mathematics is the notion of function, which occupies a prominent 

place in the curriculum. Recent emphasis on modeling in the context of functions connects 



algebra, calculus and statistics. A model is a theoretical construct to summarize data, but also to 

help us to understand the dynamics of the observed processes, to predict new values or to 

intervene and control efficiently. Many excellent instructive examples for modeling functional 

dependencies can be found in Erickson (2008). An important message here is that students learn 

that the model is not the reality. When modeling real data discrepancies between data and model 

will always occur. They are a genuine characteristic of the model, not (necessarily) a sign of the 

model being wrong or inappropriate. Therefore, calling the deviation of the model from the data 

“an error” is vocabulary that may well lead students astray and have them insisting on searching 

for the right, i.e., error-free, model. Residual analysis addresses directly the problem of balancing 

signal and noise. While regression is an important part of statistics, it is usually studied in 

connection with correlation. This is possibly one of the differences between statistical modeling 

of bivariate data and mathematical modeling with functions. Estepa and Sanchez-Cobo (2001) 

report about empirical research on students’ difficulties with correlation and regression. 

The discovery and specification of trends in scatterplot data – discerned first through 

visual inspection, then through algebraic and numerical considerations and the use of modern 

technology – forms an important part of the data analysis curriculum. When teaching about 

modeling scatterplot data students can first draw free-hand graphs before gradually introducing 

techniques like curve fitting, difference and differential equations or scatterplot smoothers. 

Novices in probability and statistics tend to stick to a deterministic-mechanistic view of the 

world, which either doesn’t allow room for chance or knows only trend free randomness. When 

considering noisy observations in empirical data, students are challenged with separating the 

random part from the deterministic trend. 
 

ROLE OF SIMULATION 

Investigating variation involves usually a split of the data into explained und unexplained 

parts, or into causative and random parts (see Figure 1). As this separation is neither unique nor 

clear-cut, simulations are a very helpful tool to test our intuition and enhance understanding. In 

simulations we replace a real situation through an experiment, which is a model of the original, 

that can easily be manipulated and analyzed. Because the experiment is usually run involving a 

random number generator, we can raise the number of replicates for barely any effort. Observing 

the variation of the obtained results in repeated runs of the same experiment provides a direct 

experience with random and non-random influences. Simulations support valid intuitions about 

randomness and chance and confront us with our fallacies. They encourage an exploratory and 

experimental working style by allowing us to study the effects of different model assumptions and 

parameter specifications. Besides all enthusiasm about the didactical advantages of simulation 

based teaching methods we do not, however, claim that simulation alone will solve all problems 

of instruction. Simulation may initiate and provoke, but never replace, thinking about a problem. 

  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Simulated data (linear trend plus two peaks) with true regression function (left above), 

an undersmoothed fit to the data (right above), an oversmoothed fit (right below) and an 

adequately smoothed fit (left below). 
 

We outline how to use simulation as a learning tool about the signal-noise metaphor in 



the context of smoothing bivariate data. With simulations it is very natural to create data that are 

composed of a signal and noise. Based on the equation: 

yi = f(xi) + ei, i=1,…, n , 
 

where the xi are chosen over an equidistant input grid, say of size n = 50, the function f represents 

the signal and the ei are realizations of random variables with 0 expectation and (for simplicity) 

constant variance (the noise). Here computer simulations offer the opportunity to develop and 

deepen a sense for random fluctuation in real data in order to focus on the relationship between 

systematic structure and random noise in data. Figure 2 illustrates the effect of mediating between 

structure and noise for different “smooths” for a simulated data set, using a smoothly weighted 

moving average. In the oversmoothed fit (large averaging window) on the lower right of Figure 2 

the structure of the main peak is distorted while the small peak is almost lost. The undersmoothed 

fit (small averaging window) on the upper right shows too much variability and a number of 

random peaks. A medium sized smoothing window (lower left display) results in an adequate 

recovery of the original function. Here we found an appropriate balance between signal and noise. 
 

STUDY DESIGN AND RESULTS 

To evaluate the validity of the claim that a data-based course on functional modeling 

teaches universal statistical thinking skills, we conducted an empirical study following a pretest-

posttest design with treatment and control group. Participants were second-year students 

(preparing to be teachers for elementary and secondary schools) attending two different courses in 

applied mathematics. While one course had a more traditional syllabus (the control group), in 

particular no analysis of real data and only moderate amount of explicit modeling, the other 

course (treatment group) followed strictly a concept of technology supported modeling of 

functional relationships of real data as outlined in the diagram shown in Figure 3. 

 
Figure 3. Content of Applied Mathematics course for the treatment group 

 

 

Item 1: Different amounts of water were heated in 

the microwave for 30 seconds and the temperature 

difference (after – before) was measured. Based on 

the scatterplot to the left, sketch a free-hand curve 

describing the relationship between volume and 

temperature difference. 

 

Item 2: A reporter showed the following graph 

representing the number of robberies over the last 

years and commented: “The graph shows that there 

is a huge increase in the number of robberies 

between the year 2005 and 2006.”  

Inquiring about the number of robberies over the 

last seven years you obtained the following 

information below. Do you agree with the reporter’s 

statement? Why or why not? 
 

Year 2001 2002 2003 2004 2005 2006 2007 

No of  

Robberies 

528 525 499 523 518 538 533 

 
 

Figure 4. Examples of the items used in the study 

Curve Fitting Difference 

Equations 

Regression Basic Idea of 

Smoothing 



 

As they progressed along the various subtopics, the concept “Data = Signal + Noise” 

received increasing importance for the treatment group. To measure statistical thinking skills a 

short questionnaire was given to 179 participants of the study (78 in treatment group, 101 in 

control group) at two points in time: the pretest in the first meeting of class in October 2007, the 

posttest during the last meeting of class in February 2008. To obtain more in-depth information 

we conducted in addition seven video-taped interviews in the first and after the last week of class 

on two similar problems similar to those on the written tests. A questionnaire and interviews 

consisted of two items (see Figure 4). Item 1 is close to the content of the class for the treatment 

group and requires them to sketch a free hand curve in a scatterplot. Item 2 is a problem of change 

point detection based on informal inference, i.e. no formal inferential techniques are needed. It 

requires a judgment about a change over time in a system taking into account some context 

knowledge and variation in the data. Both items were administered in four different versions and 

were completely counterbalanced across pretest and posttest, to control for item difficulty.  
 

RESULTS 

To evaluate the responses we proceeded as follows: Item 1 asked for modeling with 

functions. We classified each response into one of the following three categories: I for a curve 

that interpolates all observations, P for fitting a curve from a chosen parametric class of functions 

and S for data smoothing. While both P and S may be considered as appropriate for recognizing 

random variation in data with S reflecting the spirit of exploratory data analysis even more 

strongly, we interpret interpolation as reflecting a rather deterministic mindset ignoring random 

variation in real data. Results for Item 1 are presented in Figure 5. While we observe in the 

control group only a very modest shift of 8% from the group classified as interpolators (I) to 

parametric curve fitting (P) and an almost unchanged small percentage of data smoothing, in the 

treatment group curve fitting increases between pre- and posttest by more than 27 % and the data 

smoothing gains 5%, both at the loss of interpolations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Percentage of students classified as Interpolator (I), Parametric Curve Fitter (P) or 

Smoother (S) in pre- and posttest 
 

While a substantial improvement on Item 1 problems for the treatment group is not 

surprising at all – after all, these types of problems are very close to the course content – our main 

interest is in the comparison of Item 2 type problems. Prior to this, statistical inference had never 

been taught to either group of students. Item 2 was evaluated by assigning a score between 0 and 

100 to the response based on the participants’ reasoning. All Item 2 questions were constructed so 

that at a first sight there seemed to be a jump or change point in the data. This impression was 

aggravated by starting the vertical scale high above the origin. However, when taking into 

account the variation of measurements over the last several years, which was provided in tabular 

format, evidence for a change point became very weak. Scoring was done according to a scheme 

that honored recognition of variation in the past data, enhanced by contextual consideration while 

attempts to search for specific reasons led to low scores. While in the pretest the two groups 
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barely differed at all, the difference between treatment and control group in the posttest was 

highly significant. The t-test with unpooled variance for posttest difference in mean scores 

resulted in a p-value of p= 0.0031. Table 1 gives a detailed account of our test statistics. 
 

Table 1. Scores on item 2 
 

  Control Treatment 

Mean 29.55 28.87 Prettest 

Standard error 2.84 3.31 

Mean 29.86 43.75 Posttest 

Standard error 2.85 3.60 
 

CONCLUSION 

We found a sizeable and highly significant improvement of the treatment group on Item 2 

problems with no noticeable changes in the performance of the control group. These results are a 

strong indicator that students are capable of transferring the signal-noise concept from the context 

of modeling functional relationships to broader statistical problems. It shows that the real-data 

modeling approach in an applied mathematics course improves statistical thinking skills without 

explicitly focusing on statistics. 
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