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Statistics is often taught as part of the mathematical curriculum in schools by mathematics 
teachers who often do not feel prepared to include it in their practice. They feel that they are 
stealing time that would be better used if dedicated to mathematics. We believe, however, that it 
is possible to develop a collaboration between the teaching of mathematics and the teaching of 
statistics. Using statistics as a realistic context to work on certain mathematical concepts can 
provide significant motivation for students. To accomplish this, it is essential to highlight the 
mathematical concepts underlying statistical concepts in order to link them in creating 
classroom activities that are also useful for teacher training. In this paper, we will try to 
illustrate this idea starting with examples gathered in school mathematics and in basic 
statistics.  

 
INTRODUCTION 

Statistics is necessary for today’s citizen, and without this knowledge it is difficult to 

participate in social and political debates (Konold, 2003). However, many teachers are not 

comfortable with data analysis and lack confidence in teaching it (Russell, 1990a). Teachers 

missing specific training get their information directly from school textbooks without the 

possibility of detecting the errors present, and are unable to recognize and respond to students’ 

conceptions and misconceptions (Russell, 1990a). Interviews of mathematics teachers reveal “a 

feeling of insecurity due to a lack of preparation in the teaching of statistics” (Gattuso & 

Pannonne, 2002). Furthermore, teachers not aware of the richness of the statistical content think 

that descriptive statistics is easy and not very interesting. Consequently they relegate statistics 

to the end of the school year or leave it out completely because of lack of time (Aksu, 1990). 

Statistical and mathematical reasoning are different and it is important to distinguish 

between them. In statistics, context is essential and inherent to the analysis, whereas 

mathematics may be context independent, concentrating on abstract numbers. However, 

today’s schools increasingly present mathematics as a tool to cope with everyday problems. In 

reality, numbers are found in comparisons, tables, orders of magnitude, rounding, estimating, 

prices and other numerical messages. Children must “develop [their] mental images of numbers 

parallel to their acquisition of counting and calculation skills” (Dunkels, 1986, p. 61). Statistics 

that describe the world around us contain mathematics. Real contexts used in statistics can 

support and contextualize mathematics topics and also help to motivate students.  
Mathematics often asks for one correct solution where statistics ends with various 

possibilities and uncertainty. Nowadays, school mathematics has adopted new approaches in 

which problem solving and open-ended problems call for various creative solutions. Statistics 

favors a less restrained method and helps students deal with uncertainty.  

While mathematics involves deductive reasoning, statistics calls for inductive 

reasoning; however, before getting to a formal proof, even mathematicians deal with examples 

and induction. This means that in mathematics, observation alone is not sufficient, while in 

statistics everything starts with observed results. So where mathematics can help to structure 

and be accurate, statistics can encourage diversity and creativity. 

In this paper, we will try to call attention to the fact that the teaching of statistics can 

assist the learning of mathematics because it includes many mathematical concepts in a realistic 

and motivating context. It is necessary to match mathematical concepts to their use in statistics 

so that one supports the development of the other (Dunkels 1990). One of the reasons for this is 

to address teachers’ insecurities by assuring them that while doing statistics they are building 

mathematical skills. Since statistics is taught mostly by mathematics teachers, it is important to 

show them that allocating time for statistics does not in fact undermine the importance of 

mathematics but may actually reinforce its learning. An analysis of selected school textbooks 

and descriptions of experiments revealed that the statistical concepts introduced contained most 



 

of the mathematics included in the elementary curriculum and part of the high-school 

curriculum. 

 

DATA ANALYSIS AND REPRESENTATIONS 

Data analysis usually begins with descriptive statistics, often with small surveys, 

simple activities that can be beneficial even to preschoolers (Dunkels, 1991). Young children 

from 4 to 8 years old usually fix their attention on an individual and not the individual (Russell, 

1990b), but collecting and organizing data methodically brings them to acknowledge the 

existence of others and the existing similarities or dissimilarities. This serves as an initiation to 

the concept of variability (in mathematics as in statistics) as it is constantly active in data 

handling activities. 

The construction of graphical representations is also useful. In a first step, it is 

important to let the children create their own representations, and from there bring them to see 

the elements that are essential and the ones that are missing. Progressively, traditional graphics 

will be presented, leading to the study of functions and their graphs. 

Once the data are organized and displayed in a graph or a table, it is time to examine 

“what the display tells us?” (Dunkels, 1991, p 131). Some questions will require counting or 

ordering and will bring about the distinction between cardinal and ordinal numbers without the 

introduction of important terms such as “less than, at least, more than” and so on. Other 

questions may require addition, subtraction and multiplication. These might be done by 

counting the dots (Figure 1) with a one-to-one correspondence before applying (with older 

children) the adequate operation. 

 

 
Figure 1. The fruit diagram (Dunkels, 1991) 

 

Numbers will eventually replace the dots and words will take the place of the drawings 

representing each category of data. Simple pictograms will prepare the way for organized tables 

where the categories will be replaced by numerical data and by intervals. The concept of a 

number as a measure will appear, for example for height or weight. Because the data are 

quantitative, order becomes essential. Contexts will become more complicated and data will, in 

the end, draw on bigger numbers, real, rational, and decimal numbers, requiring the related 

arithmetical operations.  

More or less simple stem-and-leaf plots require understanding of the sense of a number 

second to its position, units, tens, etc.. It is also necessary to order the data, and if the numbers 

are big, estimation may be needed (Dunkels, 1986, 1991).  

Constructing a pie chart provides an occasion to work with fractions as part of a whole, 

using multiplication to find the portion of 360° representing a certain characteristic. This is an 

opportunity to work on proportional reasoning, equivalent fractions and corresponding 

percentages and vice-versa.  

A bar chart requires dealing with scales and frequencies that are proportional to the 

length of the bars. Constructing relative frequency tables will also apply the same types of 

reasoning. Time is a continuous variable and introduces class intervals, open or closed. 

Construction and understanding of histograms also demands proportional reasoning. The 

important point is the proportional link between a frequency expressed as an integer, a fraction, 

or a percentage, and the area, which is a two-dimensional measure. This is a crucial step for the 

construction of the concept of distribution function. Histogram drawing also requires the 

minimum and maximum of a sequence of numbers, comparison of numbers, counting 



 

frequencies in intervals, obtaining relative frequencies or proportions, etc. 

Box-plots helpful for comparisons will accentuate the work on the number line, the 

concepts of half and quarter and also of 25%, 50%, 75% and range, and underline the 

distinction of the role of numbers: data, frequency, relative frequency. Taking advantage of 

multiple pictorial forms to analyze the data is important, since graphical methods seem to 

stimulate thinking, contrary to formulas that often rely on automatism (Vännman, 1990). 

If students question whether their choice of pets is similar or different from that of 

children living in other countries, they will find the data on the Internet, for this and numerous 

others variables, since a wide choice of databases are freely available for educational 

institutions. To compare data coming from different sources, pupils will have to transform the 

frequencies into percentages and look into the relative modification of the percentage for 

different totals, leading to a more profound insight introduced later. For instance, for a group of 

20, two more is 10% more, but if the group size is two thousand, what difference in the size 

will generate a variation of 10%?  

An introduction to the notion of dependence between two categorical variables requires 

double entry tables and the transformation of the data into percentages by columns or rows for 

comparison. Cross tabulation gives a meaning to proportions, equal and near equal proportions. 

Proportionality (including percentages) is a fundamental mathematical concept that brings its 

share of difficulties (René de Cotret, 1991; Pézard, 1986), and statistical tables and graphs offer 

a good opportunity to put proportionality into practice.  

 

CENTRAL TENDENCY AND VARIABILITY MEASURES 

Good questioning can activate new reasoning and new concepts, for example: “Half of 

the mothers are older then….?” or “Is it possible to find the value that divides the data into two 

equal groups?” Separating each new group in two, thus separating the original group into four 

parts, then makes it possible not only to identify the median and the quartiles but again to work 

on rational numbers–half and quarter–and on ordinal numbers. 

Position measures can be introduced quite early. The computing algorithm for the mean 

uses addition and division in the sense of “equal sharing” and the resulting quotient can also be 

seen as a ratio. The concept of spread, as in the range, calls for a difference and the notions of 

greater and smaller. These concepts can be used not only to exercise addition and division but, 

more importantly, to confer meaning to arithmetical operations. For grouped data, the 

introduction of central tendency and dispersion measures can lead to a discussion of estimation, 

since results obtained with the raw data may differ from the ones found using the middle value 

of the interval. This could be introduced later. 

Using the computer to find position measures will also leave more room for 

interpretation and analysis. In doing so, not only does the student familiarize himself with the 

use of these “machines”, but he also needs to develop a critical sense about multiple 

productions. In addition, technology leaves room for the development of imagination and 

creativity, questioning, analyzing and interpreting. The student can then ask questions such as 

“Does this graph make sense?” (Huff, 1954), or “the chi-square value is…”, or “What does it 

mean?”  

 

BIVARIATE RELATIONSHIPS  

The study of correlation and regression exploit the concepts of variability and 

functions, beginning with scatter plots that use the plane, axes and coordinates. From there, it is 

possible to trace a line estimating the relation between the points and look for the equation of 

this line starting with various information: two points, or the y-intercept and the slope, and so 

on. Later, the students will look for the line (or eventually, the curve) that best translates the 

relation between the two variables via the concept of distance between two points. The line 

graphs representing the relationship between two variables can be used to observe trends and to 

make predictions, as another way to interpret numbers, and eventually to build models.  

Use of a spreadsheet (like Excel) makes it possible to use trial and error to find which 

straight line would be the best estimation of the relationship between the two variables 

involved. After drawing a straight line passing as near as possible to all the points of the scatter 



 

plot, a student can find the equation using two points, or using the slope and one point. For 

each point, the difference between the ordinate of each point, the observed values (y), and the 

“predicted” ordinate, values ”predicted” by the drawn line (Y)–given by the equation of the 

estimated straight line–is calculated. Based on the points and the equation of the straight line, 

using the spreadsheet capacities, Table 1 can be quickly filled in. 
 

Table 1. Spreadsheet table of y-Y 
 

x y Y =mx+b y-Y 
: :  : : 

  sum=  

 

With an extreme example (where the sum of y-Y = 0) the teacher can challenge the fact 

that the sum of the differences is the best way to treat this variation (because positive and 

negative differences cancel each-other out) and lead to the exploration of the notion of distance 

between two points (absolute value) and of the squares of the differences between the y and the 

Y, and of their respective sum. The teacher may seize the occasion to explore absolute values, 

absolute value function, and quadratic function and their minima.  

“To find the straight line that is closest to all points, should we use the sum of the 

distances or the sum of the squares of the differences?” The common question about the choice 

of the sum of the squared differences over the absolute value of differences can be answered by 

studying in parallel a graphic representation and the corresponding algebraic manipulations.  

The sum of two quadratic functions: 
 

(y1-y)2+ (y2-y )2 = 
 (y1

2 -2 y1y + y2)+ (y2
2 -2 y2y + y2)= 

 (y1
2 y2

2 ) + 2(y1+y2) y + 2 y2 = 
c+ by+a y2 

 

Another quadratic function!  

A simple graphic tracer when asked for the graph of the sum of two quadratic functions 

(Figure 2) will produce a quadratic function whose minimal value is easily found.  
 

 
 

Figure 2. Sum of two quadratic functions 
 

Whereas the sum of two absolute value functions (Figure 3) is: 
 

|y1-y| +  |y2-y| = ? 
 

 
 

Figure 3. Sum of two absolute value functions 



 

 

Observation of the graph of the sum of two absolute value functions shows that the new 

function obtained does not have one minimum value but an interval of minimum values. 

Secondary school students are able to reason why the sum of the squares of the differences was 

preferred without going into formal proof using calculus. It is now possible to add a column of 

squares: (y-Y)2 
and to sum them up.  

 

Table 2. Spreadsheet table with the (y-Y)2 
column 

 

x y Y=mx+b y-Y | y-Y | (y-Y)2 
: 

: 

: 

: 

: 

: 

 : 

: 

: 

: 

    SUM SUM 

 

The computer allows the students to “move” the line by varying the value of m and of b 

in order to find the minimal value for the sum of the squared differences and, by so doing, to 

find a line that gives a better estimate of the relationship between the two variables. This 

relationship provides the occasion for discussing the difference between causality and 

correlation, a distinction important for statistical analysis. The line can be used in prediction 

exercises and can also illustrate the difference between interpolation and extrapolation. In fact, 

this line is also an example of model construction of a phenomena. 

 

DISCUSSION 

The idea we defend in this paper is not so much to teach mathematics but to be aware of 

all the mathematics included in the practice of statistics. Statistics offers a context that favors 

an understanding of mathematical concepts countering a formalist and void presentation, and 

brings in a non-deterministic method that favors a more creative approach to mathematics. 

Even when a curriculum includes statistics, the time allocated to the subject is mainly 

controlled by the teachers. However, because they also often teach mathematics, it is important 

that they realize the positive contribution that statistics can make. Not only does statistics bring 

in a meaningful context and a creative approach, which can stimulate the students’ interest in 

“numbers” and mathematics, for which there is a great need, but it also utilizes many 

mathematical concepts taught in schools.  

Moreover, with a basis in data, students not only deepen their understanding of 

mathematics, they also encounter a discipline that occurs more and more in their everyday 

environment, familiarizing them with a point of view where answers are not unique and 

straightforward but where arguments are based on quantitative results, as all science should be. 

If we highlighted some of the mathematics found while doing statistics, it is not to 

suggest a more formalist approach to statistical knowledge but to convince mathematics 

teachers that time devoted to statistics can enhance the learning of mathematics. Teachers also 

need to be able to construct a conceptual analysis of the statistical concepts taught in order to 

identify and address the difficulties underlying them; for example, proportionality in the 

construction of pie charts. On the other side, being conscious of the mathematics involved can 

help to clearly distinguish the part that addresses specific statistical thinking, and thereby 

construct learning activities that necessitate the integration and activation of statistical 

reasoning. 

From elementary to high school, the study of statistics is an excellent opportunity to 

use calculators (graphic or not), computers and the Internet. Processing large quantities of data, 

which shows the usefulness of statistics, also confers particular importance to the integration of 

technological tools in mathematics. Thus, the student is dispensed from repetitive operations 

that are not very stimulating and that could not be processed otherwise in a reasonable amount 

of time. 

 “Statistics should not be taught as a separate unit, but should be introduced whenever 

appropriate to illustrate and expand upon standard concepts (such as measurement) and to form 



 

interdisciplinary links for students” (Burrill, 1990, p 222). Vännman says, “…statistics can be 

involved in the mathematics course without necessarily “throwing out” important mathematics 

areas. Instead, mathematics is strengthened by discussions around statistical matters, and using 

statistics can introduce reality into mathematics courses” (1990, p 120). Nevertheless, being 

conscious of the mathematics included in working with statistics is not enough to develop 

statistical reasoning and learning in the students. Therefore we must continue to promote 

innovative teacher training experiences where the principal aim is to develop statistical 

reasoning. 
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