
52 

ROBUST UNDERSTANDING OF STATISTICAL VARIATION 
5
 

SUSAN A. PETERS 
University of Louisville 
s.peters@louisville.edu 

 
ABSTRACT 

 
This paper presents a framework that captures the complexity of reasoning about 
variation in ways that are indicative of robust understanding and describes reasoning 
as a blend of design, data-centric, and modeling perspectives. Robust understanding 
is indicated by integrated reasoning about variation within each perspective and 
across perspectives for four elements: variational disposition, variability in data for 
contextual variables, variability in relationships among data and variables, and 
effects of sample size on variability. This holistic image of robust understanding of 
variation arises from existing expository and empirical literature, and additional 
empirical study. 
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1. INTRODUCTION 
 
“If there was no variation, there would be no need for statistics and statisticians” (Snee, 
1999, p. 257). 

 
As the opening quote suggests, variation is central to statistics and plays a crucial role 

throughout statistical problem solving. The ability to think statistically—viewed by many 
as an instructional goal for introductory courses (e.g., Ben-Zvi & Garfield, 2004; Chance, 
2002)—requires consideration of variation (Franklin et al., 2007; Shaughnessy, 1997; 
Wild & Pfannkuch, 1999). As the study of statistics gains prominence in content 
recommendations (e.g., National Council of Teachers of Mathematics, 1989, 2000), so, 
too, should the study of variation. Statisticians recognize the primacy of variation to 
statistics (e.g., Cobb & Moore, 1997; Moore, 1998; Snee, 1999; Wild & Pfannkuch, 
1999), but not all statistics textbooks make the primary role of variation in statistics 
explicit (e.g., Porter, 2001). When coupled with the perception that many teachers lack 
experiences with statistics (e.g., Shaughnessy, 2007), a need arises for clear explication of 
what is encompassed in robust statistical understandings, particularly understanding of 
statistical variation, for teachers and their students to develop those understandings, and 
to attain the goal of a statistically literate population.  

Research to examine reasoning about and understanding variation offers insights into 
statistical connections needed to understand variation (e.g., Reading & Shaughnessy, 
2004; Watson, Callingham, & Kelly, 2007), and expository literature outlines views 
deemed necessary for understanding variation (e.g., Garfield & Ben-Zvi, 2005). Although 
insightful and informative, collectively this work falls short of providing a holistic image 
of robust understanding of variation. We still need articulation of important aspects of 
variation and important connections among the ideas—articulation that can be informed 
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by considering what robust understanding of variation means. Emerging from a larger 
study to examine secondary teacher-leaders’ development of robust understandings of 
variation (Peters, 2009), this paper articulates an organized and interconnected set of 
actions and reasoning indicative of robust understandings of variation to provide a 
holistic image of that understanding. 

 
2. BACKGROUND 

 
Reasoning about variation can be captured from three perspectives: a design 

perspective that integrates acknowledgement and anticipation of variation in the design of 
quantitative studies; a data-centric perspective that integrates processes of representing, 
measuring, and describing variation in exploratory data analysis; and a modeling 
perspective that integrates reasoning to fit models to patterns of variability in data and 
statistics, judging goodness of fit, and transforming data to improve fit. These 
descriptions of data-centric and modeling perspectives for variation are adaptations and 
extensions of data-centric and modeling perspectives on distribution (Prodromou & Pratt, 
2006). Addition of a design perspective provides a means to acknowledge requisite 
reasoning about variation (Wild & Pfannkuch, 1999) that is not captured by data-centric 
and modeling perspectives. Empirical and expository literature considered from these 
three perspectives offers a foundation for describing reasoning and behaviors indicative 
of understanding variation on which the framework described in this paper is built. 
Throughout this paper, the terms “variation” and “variability” are used interchangeably. 
Although some researchers make a distinction between the two terms, there exists no 
general agreement in statistics education research on the use of these terms (Garfield & 
Ben-Zvi, 2008). 

 
2.1.  DESIGN PERSPECTIVE 

 
Research to investigate reasoning about variation illuminates some aspects of 

understanding and reasoning from a design perspective. Fundamental to understanding 
variation is recognizing the omnipresence of variability (Cobb & Moore, 1997), 
recognizing that variability can be seen in everything and everywhere. This recognition 
leads to the search for potential sources of variation that can then be controlled through 
design. Although novices may not necessarily recognize the omnipresence of variability, 
they exhibit potential precursors such as recognizing and expecting variation in events 
such as tossing a die (Watson & Kelley, 2002a). The importance accorded to recognizing 
the omnipresence of variability and the need for design that emerges from this 
recognition is underscored in expository literature (e.g., Franklin et al., 2007; Garfield & 
Ben-Zvi, 2005; Moore, 1990). 

A main focus of statistics is inferring characteristics of a population through analysis 
of data collected from a sample of the population. Valid inferences stem from appropriate 
sampling methods and designs that include randomization (Cobb & Moore, 1997) to 
control variability and allow determination of whether observed data characteristics are 
likely due to chance (Franklin et al., 2007). Research on reasoning about samples and 
variation focuses on sampling methods that produce representative samples and on 
sample variability instigated from random processes (e.g., Shaughnessy, Ciancetta, & 
Canada, 2004; Watson, 2002; Watson & Kelly, 2002a, 2002b). Research suggests that 
sophisticated reasoning about variation and samples requires balancing two notions: 
sample representativeness and sample variability (Rubin, Bruce, & Tenney, 1990). 
Representative samples have characteristics similar to those of the population, whereas 



54 

sample variability results from samples that are not all identical and do not match the 
population exactly. Also important are considerations of the effects of sample size on the 
variability of samples and sample statistics to explain and describe variability in data 
(Garfield & Ben-Zvi, 2005).  

Experimental design introduces randomization to control systematic and random 
variability (Derry, Levin, Osana, Jones, & Peterson, 2000). Coordinating systematic, 
between-group variation and random, within-group variation provides a critical link 
between variation and formal inference (Reid & Reading, 2005), one deemed necessary 
for sophisticated reasoning about variation (Reid & Reading, 2008). Individuals struggle 
to control variation in studies, which may preclude them from establishing unbiased and 
significant results, but they can consider and identify different sources of variation 
(Petrosino, Lehrer, & Schauble, 2003) and anticipate sources of error in data (Masnick & 
Klahr, 2003). Sophisticated reasoning is needed to design experiments and observational 
studies well; this includes consideration of sources of variation and ways to control 
variation from those sources (Garfield & Ben-Zvi, 2005; Moore, 1990).  

Synthesis of the aforementioned expository and empirical literature devoted to 
observational and experimental design leads to four broad aspects of reasoning about 
variation within the design perspective that are consistent with sophisticated reasoning 
about and understanding of variation. The four items shown in Figure 1 are expanded in 
the Results section. 
 
 Recognition of the omnipresence of variability and anticipation and acknowledgement of 

natural variability when designing a study, drawing conclusions from a study, or critiquing a 
study 

 Anticipation of possible sources of variability (such as measurement variability) in the context 
of a study and description of the effects various sources of variability may have on the 
measured variability of characteristics under study 

 Anticipation of the effects of sample size on the variability of the sample and on the 
variability of statistics that characterize the sample while designing a study or in critiquing a 
study design  

 Acknowledgement of controllable and uncontrollable variability, such as explicating the 
benefit of using random assignment or random sampling of observational/experimental units 
in the context of a particular study, and the need for control to isolate systemic variation from 
random variation  

 
Figure 1. Initial indicators of reasoning about variation within the design perspective 

 
2.2. DATA-CENTRIC PERSPECTIVE 

 
After a study is designed and data are collected, statisticians typically explore data by 

examining graphical displays and numerical summaries. Sophisticated data exploration 
includes representing and reading data by changing the form of data to extract descriptive 
information (Curcio, 1987) and rearranging data to interpret and identify data trends 
(Friel, Curcio, & Bright, 2001). Statistical thinking embodied in the “dynamic process of 
changing representations to engender understanding” (Wild & Pfannkuch, 1999, p. 
227)—transnumeration—is considered necessary for understanding variation (Garfield & 
Ben-Zvi, 2005). Also important while examining data is flexible movement between 
pointwise and aggregate views of data (Bakker & Gravemeijer, 2004). Pointwise views of 
data allow for calculation of summary values such as average absolute deviation, whereas 
views of data as aggregate collections of values (e.g., Ben-Zvi & Arcavi, 2001; 
Hammerman & Rubin, 2004; Hancock, Kaput, & Goldsmith, 1992; Konold, Harradine, & 
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Kazak, 2007) focus reasoning on global characteristics of data such as patterns of 
variability in data. 

Transnumeration (Wild & Pfannkuch, 1999) includes reasoning with summary 
statistics such as interquartile range, mean absolute deviation, and standard deviation as 
numerical representations of data. Research suggests that individuals experience 
difficulty when moving beyond intuition and calculation to examine the meanings of 
statistical measures (e.g., Clark, Kraut, Mathews, & Wimbish, 2007; Mokros & Russell, 
1995). Individuals need to move beyond intuitive, rule-based, and procedural conceptions 
(e.g., Shaughnessy, Ciancetta, Best, & Canada, 2004; Silva & Coutinho, 2006, 2008; 
Sorto, 2004) and deterministic comparisons of measures or graphs (delMas & Liu, 2005; 
Lann & Falk, 2003). Understanding entails thoughtful consideration of representations 
and measures, including which representations and measures best represent data (Garfield 
& Ben-Zvi, 2005) and reasoning about spread relative to center (Garfield, delMas, & 
Chance, 2007; Reading & Shaughnessy, 2004; Shaughnessy, Canada, & Ciancetta, 2003). 
For example, understanding standard deviation or mean absolute deviation necessitates a 
dynamic conception of distribution that coordinates changes to the relative density of 
values about the mean with their deviation from the mean (delMas & Liu, 2005). This 
dynamic conception of standard deviation also allows consideration of the effects of 
outliers on summary measures.  

Summary measures describe data and allow for comparisons between data sets or 
between samples and populations. Much research focuses on group comparisons (e.g., 
Makar & Confrey, 2004, 2005; Watson et al., 2007) and reveals individuals’ nontrivial 
struggles to describe variation between groups to reason about group differences (Makar 
& Confrey, 2002, 2004). Sophisticated understandings of variation are partially exhibited 
when individuals use global summary measures of variation to compare groups and to 
distinguish between within-group and between-group variation (Garfield & Ben-Zvi, 
2005). Linking within-group variation to between-group variation to make inferences 
indicates sophisticated reasoning about variation (Reid & Reading, 2008).  

Summary measures such as correlation and the coefficient of determination allow for 
determination of the strength of relationships between variables and also provide 
information about variance in data. Students struggle to reason about these bivariate 
measures as measures descriptive of association and variance (Truran, 1995). Students 
also struggle to reason covariationally (Zieffler & Garfield, 2009). Those who exhibit 
sophisticated covariational reasoning appear to perceive bivariate data in three 
dimensions, in which the third dimension stems from “the relative density of the data 
points” (Cobb, McClain, & Gravemeijer, 2003, p. 67). Results of research focused on 
reasoning about bivariate data along with research related to reasoning about variation 
from the data-centric perspective more generally lead to the behaviors and reasoning 
consistent with variation from the data-centric perspective displayed in Figure 2. 

 
2.3. MODELING PERSPECTIVE 

 
Important for considering variation is modeling the variation in data “for the purposes 

of prediction, explanation, or control” (Wild & Pfannkuch, 1999, p. 226); ideas that entail 
reasoning about variation from the modeling perspective. The modeling perspective 
includes reasoning about formal inference through comparisons with theoretical models. 

The normal distribution plays a central role in standard parametric methods. Work 
with normal distributions frequently involves the 68-95-99.7 rule for normal distributions 
and using information about the mean and standard deviation to reason about specific 
characteristics of standard and nonstandard normal distributions. Often individuals
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 Creation, use, or interpretation of various data representations to highlight patterns of 
variability in data and to focus on the aggregate features of the data  

 Calculation of summary statistics values or acknowledgement of the utility in measuring the 
variability in the data and use and interpretation of appropriate summary values (including 
measures of variation such as range, interquartile range, and standard deviation for univariate 
sets or correlation and coefficient of determination of bivariate sets) to describe holistic 
features of the distribution  

 Estimation of measures of variability for data based upon characteristics of the distribution, 
including shape, center, and outliers for univariate sets of data, or correlation and coefficient 
of determination for bivariate sets of data 

 Use of summary statistics measures, including measures of variation, to make comparisons 
and to examine the variability within and among groups  

 
Figure 2. Initial indicators of reasoning about variation within data-centric perspective 

 
overgeneralize conditions for using the empirical rule and assume  normality when doing 
so makes little sense within context (delMas, Garfield, Ooms, & Chance, 2007), a 
mistake that may originate from describing characteristics of normal distributions without 
considering why normality is appropriate (Wilensky, 1995, 1997). In general, using 
appropriate data transformations and models to account for the variability in univariate or 
multivariate data and assessing the goodness of a model’s fit by examining deviations 
from the model (Garfield & Ben-Zvi, 2005), for example, illustrate reasoning consistent 
with understanding variation from the modeling perspective. 

A second category of theoretical distributions at the center of inferential methods are 
sampling distributions. Researchers note individuals’ tendencies to confuse sample 
distributions with sampling distributions (e.g., Saldanha & Thompson, 2002) and to 
confuse the variation of individual samples with the variation of sample means in 
sampling distributions (e.g., Garfield et al., 2007; Meletiou-Mavrotheris & Lee, 2003). 
Reasoning about sampling distributions is foundational for reasoning formally about 
inference and seemingly requires reasoning proportionally about the likelihood of sample 
results by considering an observed sample statistic in relation to the distribution of 
statistics for samples of a given size from the population (Saldanha & Thompson, 2002). 
Difficulties in recognizing the effects of sample size on sampling distributions (e.g., 
Chance, delMas, & Garfield, 2004; Fischbein & Schnarch, 1997), particularly on the 
standard deviation of sampling distributions, abound. Also important is the probabilistic, 
nondeterministic form in which conclusions—predictions or inferences about a 
population—should be stated (e.g., delMas, 2004; Meletiou-Mavrotheris, 2007). Figure 3 
details the aspects of understanding variation within the modeling perspective that arise 
from empirical and expository literature on inference and on modeling data. 
 
 Use of a normal distribution to model patterns of variation for symmetric, bell-shaped data 

distributions and use of the characteristics of a normal distribution to examine characteristics of the 
data, including invocation of the empirical rule: approximately 68% of the data lies within one 
standard deviation of the mean; approximately 95% of the data lies within two standard deviations 
of the mean; and approximately 99.7% of the data lies within three standard deviations of the mean 

 Use of appropriate models or transformations to account for the variability in data and to explore 
characteristics and relationships of univariate or bivariate sets of data 

 Use of deviations from the model to describe the goodness of fit of the model  
 Use of models to make predictions or statistical inferences from the data while allowing for 

variability in predictions or interpretations 
 

Figure 3. Initial indicators of reasoning about variation within modeling perspective 
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3. THEORETICAL UNDERPINNINGS 
 
The study from which this paper originates uses the Structure of the Observed 

Learning Outcome (SOLO) Model (Biggs & Collis, 1982, 1991) as a general framework 
to investigate and describe characteristics of reasoning indicative of robust 
understandings of variation. The SOLO Model is an empirically derived, neo-Piagetian 
model of cognitive development (Pegg & Tall, 2001, 2005) consisting of five modes of 
functioning that correspond closely to Piaget’s developmental stages (Biggs & Collis, 
1982, 1991): sensorimotor, ikonic, concrete symbolic, formal, and postformal modes. 
Each successive mode reveals increased degrees of abstraction in reasoning (Biggs & 
Collis, 1982). This paper focuses strictly on reasoning in the formal mode; reasoning that 
generates speculations that both incorporate and transcend particular situations. Although 
some adults never develop sufficient understanding to reason in the formal mode for 
particular areas, formal reasoning corresponds with thinking characteristically exhibited 
by undergraduates and professionals (Biggs & Collis, 1982; Groth & Bergner, 2006) and 
is appropriate for considering reasoning indicative of robust understandings.  

A cycle of three levels of response describes the underlying cognitive structure in 
each mode and reveals a hierarchy of cognitive complexity (Pegg, 2003). At the 
unistructural level of the formal mode, an individual focuses on one relevant aspect in the 
formal mode for the construct under consideration, whereas at the multistructural level 
the individual focuses on more than one relevant aspect without integrating the aspects 
(Biggs & Collis, 1991). At the relational level, the individual integrates all relevant 
aspects to reveal coherent meaning. Researchers identify more than one cycle of levels 
within a mode (Callingham, 1997; Pegg, 2003; Watson, Collis, Callingham, & Moritz, 
1995). A second cycle becomes apparent when relational reasoning in the first cycle 
consolidates to a single construct more sophisticated than relational reasoning in the first 
level that then becomes unistructural in the second level of cycles (Pegg & Tall, 2001). 
The second cycle of levels represents advanced development that maintains a comparable 
degree of abstraction with the first cycle of levels. 

The framework put forth in this paper examines reasoning about variation using the 
general framework of the SOLO Model as its foundation. Figure 4 represents the first and 
second cycles of levels of reasoning indicative of understanding variation. The first cycle, 
depicted by subscripted levels of “1,” lies within each perspective of variation. The 
arrows represent increased sophistication in reasoning from each perspective. For 
example, an individual who evidences relational reasoning (R1) within the design 
perspective displays integrated reasoning about aspects of variability related to design. 
Reasoning in the second cycle of levels in the formal mode involves reasoning that 
integrates perspectives. The subscripted levels of “2” depict this second cycle. An 
individual who reasons relationally from each perspective and integrates reasoning from 
the three perspectives reasons at a relational level (R2) in the second cycle of levels in the 
formal mode. Relational reasoning within the second cycle of levels, that is, relational 
reasoning within all three perspectives (R1 within design, data-centric, and modeling 
perspectives) and relational reasoning across all three perspectives (R2), indicates robust 
understanding of variation. Although individuals who reason at unistructural and 
multistructural levels in the second cycle exhibit relational reasoning from one or more 
perspectives, they do not exhibit relational reasoning across perspectives and hence do 
not exhibit reasoning consistent with robust understanding of variation.  
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Figure 4. Robust understanding of variation 
 

4. DATA COLLECTION 
 
The main study from which this paper originates focuses on secondary 

mathematics/statistics teacher-leaders’ development of robust understandings of variation 
(Peters, 2009). With a primary goal of investigating the phenomenon of developing 
robust understandings of variation, Advanced Placement® (AP) Statistics teacher-leaders 
were selected for participation in the main study under the assumption that they were 
more likely to exhibit robust understandings of variation than secondary mathematics 
teachers in general (R. Peck, Personal Communication, May 21, 2007). Teacher-leaders 
who differed in the number of years they had taught statistics and who represented a 
variety of educational and statistical experiences were selected from those who agreed to 
participate. This purposeful sample consisted of 16 teacher-leaders from across the 
United States. A 90- to 120-minute semi-structured content interview was conducted with 
each teacher to investigate teachers’ reasoning about variation. Teachers responded to 
three main tasks developed specifically for this study. Task design was informed and 
influenced by the synthesis of statistics education literature described in the Background 
section. Each task statement was purposefully vague to allow multiple approaches and 
was designed to elicit formal, abstract reasoning from the design, data-centric, and 
modeling perspectives and integrated reasoning across perspectives. This interview 
yielded the primary source of evidence to inform the developing framework for robust 
understanding of variation. Secondary sources included teachers’ statistics course syllabi 
and content-related passages from additional teacher interviews focused on learning 
experiences. 

Throughout the task descriptions presented in the next three sections, discussion 
focuses on the rationale behind task components, how teachers’ responses to the tasks 
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were probed for depth of understanding, and how teachers were prompted to reason about 
elements that might not have been addressed without prompting. Included are examples 
of the types of questions that accompanied task components. The order of questions 
depended on the direction taken by the teacher in response to task components. 

 
4.1. CONSULTANT TASK 

 
Figure 5 displays the first task statement presented to teachers, the Consultant Task. 

With no information about how administrators selected exams, teachers could reason 
from the design perspective to conclude that potential bias issues might prevent them 
from forming conclusions. Because average scores for each sample are the only measures 
given, teachers could reason from the data-centric perspective to ask for additional 
information about the data. Finally, by having values for the means to compare consultant 
scores, teachers could reason from the modeling perspective to suggest that inferential 
methods could help them to form conclusions.  

 
To improve students’ test scores on state assessments, administrators from a large school 
district require students to take practice exams. Two outside consultants create and score the 
open-ended questions from these exams. Although both consultants use the same rubric to 
score student responses, the administrators suspect that the consultants do not interpret and 
apply the rubric in the same way, resulting in differences in scores between the exams scored 
by the two consultants. The consultants’ contract with the district is up for renewal, and the 
administrators are trying to decide if they should renew the contract. They decide to use the 
most recent practice exam to compare the scores assigned from each consultant and to decide 
whether there is a difference in the way the exams were scored. The administrators select 50 
exams scored by the first consultant and 50 exams scored by the second consultant. They find 
that the average score for the 50 exams scored by the first consultant was 9.7 (out of a possible 
15 points), while the average score for the 50 exams scored by the second consultant was 10.3 
(out of a possible 15 points). What should the administrators conclude about the scores 
assigned by these two consultants? 

 
Figure 5. Consultant Task description 

 
Teachers who approached the task with a focus on missing information about design 

(e.g., sampling technique) prompted interview questions related to why the information 
was important, how the information helped to answer the administrators’ question, and 
what conclusions could be drawn in the absence of that information. Addressing the 
importance of additional information provided an opportunity for teachers to express the 
omnipresence of variability, concerns related to the effects of potential sources of 
variation, and a need to know how sources of variation were controlled. From the general 
way in which questions were posed, teachers could reason about design elements in terms 
that transcended contexts to reason in the formal mode. Attention to what conclusions 
followed from the information could offer further insight into teachers’ thinking about 
variation. Additional questions prompted teachers to describe and defend the design they 
would use to answer the administrators’ question, providing an opportunity for teachers 
to reason about design elements, consider controlling strategies, and describe the effects 
of sample size. 

Teachers’ requests for information about variation in scores prompted interview 
questions about why the information was needed. Values for measures of variation and 
dotplots of the data, supplied to teachers separately upon request, are shown in Figure 6. 
To inform how teachers described variation and interpreted standard deviation, questions 
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focused on describing the expected distributions from the summary values. There is a 
discrepancy between the summary measures and the dotplot for Consultant Two’s scores 
that stems from a score of 150 incorrectly entered instead of 15. The summary measures 
were calculated with the value of 150, but the dotplot only displayed scores from 0 to 15. 
This discrepancy provided an opportunity for teachers, upon prompting, to use the dotplot 
to estimate and reason about the correct values for mean and standard deviation. 
Responses could reveal how teachers used data to reason about variation. Additional 
opportunities to reason about variation from the data-centric perspective arose from 
comparable questions for the corrected summary measures and dotplot for Consultant 
Two’s scores. 

 

 
 

Figure 6. Summary values and dotplots for sample exam scores 
 
A second part of the Consultant Task included questions to describe expected 

differences between size-15 samples and size-50 samples to ascertain teachers’ 
perceptions of the effects of sample size on variability. Teachers were asked to evaluate 
the scores of the 15 randomly selected exams shown in Figure 7 from exams randomly 
assigned to and scored by each consultant to determine whether there was a difference in 
scoring. Because sample data were in tabular form and available on a graphing calculator, 
teachers could choose among summary measures, graphs, and other strategies to analyze 
data and reason about representing, measuring, and describing variation and comparing 
variation between consultants’ scores.  

Teachers who initially suggested using inferential methods to form conclusions 
prompted questions about what information was needed for the methods and conditions 
under which the methods were appropriate for drawing conclusions. Subsequent 
questions explored what conclusions could be drawn from using summary measures and 
graphs to reason about variation within each distribution and between the two 
distributions. Inferential comparisons provided opportunities for teachers to model the 
pattern of variability in data and to model sampling distributions for samples of a given 
size, indicative of reasoning from the modeling perspective. Interview questions related 
to expectations for additional samples of varying sizes selected from the same population 
could yield information about how teachers balanced the ideas of sample 
representativeness and sample variability (Rubin et al., 1990). Through the variety of 
situations and questions presented in the Consultant Task, teachers could consider models 
for data and statistics, and represent, measure, describe, and reason about variation in 
multiple ways.  
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Figure 7. Scores for 15 randomly selected exams 
 
4.2. CALIPER TASK 

 
Figure 8 and Figure 9 show the Caliper Task question and graph, respectively. Like 

the Consultant Task, the Caliper Task could be approached from any of the three 
perspectives. In the absence of context, teachers could express a need for context to 
consider the nature of or expected pattern of variability to reason about variation from the 
design perspective. Alternatively, teachers could use the scatterplot to describe the pattern 
of variability in the data or the strength of the relationship between x and y to exhibit 
reasoning from the data-centric perspective. Because the task statement asks for a 
response to a question, teachers could initially react to the student’s question by attending 
to considerations for predicting the value of y when x is four to exhibit reasoning from the 
modeling perspective. Context was revealed to teachers after they reasoned about the data 
sans context. For the data shown in Figure 9, the explanatory values are measurements of 
objects manufactured to have a specific length measured in centimeters. Corresponding 
response values are students’ Vernier caliper measurements to the nearest thousandth of 
an inch for that object. 

 
Imagine that one of your students asked you to look at this graph of data their lab partners 
collected during a science lab. The student’s partners did not give the names of the variables 
represented by x and y. The student asks you how they might use this graph to predict a value for 
y, given a value of 4 for x. What would you say to the student? 

 
Figure 8. Initial question for the Caliper Task 

 
Teachers who approached the task by expressing a need for context prompted design 

questions about reasons for the request and the perceived legitimacy of any articulated 
concerns. By describing why context was important, teachers could reveal how they used 
context to consider sources of and types of variability for each variable. The small sample 
size offered additional opportunities for teachers to reason about the effects of sample 
size on variability and how the absence of context in combination with the small sample 
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Figure 9. Initial graph for the Caliper Task 
 

size might affect conclusions to offer insights into how teachers reason about controlling 
variation. After context was introduced, interview questions focused on describing 
specifically how the context and expectations of variation based on context affected 
analysis and why the data did not exactly match the known relationship between inches 
and centimeters. Context thus provided additional opportunities to reason about sources 
of variability and to offer suggestions for controlling variability from those sources. 
Additional evidence of how teachers reasoned about the effects of sample size could arise 
from reasoning about the larger bivariate data set shown in Figure 10 in response to 
questions similar to those asked for the initial graph.  

 

 
 

Figure 10. Scatterplot resulting from a larger data set 
 
Interpreting the initial scatterplot to describe the pattern of variability in the data or 

the strength of the relationship between x and y could yield data-centric information about 
how teachers reasoned about the aggregate of data and how they used the measures of 
correlation and the coefficient of determination to reason about variability in bivariate 
data. Information about context prompted interview questions for teachers to use the 
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scatterplot as an aid to reason about reasonable variation for each variable, to describe the 
pattern of variability between variables, and to interpret the correlation coefficient and 
coefficient of determination in conjunction with the context. Additional evidence about 
how teachers reasoned from the data-centric perspective could stem from responses to 
questions about the larger set of data, the regression output (including the coefficient of 
determination and the standard deviation of residuals), and how residual plots could be 
used to reason about random variability for proposed models.  

Speculation about different models for the original data prompted interview questions 
to describe the conditions under which each model would be appropriate and how the 
student could choose among models. Responses to these questions could inform how 
teachers modeled the pattern of variability in data and their considerations in finding a 
“best” fit for the data. With the context known, interview questions focused on describing 
specifically how context affected model selection. For the larger set of data shown in 
Figure 10, teachers were asked questions to describe a reasonable model for the 
univariate distributions formed at the seven discrete explanatory values to gather 
information about the extent to which context influenced expectation. Teachers’ 
conceptions of “good” fit could be illuminated from responses to interview questions 
related to what univariate patterns of variability would produce different lines of best fit. 
Through the questions asked for the Caliper Task, teachers were afforded opportunities to 
reason about variation from each perspective in univariate and bivariate settings. 

 
4.3. HANDWRITING TASK 

 
The Handwriting Task was designed to elicit reasoning from the design perspective 

and stemmed from an electronic group discussion posting (Bullard, 2006). In the quote 
displayed in Figure 11, Pressler (2006) conjectures that a relationship exists between 
handwriting quality and composition scores assigned by adults. Interview questions 
centered on designing a study to test the conjecture and providing explanations and 
rationale for the designs. Questions targeted issues of replication, randomization, and 
control to elicit reasoning about expected variation, consideration of variation sources, 
attempts to control variability, and reasoning about sample size. If teachers did not 
mention sample size or blocking, interview questions prompted teacher to consider them 
to inform how teachers reasoned about the effects of control and sample size on the 
variability of samples and sample statistics.  
 
“When adults are given the same composition written in good handwriting and poor 
handwriting, ‘they still give lower grades for ideation and quality of writing if the text is 
less legible,’ he said” (Pressler, 2006). 

 
Figure 11. Handwriting Task excerpt for study design 

 
4.4. TASK SUMMARY 

 
As the preceding descriptions of the interview protocol show, aspects of reasoning 

from the design, data-centric, and modeling perspectives can arise in multiple ways. 
Teachers had multiple opportunities to integrate reasoning about variation within and 
across the three perspectives and to reason about variation in different contexts. Teachers’ 
responses to these tasks offered insights into reasoning about variation from each of the 
perspectives and how reasoning was integrated among perspectives to inform a detailed 
framework of reasoning indicative of robust understandings of variation. 
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5. DATA ANALYSIS 
 

Pilot-study work with six AP Statistics teachers not considered for participation in the 
main study was conducted for the purpose of determining the extent to which tasks and 
interview questions elicited relational-level reasoning about variation within the design, 
data-centric, and modeling perspectives and across perspectives in the formal mode. 
Preliminary analysis led to changes in the tasks and the initial indicators listed in Figures 
1, 2, and 3. 

  
5.1.  TASK CHANGES 

 
Analysis of the six pilot-study teachers’ video recorded interviews and annotated 

interview transcripts began by first matching passages of reasoning about variation to the 
indicators in Figures 1, 2, and 3. Indicators not addressed by a majority of teachers led to 
adaptations and additions to the interview tasks and questions. For example, one change 
to the Consultant Task occurred for the data-centric indicator that includes “creation, use, 
or interpretation of various data representations.” The original task presented teachers 
with summary measures and dotplots for size-50 samples and dotplots for size-15 
samples. Teachers reasoned from the size-50 dotplots and summary measures but 
reasoned strictly from the dotplots displayed in Figure 12(a) for the size-15 samples. To 
achieve a higher probability of teachers creating representations and reasoning about that 
creation, data were presented in tabular form for the main study [Figure 12(b)]. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. (a) Original presentation of size-15 samples and  
(b) adapted presentation of size-15 samples 

 
5.2. INDICATOR CHANGES 

 
The focus of analysis for the six pilot-study interviews shifted from considering 

interview questions and tasks to considering how well the emerging list of indicators 
captured reasoning about variation. Analysis of teachers’ reasoning for the six teachers in 
the pilot study and the 16 teachers in the main study followed the constant comparative 
method (Glaser & Strauss, 1967) and consisted of identifying passages aligned with 
indicators and identifying aspects of reasoning about variation not captured by the set of 
indicators. If a teacher’s reasoning was valid but did not align with established indicators, 
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the essence of the reasoning was noted, and indicators were added, changed, or refined. 
For example, aspects of teachers’ reasoning during the Consultant Task included 
anticipating or acknowledging variability in ways unrelated to design. The design 
indicator of “anticipation and acknowledgement of natural variability” and all other 
indicators did not fully capture reasoning to compare summary measures and size-50 
sample dotplots. In one instance, after looking at the standard deviation for Consultant 
Two’s scores, a teacher stated that he was “concerned about how large the scale is. It only 
goes to 15.... I don’t see how the average distance could be 20 if the scale is up to 15 … 
the standard deviation gives us information about variability around the mean.” The 
teacher did not seem to be surprised by the existence of variation, as he earlier stated a 
clear expectation for scores to vary. His identification of an unreasonable standard 
deviation value suggests the value was not aligned with what he anticipated for this 
setting. His reasoning contributed to the addition of an indicator for the data-centric 
perspective: anticipating reasonable variability by recognizing unreasonable variability. 
More detail about the final list of indicators appears in the Results section. 

 
5.3. ELEMENT EVOLUTION 

 
Initial analyses informed the final framework that includes four considerations or 

aspects of variability that transcend perspectives—hereafter referred to as elements—and 
observable indicators for elements from each perspective. Elements are indicative of 
aspects of reasoning that connect across perspectives—integrated reasoning. The element 
of “effects of sample size on variability” was the first to be identified. The importance 
that pilot-study teachers attributed to sample size and their accompanying reasoning was 
not reflected in the initial list of indicators shown in Figures 1, 2, and 3. Only one 
indicator in the design perspective explicitly referenced sample size. When pilot-study 
teachers reasoned about how outliers affected the mean and variability of a sample by 
describing a particular sample and how the effects of an outlier lessen as sample sizes 
increased, their reasoning extended to the data-centric perspective. Similarly, when 
teachers described how a collection of statistics was affected by sample size and related 
that collection to inference, their reasoning was from the modeling perspective. Teachers’ 
reasoning from all three perspectives led to the element of considering the effects of 
sample size on variability.  

Consideration of other aspects of reasoning that cut across perspectives led to 
identification of three more elements: anticipating and acknowledging variability, 
reasoning about variability for contextual variables, and reasoning about variability in 
relationships among data and variables. Reasoning with a variational disposition occurs 
when expectation of variation accompanies a need to consider and implement design 
strategies for collecting data. Recognizing unreasonable variability in data or allowing for 
reasonable variability in predictions provide additional indication of a variational 
disposition. Reasoning about variability in data for contextual variables includes 
anticipating potential sources and types of variability in study design, exploring 
contextual data by identifying characteristics of data through representations and 
measurements, and fitting models to data. Reasoning about variability in examining 
relationships among data and variables includes reasoning about strategies to control 
variability when designing studies or considering study designs, exploring controlled and 
random variability in data, and modeling controlled or random variability in data. More 
detail about the elements appears in the Results section. 
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5.4. ANALYSIS IN THE MAIN STUDY 
 
Analysis of data from the 16 teachers in the main study included a first pass through 

annotated interview transcripts to identify passages aligned with indicators and aspects of 
reasoning about variation that were not captured by the emerging set of indicators. 
Indicators continued to be added, changed, or refined. A second pass included 
constructing tables for each teacher, with columns labeled by perspective and rows 
labeled by element. Interview passages were placed in temporal sequence across 
perspectives for each element. Tables for each teacher provided means to note relational 
reasoning within and across perspectives. Throughout analysis, indicator descriptions 
were revised from response characteristics that were not consistent with emerging 
descriptions. Continued analysis using the constant comparative method (Glaser & 
Strauss, 1967) involved multiple readings of teachers’ responses, adjustments to tables in 
response to revised descriptions, and further refinement of indicators until all conflicts 
were resolved and all aspects of reasoning about variation were captured by the collective 
set of indicators. Annotated interview transcripts and tables for some teachers were 
discussed with another mathematics education researcher until agreement was reached on 
the reasoning and integrated reasoning evidenced in passages.  

 
6. RESULTS 

 
Figure 13 shows the perspectives, elements, and reasoning indicators that emerged 

from analysis of the pilot and main study interviews and shows how general indicators 
and elements correspond with the SOLO Model. For the first cycle of levels, attention is 
on elements from individual perspectives. The relational level (R1) corresponds with 
integrated reasoning about variation among elements within a given perspective. Robust 
understandings of variation are indicated by relational reasoning among elements within 
each perspective and relational reasoning across and among elements from the design, 
data-centric, and modeling perspectives in the second cycle of levels (R2).  

Table 1 displays the complete list of indicators for each element. To facilitate 
discussion and to avoid duplication of long phrases, labels are given for each of the 
perspectives, elements, and indicators in Table 1. The design, data-centric, and modeling 
perspectives are notated as DP, DCP, or MP, respectively. The four elements are 
numbered according to the order in which they appear in the table. For each element from 
each perspective, cell headings indicate general indicators of reasoning about variation 
for the given element from that perspective. For example, the general indicator of DP1 is 
“acknowledging the existence of variability and the need for study design,” which 
represents a variational disposition from the design perspective. The cell headings in 
Table 1 align with the phrases in the cells shown in Figure 13. 
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Figure 13. Elements and reasoning indicative of robust understanding of variation 

 
Specific indicators are the lettered components in the table. For example, DP1(a) is 

“acknowledging the existence of variability and the need for study design in controlling 
the effects of variation from extraneous variable(s)” and represents one specific way to 
exhibit a variational disposition from the design perspective. Because reasoning from the 
design perspective can appear in reasoning about designing studies or in critiquing 
studies designed by others, a numbering system for designing DP#(1x) and critiquing 
DP#(2x) studies is combined with lettering, where # represents element 2, 3, or 4 and x 
represents indicator a or b. Similarly, to discuss the large number of data-centric 
indicators that involve creation, use, or interpretation of data representations, a 
numbering system for creation DCP#(1x), use DCP#(2x), and interpretation DCP#(3x) is 
combined with lettering. For these indicators, # represents element 2 or 3 and x represents 
indicator a, b, or c.  
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Table 1. Indicators of robust understandings of variation—italicized indicators stem from previous empirical and expository literature 
 

 Design Perspective Data-Centric Perspective Modeling Perspective

Variational 
disposition 

DP1:  
Acknowledging the existence of variability 
and the need for study design in  
(a) controlling the effects of variation from 

extraneous variable(s); 
(b) including considerations of variation for 

variable(s) of interest during data 
analysis; or 

(c) using sample statistics to infer 
population parameters for the variable(s) 
of interest 

DCP1:  
Anticipating reasonable variability in data by  
(a) considering the context of data; 
(b) recognizing that data descriptions should 

include descriptions or measures of 
variability (and center); or 

(c) recognizing unreasonable variability in data 
(e.g., that which could result from a data 
entry error)  

MP1:  
Anticipating and allowing for 
reasonable variability in data when 
using models for 
(a) making predictions from data; 

or  
(b) making inferences from data  

Variability in 
data for 
contextual 
variables  

DP2:  
Using context to consider sources and types 
of variability to (1) inform study design or to 
(2) critique study design by 
(a) considering the nature of variability in 

data (e.g., measurement variability, 
natural variability, induced variability, 
and sampling variability); or  

(b) anticipating and identifying potential 
sources of variability  

 

DCP2:  
Describing and measuring variability in data for 
contextual variables as part of exploratory data 
analysis by 
(a) (1) creating, (2) using, (3) interpreting, or (4) 

fluently moving among various data 
representations to highlight patterns in 
variability; 

(b) focusing on aggregate or holistic features of 
data to describe variability in data; or 

(c) (1) calculating, (2) using, or (3) interpreting 
appropriate summary measures for variability 
in data (e.g., measures of variation such as 
range, interquartile range, standard deviation 
for univariate data sets; correlation and 
coefficient of determination for bivariate data 
sets)  

MP2:  
Identifying the pattern of 
variability in data or the expected 
pattern of variability for contextual 
variables by 
(a) modeling data to explain 

variability in data; 
(b) considering contextual 

variables in the formulation of 
appropriate data models; 

(c) considering contextual 
variables in modeling data to 
describe holistic features of 
data; or 

(d) considering or creating 
distribution-free models or 
simulations to explore 
contextual variables 
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Variability and 
relationships 
among data 
and variables 

DP3:  
Controlling variability when (1) designing 
studies or (2) critiquing the extent to which 
variability was controlled in studies by 
(a) using random assignment or random 

selection of experimental/ observational 
units to (in theory) equally distribute the 
effects of uncontrollable or unidentified 
sources of variability; or  

(b) using study design to control the effects 
of extraneous variables (e.g., by 
incorporating blocking in experimental 
design or stratifying in sampling 
designs) to isolate the characteristics of 
the variable(s) of interest or to isolate 
systematic variation from random 
variation  

DCP3:  
Exploring controlled and random variability to 
infer relationships among data and variables by  
(a) (2) using and (3) interpreting patterns of 

variability in various representations of data;  
(b) focusing on aggregate or holistic features of 

variability in data to make comparisons; 
(c) (2) using or (3) interpreting appropriate 

summary measures of the variability in data 
to make comparisons (e.g., transformed 
versus untransformed data); or 

(d) examining the variability within and among 
groups 

MP3:  
Modeling controlled or random 
variability in data, transformed 
data, or sample statistics for 
(a) making inferences from data 

(e.g., isolating the signal from 
the noise for univariate or 
bivariate sets of data or 
formally testing for 
homogeneity in variances); or 

(b) assessing the goodness of a 
model’s fit by examining 
deviations from the model  

Effects of 
sample size on 
variability 

DP4:  
Anticipating the effects of sample size on the 
variability of 
(a) a sample or 
(b) statistics used to characterize a sample 

(e.g., mean, proportion, median) 
when (1) designing a study or (2) critiquing a 
study design 

DCP4:  
Examining the effects of sample size on the 
variability of 
(a) a sample or  
(b) statistics used to characterize a sample (e.g., 

mean, proportion, median) 
through the creation, use, or interpretation of 
data-based graphical or numerical representations 

MP4:  
Anticipating the effects of sample 
size on the variability of a 
sampling distribution to 
(a) model the sampling 

distribution; or 
(b) consider significance, 

practical or statistical 
significance, of inferences 
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Problem contexts and questions and interview time limitations are likely to prohibit 
reasoning about every indicator. As a result, reasoning was considered to be indicative of 
robust understanding of variation if it included evidence of general and specific indicators 
appropriate to the tasks under consideration for each element within each perspective, was 
relational within each of the three perspectives, was relational across the three 
perspectives, and transcended context. Reasoning was not consistently faulty in that it 
might include minor misstatements that were corrected or were otherwise consistently 
stated correctly, and unsubstantiated claims were not made. Discussion of results 
primarily includes examples from Blake, Dustin, Everett, Hudson, and Isaac 
(pseudonyms). These five teachers exhibited reasoning consistent with robust 
understanding of variation, as reported in Peters (2009). Passages and descriptions of 
teachers’ reasoning presented here are intended to illustrate relational reasoning within 
perspectives or across perspectives but are not intended to be sufficient evidence of robust 
understanding for any one teacher.  

To explicate the framework and to illustrate relational reasoning about variation in the 
formal mode, the discussion of results includes examples of teachers’ responses to the 
tasks described in Section 4. Discussion is organized around reasoning within 
perspectives in the first cycle of levels before considering reasoning across perspectives in 
the second cycle of levels.  

 
6.1.  RELATIONAL REASONING WITHIN PERSPECTIVES 

 
Relational reasoning within a perspective manifests itself in reasoning that includes 

indicators for each element and is integrated among elements. Limitations inherent to 
contexts constrain reasoning to different combinations of indicator subsets. For example, 
relational reasoning within the design perspective might be observed throughout the 
course of designing and enacting a study, yet indicators for critiquing a design may be 
absent.  

 
Design perspective Relational reasoning about variation within the design perspective 

evidences indicators in close proximity and in a coordinated and cohesive manner. 
Although reasoning may occur in a long, temporal sequence, the nature of design is such 
that considerations typically occur early in a study when designing a study, at the 
conclusion of a study when contemplating design strengths and weaknesses, or when 
critiquing a study implemented by others. Because none of the interview tasks require 
both designing and enacting a study, teachers reasoned about creating a design or 
critiquing a design but not both for any design. Reasoning in the formal mode extends 
beyond the context of a particular problem or setting.  

The Handwriting Task provides an ideal setting for reasoning about variation when 
designing a study. In one teacher’s design considerations, aspects of the four elements 
appear in a cohesive sequence that reveals a flowing thought process. The teacher’s initial 
reaction suggests aspects of all four elements: “I guess my first thought is to create a 
group of homogeneous graders” (Blake). The suggestion for homogeneity reveals implicit 
expectation for an otherwise varied and heterogeneous group and thus acknowledges the 
omnipresence of variability to reveal a variational disposition [DP1]. Through 
homogeneity, the effects of one potential source of variability for this context [DP2]—
variability from differences in adults that might affect grading [DP2(b)]—are minimized 
or controlled to explore the relationship between the contextual variables of adults’ scores 
[DP3(1b)].  
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While reasoning through the Consultant Task, the teacher also suggests controlling for 
time and “any other thing that might affect the score given” (Blake) to educe the 
relationship between consultants’ scores [DP3(1b)]. Controlling for the variable of time 
[DP3(1b)] minimizes the probability of encountering variability from samples selected 
from one grader’s first set of scored exams and the other grader’s last set of scored exams, 
the teacher’s example of controlling [DP3(1b)] a potential source of variability [DP2(1b)] 
to reveal sophisticated reasoning about experimental design (Groth, 2003). Requesting a 
group of graders alludes to the effects of sample size [DP4]. This allusion becomes 
explicit when the teacher observes that the “small [sample size] just makes it harder to 
find a significant difference…because of variability” (Blake), and explicates the effects of 
sample size [DP4] on probable sample compositions [DP4(1a)] and sample characteristics 
[DP4(1b)] for samples of the same size. As exemplified by this teacher’s reasoning, 
reasoning within the design perspective that is consistent with robust understanding of 
variation incorporates both general and specific indicators appropriate to the situation 
under consideration.  

Indicators of reasoning about variation that appear when critiquing studies differ from 
those when designing studies; focus changes from controlling variation in the latter case 
to evaluating how well variation is controlled in the former. Aspects of reasoning while 
critiquing are exemplified in teachers’ reasoning about the Consultant Task. Indicators in 
relational reasoning are not standalone statements but are interwoven throughout 
reasoning about design, as illustrated by the following passage that includes indicators 
from at least three of the four elements. 

I’d like to know if…both consultants scored the same exam papers…or, uh, at 
least that the 50 exam papers that each consultant scored were a random sample 
from all the exam papers…that they [administrators] had available, [which] 
would allow me to decide whether I thought the six tenth of a point difference on 
the scale…[is] due to differences in grading practices, applying the rubric, 
or…due to the random selection of the 50 papers…a different group of 50 papers 
scored by the same consultant probably would have yielded a somewhat different 
score. (Hudson) 

Acknowledging that a different group of 50 papers is likely to produce a different 
mean score and that the design determines whether the difference can be attributed to 
chance evidences a general variational disposition [DP1] while also alluding to the 
importance of design for inference [DP1(2c)]. The same reasoning reveals contextual 
consideration for the nature of variability in data, specifically, sampling variability or 
variability in grading [DP2(2a)]. A suggestion that random sampling allows one to 
determine whether the relationship between the consultants scores is that of a difference 
in grading practices alludes to the controlling effects of randomization [DP3(2a)] without 
indicating how randomization controls variability. Although the teacher’s reasoning fails 
to address control explicitly, the teacher’s question about whether consultants scored the 
same exams hints at control [DP3]. The teacher later reveals that he prefers a matched-
pairs design to reduce the effects of different student responses and reveal the relationship 
between consultants’ scores [DP3(1b)]. Similarly, explicit mention of the effects of 
sample size does not appear in this passage but appears as the teacher continues to 
consider grading practices [DP4(2a) and DP4(2b)]. Although some indicators are not 
immediately evident in the passage, they become clearer in the teacher’s extended 
reasoning about design aspects related to the problem. The collective set of passages 
suggests that indicators not explicitly addressed are considered along with those clearly 
present, and indicators for each element from the design perspective appear in relatively 
short succession. 
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These illustrations of relational reasoning within the design perspective stand in stark 
contrast to reasoning at the multistructural level and, consequently, at the unistructural 
level. Rather than aspects of the four elements appearing in close proximity, 
multistructural reasoning about variation is segmented in nature and may not address all 
elements. For example, a teacher, Georgia, identifies potential sources of variability for 
the variable of consultants’ scores [DP2(2b)] but does not seem to consider ways to 
control variability from the sources to establish the relationship [DP3(1b)] when 
designing an alternative study. Georgia suggests that consultants’ scores might reveal 
systematic bias because they “could be grouped together such that higher, you know, my 
honors verses low level … where the honors should have higher scores” (Georgia). 
Sophisticated reasoning appears in advocating for random and representative samples 
(Groth, 2003) [DP3(1a)]. The teacher indicates, “if they [scored exams] were not 
randomly selected, then I would say redo it randomly” (Georgia). Her reasoning focuses 
on randomly selecting exams from those scored [DP3(1a)], which does not preclude 
consultants scoring exams from different homogeneous groups of students. Although the 
teacher’s reasoning for both elements is valid, each element seems to be differently 
instigated, and reasoning about them does not occur in tandem. Implementing the 
teacher’s design as recommended could produce the biased samples the teacher argued 
against. In general, by disjointedly addressing elements, valid indicators may appear in 
reasoning for multiple elements and yet produce inconsistencies when examined 
holistically. 

 
Data-centric perspective Unlike relational reasoning within the design perspective, 

relational reasoning within the data-centric perspective may not be segmented, yet it may 
not be clearly integrated either. Reasoning during data analysis may undergo multiple 
iterations to consider or reveal different relationships in or aspects of data and thus may 
transpire over an extended period of time. Although individuals may not overtly reason 
about different elements almost simultaneously to suggest relational reasoning, each 
thought follows from and considers prior expressed thoughts to reveal a coordinated and 
cohesive progression of thought indicative of relational reasoning. 

Integrated reasoning about variation within the data-centric perspective is illustrated 
using a teacher’s focus on univariate data and characteristics of the data while reasoning 
about the Consultant Task. A variational disposition [DCP1] is both implicit and explicit 
in the teacher’s request for and subsequent reasoning about standard deviation values for 
both consultants’ scores: “This seems [points to 20.2], if it’s out of 15 points that seems 
unrealistic for a standard deviation” (Everett). Requesting measures of variation alludes to 
anticipating variability and acknowledging that the mean is insufficient for forming 
conclusions [DCP1(b)], whereas identifying an unreasonable standard deviation value 
based on possible scores [DCP1(c)] more explicitly indicates a variational disposition. 
Reasoning about other elements flows from considering a more reasonable value using 
the dotplots of consultants’ scores. The dotplots allow for reasoning with both numerical 
and graphical representations—transnumeration (Wild & Pfannkuch, 1999)—to estimate 
Consultant Two’s standard deviation [DCP2(2a)].  

From the dotplot, the teacher considers the mean as a balance point—sophisticated 
reasoning about the mean (Mokros & Russell, 1995)—to surmise that Consultant Two’s 
given mean is incorrect and should be approximately 7.5 before he considers standard 
deviation. His reasoning about variation follows from and is consistent with earlier 
observations about unreasonable variation. He notes, “I could go two units either way and 
capture 45 out of the 50 [see Figure 14] … it’s reasonably normal [traces normal path 
over dotplot for Consultant 2] … a quick estimate would be about 2 units” (Everett). The 
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estimate results from considering deviation from the mean [DCP2(2a)]—sophisticated 
reasoning about variation (e.g., Reading & Shaughnessy, 2004)—that leads to the 
observation that 45 of 50 scores fall within two units of the mean. Observing the 
relatively normal pattern of variability in the data—indicative of distributional reasoning 
(e.g., Bakker & Gravemeijer, 2004; Ben-Zvi, Gil, & Apel, 2007) that focuses on 
aggregate data features [DCP2(b)]—lends further support for the conservative estimate of 
two.  

 

 
 

Figure 14. Examining the spread of data relative to center 
 

Similar sophisticated reasoning surfaces when the teacher considers the variability 
within Consultant One’s scores [DCP2(1c)] before considering the variability between 
distributions (Reid & Reading, 2008) when reasoning about the relationship between 
consultants’ scores [DCP3(d)]. The teacher observes, “the average score for Consultant 
One definitely seems higher, uh, than Consultant Two. Also, Consultant One has quite a 
bit more variability in his scores .… The standard deviation’s larger … the range is 
obviously larger” (Everett). Informal inferential reasoning becomes apparent in 
comparisons using aggregate measures of average, standard deviation, and range 
[DCP3(2c) and DCP3(d)] to determine whether consultants’ scores are consistent with 
each other [DCP3]. This reasoning leads to two difference relationships between 
consultants’ scores: variability within each distribution and variability between 
distributions [DCP3], particularly variability in means. Further inferential reasoning 
appears from comparing the difference in means relative to standard error to consider the 
effects of sample size [DCP4] on the variability of the differences in means [DCP4(1b)].  

This teacher’s reasoning addresses each element within the data-centric perspective. 
He identifies unreasonable variation [DCP1] and estimates a more reasonable value from 
the dotplot [DCP2] to reason about the variation within each distribution [DCP2] before 
comparing the variation within and between distributions [DCP3] while considering the 
effects of sample size on the characteristics about which he reasons [DCP4]. Although his 
reasoning spans over 15 to 20 minutes and includes specific indicators as described in 
preceding paragraphs, it is connected. Throughout, general and specific indicators of the 
four elements appear in ways that continually connect to and build from prior reasoning.  

Data-centric reasoning extends beyond explorations with univariate distributions to 
investigations of relationships between variables in bivariate and multivariate data. The 
Caliper Task provides a bivariate setting for reasoning about variation from the data-
centric perspective. Aspects of relational reasoning can be seen in a teacher’s descriptions 
of patterns in the data. Upon reading the task statement and after making assumptions to 
compensate for the lack of context, the teacher reasons about the relationship between 
explanatory and response variables [DCP3(2a)]. He examines patterns in the variability of 
the data, patterns such as “the path of a ball … the general form of a quadratic … we 
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could actually, uh, do a, uh piecewise graph [see Figure 15]” (Dustin). A variational 
disposition emerges from subsequent reasoning that a prediction [DCP1(a)] would follow 
only from patterns and subsequent models of the patterns that “reasonably approximate” 
the true relationship between variables. 

 

 
 

Figure 15. Examining the pattern of variability in bivariate data 
 

Additional reasoning about elements related to the effects of sample size [DCP4] and 
characteristics of contextual data [DCP2] builds from reasoning about patterns. 

You’ve got this issue of only two points [points to rightmost two points] … we 
could actually talk about, uh, residual plots .… You’d like to have a reasonably 
high correlation, r value, and r squared. Um, and you really don’t want to have 
this pattern [points to a drawing of a scatterplot with a fanning pattern]. (Dustin) 

Reasoning about the effects of sample size is implicit in the “issue” of only two points, 
suggesting that the small sample size prohibits significant inferences about the 
relationship between variables from being made [DCP4(a)]. In addition to reasoning from 
the scatterplot, the teacher suggests reasoning from aggregate measures of correlation and 
the coefficient of determination [DCP2(b), DCP2(1c)] and from residual plots of 
deviations from hypothesized patterns [DCP2(1a)] in consideration of making a 
prediction from the data.  

As with the example of relational reasoning about univariate data, indicators of 
reasoning from a data-centric perspective appear throughout this teacher’s reasoning 
about the bivariate data, including reasoning about the coefficient of determination as a 
measure of the explained variance in measurements relative to total variance. Although 
some indicators and elements appear and reappear in passages beyond those presented, 
these passages include aspects of reasoning about variation for all four elements within 
the data-centric perspective and suggest a flowing and cohesive chain of reasoning. 
Passages from both teachers exemplify relational reasoning about variation within the 
data-centric perspective. In each case, reasoning about the combination of elements 
allows formation of preliminary conclusions about differences in scoring or the 
relationship between explanatory and response variables by reasoning strictly from the 
data.  
 

Modeling perspective Relational reasoning about variation within the modeling 
perspective can be seen in reasoning about fitting models to univariate, bivariate, and 
multivariate distributions. Inferential reasoning—particularly for confidence intervals and 
formal significance tests—often indicates reasoning within the modeling perspective. 
Like the illustrations of relational reasoning within the design perspective, some 
indicators from the modeling perspective are reasoned about almost simultaneously. Other 
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times the indicators appear over time, similar to examples from the data-centric 
perspective.  

Relational reasoning within the modeling perspective arises in reasoning about 
univariate distributions, such as those in the Consultant Task, and in reasoning about 
bivariate distributions, such as those in the Caliper Task. The former appears in a 
teacher’s reasoning about what administrators should conclude. The teacher describes 
how expected variability in scores affects his perception of a relationship for a difference 
in means [MP1(b)]. 

If this was a 9 point 7 and a 10 point 3 with not very much variation … I would 
say, hmm. These guys certainly seem to be disagreeing … if this was 9 point 7 
and 10 point 3 and [they were] just swamped with variation …. I’d have to see 
the variation really to assess that difference. (Isaac)  

Conclusions about the relationship depend on the variability in scores, an observation 
that suggests anticipation of some variation to reveal a variational disposition from the 
modeling perspective [MP1(b)]. When given measures of variation, the teacher expresses 
surprise at the magnitude of Consultant Two’s standard deviation and appeals to a model 
of normality to aid in his reasoning [MP2(c)]. He presumes, “the scores are normal or 
mound shaped … a score scale with a shape like that would span 6 standard deviations” 
(Isaac). The normal model seems to be appropriate (Wilensky, 1997) for standardized test 
scores and suggests to the teacher that a distribution width of six standard deviations 
[MP2(c)] is problematic when the standard deviation is 20 and data vary between values 
of 0 and 15, inclusive. The teacher continues to reason as follows. A normal model 
approximates the pattern of variability in the dotplot of Consultant Two’s scores [MP2(a)] 
to highlight aggregate features of the distribution [MP2(c)]. Inferential considerations for 
the relationship between scores include modeling the difference in means with a t-
distribution to determine significance [MP3(a)]. Reasoning about the t-distribution also 
evokes reasoning about how sample size affects variability in calculating a test statistic 
[MP4(a)].  

This teacher’s reasoning includes indicators from each of the four elements, with 
some appearing almost simultaneously and others appearing over time. Overall, however, 
the teacher reasons about each element in a flowing manner and with a consistent focus 
on the relationship between scores to indicate relational reasoning about variation within 
the modeling perspective. 

 
6.2. RELATIONAL REASONING IN THE SECOND CYCLE OF LEVELS 
 

The preceding sections illustrate relational reasoning about variation within each of 
the design, data-centric, and modeling perspectives, which signifies relational reasoning 
in the first cycle of levels. Robust understanding of variation is indicated from additional 
relational reasoning across perspectives. Relational reasoning in this second cycle of 
levels appears in reasoning across perspectives for one or more elements and occurs 
through different combinations of indicators and elements due to limitations imposed by 
statistical questions, problems, and context.  

Reasoning about design, data analysis, or inference is likely to be relational within 
design, data-centric, and modeling perspectives, respectively, in the first cycle of levels 
while spanning across perspectives in the second cycle of levels. Integrated reasoning 
within the design perspective and across perspectives for a variational disposition is one 
pattern of relational reasoning in the second cycle. A teacher’s reasoning follows this 
pattern as he establishes details about the setting of the Consultant Task. The teacher 
indicates that the real question is “whether or not there’s really a difference, or, just in the 
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random selection of the exams, um, that difference … would occur fairly often .… 
Without some kind of test for the differences … it might not be a significant difference” 
(Dustin). Suggesting that there may not be a significant difference indicates some 
expectation for variation while considering the effects of design on inference, a 
variational disposition from the design perspective [DP1(c)]. At the same time, allowing 
for variability in the context of inference—allowing “for the differences”—indicates a 
variational disposition from the modeling perspective [MP1(b)]. Allusion to random 
sampling and a view of a random sample as “a fair representation across the, across all the 
exams that were given” (Dustin) suggests that samples exhibit characteristics similar to a 
population without being necessarily identical and illustrates reasoning that balances 
sample variability and sample representativeness (Rubin, Bruce, & Tenney, 1990) in 
controlling variability [DP3(2a)]. Implicit acknowledgement of sample variability 
[DP2(a)] leads to describing situations that produce biased samples [DP3(2a)] to illustrate 
the importance of randomization in controlling variability [DP3(2a)]. The teacher’s 
reasoning returns to drawing inferences about consultants’ scoring when he asks for 
standard deviations, illustrating a variational disposition from the data-centric perspective 
[DCP1(b)]. In these initial considerations for the Consultant Task, the teacher’s reasoning 
vacillates between design considerations and dispositional expressions to integrate 
reasoning about three elements within the design perspective and across three 
perspectives for the element of a variational disposition.  

Reasoning across multiple perspectives for multiple elements is a second pattern of 
relational reasoning. The same teacher’s extended reasoning about the Consultant Task 
illustrates this pattern. Prior to receiving the dotplots, the teacher reasons about the 
variability within both sets of scores—univariate data distributions—individually 
[DCP2(a)] before using the data to examine the variation between distributions 
[DCP3(d)]. He represents intervals of scores within some number of standard deviations 
from the mean for each set of scores [MP2(b)], as shown in Figure 16. He combines 
characteristics of the model [MP2(c)] with summary measures of data [DCP3(b)] to 
conclude that the amount of variability between distributions and the amount of 
variability within the second consultant’s scores prohibit significant conclusions about 
differences in means but not differences in variances [MP3(a)]. Integrated reasoning for 
two elements (variability in data for contextual variables [2] and variability and 
relationships among data and variables [3]) from two perspectives (data-centric [DCP] 
and modeling [MP]) is seen in the teacher’s reasoning with means and standard deviations 
to indicate relational reasoning in the second cycle of levels. 

 

 
 

Figure 16. Model to compare scores using means and standard deviations 
 

7. DISCUSSION 
 
The framework for robust understanding of variation that is elucidated in this paper 

contributes to current empirical and expository literature in three ways. First, the 
framework extends the realm of reasoning about variation beyond statistical arenas 
heavily studied by researchers. Second, the framework illuminates reasoning in the formal 
mode and throughout the entire statistical problem-solving process. Third, the framework 
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reveals relationships among elements of reasoning about variation in place of indicators 
or elements that might be revealed in reasoning individually but that collectively fall short 
of reasoning indicative of robust understanding.  

 
7.1. EXTENDED CHARACTERIZATION OF REASONING ABOUT 

VARIATION  
 
The framework extends empirical and expository literature devoted to reasoning about 

and understanding variation by explicating aspects of reasoning almost entirely absent 
from previous research. Several indicators listed in Table 1 have received little to no 
attention in statistics education research. One of those indicators, for example, relates to 
identifying the pattern of variability in data or the expected pattern of variability for 
contextual variables by considering or creating distribution-free models or conducting 
simulations to explore relationships [MP2(d)]. Given recent focus on nonparametric 
inferential methods (Cobb, 2005; Holcomb, Chance, Rossman, Tietjen, & Cobb, 2010), 
the framework situates consideration of these methods within description of robust 
understandings of variation while also allowing for reasoning about parametric methods.  

In addition to individual indicators, a set of specific indicators of reasoning about 
variation forming an element [DCP1] emerges from this study: anticipation of reasonable 
variation in data by considering the context of data [DCP1(a)], recognizing that data 
descriptions should include variability (and center) [DCP1(b)], and recognizing 
unreasonable variability in data [DCP1(c)]. Data are numbers with context (Moore, 1990), 
and researchers are focusing attention on how contextual knowledge affects data analyses 
(e.g., Dierdorp, Bakker, Eijkelhof, & van Maanen, 2011; Gil & Ben-Zvi, 2011; Langrall, 
Nisbet, Mooney, & Jansem, 2011). The work of these researchers addresses the 
variational disposition element by examining reasoning about anticipating and 
acknowledging variability from the design perspective (e.g., Petrosino et al., 2003) and 
the modeling perspective (e.g., Dierdorp et al.; Gil & Ben-Zvi) without attending to the 
data-centric perspective. The framework presented in this paper includes contextual 
considerations to anticipate unreasonable data variability [DCP1(a & c)] and thus extends 
research about reasoning with a variational disposition to the data-centric perspective.  

Traditionally, research that investigates students’ reasoning about variation within the 
data-centric perspective has focused on students describing (e.g., delMas & Liu, 2005; 
Lann & Falk, 2003), representing (e.g., Moritz, 2004), or comparing variation in data 
(e.g., Langrall et al., 2011). To the indicators of reasoning that emerge from prior work, 
the framework from this study adds anticipation of variability from the data-centric 
perspective to reveal a variational disposition by recognizing the need to characterize data 
using both variation and center [DCP1(b)] and using context to recognize reasonable and 
unreasonable variability in data [DCP1(a & c)]. This study adds to and enhances 
previously identified indicators and elements of reasoning about variation to offer a more 
complete characterization of reasoning indicative of robust understanding. 

The framework for robust understanding of variation both encompasses and 
elaborates on outcomes of research detailing sophisticated reasoning about facets of 
variation. For example, a subset of indicators of reasoning about variation from the 
design, data-centric, and modeling perspectives shown in Table 1 corresponds with 
aspects of reasoning at the highest level of Reid and Reading’s (2008) “consideration of 
variation” hierarchy. In one instance, the specific indicator of describing and measuring 
variability in data for contextual variables by calculating, using, or interpreting 
appropriate summary measures for variability in data [DCP2(c)] aligns with Reid and 
Reading’s classification to “correctly describe variation” (p. 51). More generally, the 
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framework illustrates relationships among indicators, elements, and perspectives in 
reasoning about variation to exemplify reasoning as or more sophisticated than reasoning 
at the highest levels of hierarchies from previous research (e.g., Reading, 2004; Reading 
& Reid, 2004; Reading & Shaughnessy, 2004; Reid & Reading, 2006, 2010; Watson & 
Kelly, 2004; Watson, Kelly, Callingham, & Shaughnessy, 2003) while remaining 
consistent with statisticians’ and statistics educators’ expositions about what it means to 
understand statistical variation (e.g., Garfield & Ben-Zvi, 2005; Reading & Reid, 2010).  

 
7.2. REASONING ABOUT VARIATION IN THE FORMAL MODE 

 
Examples of teachers’ reasoning presented throughout this paper illustrate reasoning 

about variation in the formal mode to characterize reasoning that is not tied to a particular 
context. Although the examples included in this paper might allude to a particular context, 
teachers’ reasoning and prompted or unprompted justifications go beyond a single 
context. Additionally, reasoning from multiple perspectives arises in several tasks to 
avoid reasoning tied to a single context, as would characterize reasoning in the concrete-
symbolic mode. Much previously published work investigates students’ reasoning about 
variation in concrete-symbolic modes using specific contexts for tasks with a narrow 
focus such as reasoning about graphical representations (e.g., Meletiou & Lee, 2002), 
probability settings (e.g., spinners [Shaughnessy & Ciancetta, 2002]), or sampling (e.g., 
Watson & Kelly, 2002a, 2002b). Researchers call for studies to examine reasoning more 
sophisticated than contextually-tied, concrete-symbolic reasoning (e.g., Reading, 2002, 
2004), and this study offers one response to this call by providing an image of reasoning 
about statistical variation in the formal mode. 

The framework described in this paper reveals formal-mode reasoning about aspects 
of variation throughout the entire statistical problem-solving process. Researchers have 
proposed frameworks that more generally describe reasoning beyond individual concepts 
(e.g., Langrall & Mooney, 2002), reasoning throughout the problem-solving process (e.g., 
Garfield, 2002) or reasoning indicative of statistical literacy (e.g., Watson & Callingham, 
2003). Although valuable for providing images of statistical literacy and reasoning in 
general, these frameworks have limitations. For example, the general framework proposed 
by Langrall and Mooney (2002) is limited to reasoning within the concrete-symbolic 
mode and focuses on mostly data-centric reasoning: “describing, organizing and reducing, 
representing, and analyzing and interpreting data” (p. 1). The general model proposed by 
Garfield (2002) resulted from generalizing a model of reasoning about samples and 
sampling distribution and thus offers characterizations of reasoning in broad, general 
terms. Useful for characterizing general reasoning throughout the problem-solving 
process, the framework falls short of providing a holistic, yet detailed, image of 
sophisticated statistical reasoning. The framework for statistical literacy posited by 
Watson and Callingham (2003) provides descriptions for and identifies characteristics of 
increasingly sophisticated levels of statistical literacy. Developed from large-scale 
assessment items designed for different purposes, the characterizations “reflect specific 
straightforward aspects of content” (p. 11) and hence do not allow for identification of 
subtle distinctions in reasoning. Although the framework described in this paper focuses 
on variation, the framework offers a detailed, holistic image of sophisticated reasoning 
about variation in the formal mode and throughout the problem-solving process and does 
so at a level of abstraction that complements descriptions of reasoning about variation in 
the concrete-symbolic mode from prior research.  
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7.3. INTEGRATED REASONING ABOUT VARIATION 
 
The framework not only illuminates reasoning in the formal mode but also 

exemplifies elements that allow for integrated reasoning within and across perspectives. If 
the framework is used only to examine indicators in reasoning, then the framework does 
little to expand on the framework for reasoning about variability explicated by Garfield 
and Ben-Zvi (2005) or Reading and Reid (2010). The Garfield and Ben-Zvi framework 
describes key ideas for knowledge related to variability in seven areas, from intuitive 
ideas of variability to statistical thinking that incorporates consideration of variability. 
Reading and Reid add two more components related to recognizing sources of variation 
and reconciling expectation with variation from expectation. Garfield and Ben-Zvi note 
that deep understanding necessitates knowing a concept and knowing connections to the 
concept. In their words, “ideas related to variability must be constantly revisited along the 
statistics curriculum from different points of view, context and levels of abstraction, to 
create a complex web of interconnections among them” (p. 95). The framework described 
in this paper examines variability in multiple contexts and identifies a complex web of 
interconnections among multifaceted aspects of variation and interconnections between 
variation and related concepts. These connections take the form of integrated reasoning 
among indicators and elements within perspectives and integrated reasoning of indicators 
and elements across perspectives. The framework includes results synthesized from 
statistics education literature that focus on variation and offer descriptions and 
connections from additional empirical study to extend that literature. 

 
8. LIMITATIONS AND IMPLICATIONS 

 
Research suggests that students struggle to reason about the multifaceted concept of 

statistical variation in sophisticated ways (e.g., delMas et al., 2007; Reid & Reading, 
2008). One goal of this study was to describe reasoning indicative of robust understanding 
of variation for researchers, instructors, and curriculum developers to form an image of 
the ultimate goal of instruction and to inform potential pathways from struggle to 
understanding. Results from this study have implications for the targeted audiences that 
should be interpreted with the study’s limitations in mind. 

 
8.1. LIMITATIONS AND IMPLICATIONS FOR RESEARCH 

 
One obvious limitation of this study exists in its primary reliance on a single content 

interview with each teacher to evoke reasoning indicative of robust understandings of 
variation. The collection of tasks is intended to elicit reasoning about different aspects of 
variation from different perspectives through multiple opportunities for evidencing that 
reasoning. Nonetheless, the number of contexts is limited. Collectively, many aspects of 
reasoning about variation in introductory settings are considered in the framework; 
however, not every aspect of reasoning about variation can be captured in individual 
teacher’s responses to the interview tasks. The possibility exists that different contexts or 
presentations might prompt reasoning not captured by the framework. Future research 
might bring to the surface aspects of reasoning that require changes to be made in the 
framework. 

A further limitation of the framework stems from the extent to which teachers focused 
on content at the introductory level. Even though teachers exhibited sophisticated 
reasoning, there may be subtleties in reasoning about variation for content beyond the 
introductory level that are not captured by the framework. Further research with statistical 
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experts would need to be conducted to provide a definitive image of robust 
understandings of variation more generally—research, for example, similar to 
MacCullough’s (2007) work that examines experts’ understanding of the mean. 
Additional research with more diverse groups of individuals, including experts, is needed 
to test the framework’s validity for illuminating reasoning indicative of robust 
understanding of variation. 
 
8.2. INSTRUCTIONAL AND CURRICULAR IMPLICATIONS 

 
Despite these limitations, the framework explicated in this paper reveals necessary 

distinctions about and connections among aspects of variation to inform how instruction 
can support students’ development of robust understandings. A significant body of 
statistics education research reveals students’ developing conceptions of variation 
(Shaughnessy, 2007). Consideration of students’ views in conjunction with the framework 
for robust understanding yields insights for instruction. Consider, for example, students 
who view “variability as change over time” (Shaughnessy, p. 984). These students seek to 
find contextual explanations for time series data that deviate from patterns of variability. 
This search for causes or explanations appears to be relatively common for students 
(Reading & Shaughnessy, 2004). To build from these students’ views of variation, 
instructors can engage students in identifying potential sources of variability and tie data 
analysis, sampling, and probabilistic explorations to context. Students can also consider 
natural, contextual, and human causes and explanations for observed variation. Seeking to 
attribute causation to observed relationships can naturally lead to consideration of ways to 
control variability. By extending discussions to consider sources of variation and ways to 
control variability from those sources, instructors can provide opportunities for students to 
integrate reasoning about variation within the design perspective and to connect reasoning 
about design elements to reasoning from data-centric and modeling perspectives in ways 
aligned with students’ views of variation. Emphasis on connecting elements of design to 
data analysis is consistent with researchers’ recommendations. For example, McClain and 
Cobb (2001) detail how discussing the data creation process supported their students’ 
development of abilities to reason about data and suggest that the approach should be 
adopted more generally. The framework offered in this paper provides further direction 
regarding aspects of data creation that are important for supporting students’ reasoning 
about variation and developing deeper understandings of variation.  

The framework for robust understanding of variation may be used as a tool for 
considering how instruction and curriculum provide opportunities for developing 
reasoning consistent with robust understandings of variation. The framework may be used 
to analyze classroom discourse to determine whether discourse supports development of 
reasoning consistent with robust understandings. In this way, the framework provides a 
use beyond describing individual understanding; it may provide a foundation for 
determining relationships between learning experiences and understanding. The 
framework may also be used to determine whether textbooks or curriculum materials 
provide opportunities for students to reason about multiple facets of variation. The 
framework and the indicators and elements identified in the framework offer insights into 
places in statistics curricula where explicit attention can be given to variation during the 
design, exploratory data analysis, and inferential phases of statistical problem-solving and 
where connections among phases can be emphasized.  

By explicating the framework for robust understanding of variation using teachers’ 
reasoning about variation, this paper offers a positive image of teachers’ understandings 
and an image of the desired goal for statistics teacher education. Expository literature 
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documents a widely held belief that many teachers lack knowledge in and experiences 
with statistics (e.g., Batanero, 2003; Ben-Zvi & Garfield, 2004; Franklin & Mewborn, 
2006; Shaughnessy, 1992, 2007); however, few research studies have investigated 
teachers’ understandings of statistical concepts. The framework provides insight into the 
complexity of understanding variation and what might be expected from teachers who 
teach or will teach statistics by considering the reasoning of teachers with robust 
understandings. This work contributes to and continues discussion about the crucial 
concept of variation as a further step towards advancing statistical understandings in the 
design of programs to prepare preservice and inservice teachers and their students. 
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