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EDITORIAL

This issue marks the end of SERJ’s third year of operation. It is special in several ways, both
because of its content and of the fact that we are announcing several important changes in SERJ’s
Goals and Policy Statement as well as in the type of papers we publish. We thus encourage you to
read further, and follow forthcoming updates to our guidelines on the SERJ website:
www.stat.auckland.ac.nz/serj.

Focus: Variation.  This issue is a Special issue focused on research on reasoning about variation
and variability. We thank the Guest Editors, Joan Garfield (University of Minnesota, USA) and Dani
Ben-Zvi (University of Haifa, Israel) for organizing and supporting this project. Their Forward paper
describes the background of this Special issue and introduces the five papers in it, of which one is
invited and four are refereed. We are also planning to have a special section with several more papers
on the same topic of variation and variability as part of our next issue planned for May 2005. Joan
Garfield and Dani Ben-Zvi will again serve as Guest Editors of this special section. In this way we
hope to extend the contribution of new research and reflective papers to current knowledge in the
important yet little-studied area of reasoning about variation.

Revised goals for SERJ.  Recently, SERJ’s Editorial Board has adopted a new Goals and Policy
Statement which expands in several ways the scope of issues and topics sought in manuscripts. Below
is our revised statement, followed by brief explanations of our rationale.

SERJ aims to advance research-based knowledge that can help to improve the teaching, learning,
and understanding of statistics or probability at all educational levels and in both formal
(classroom-based) and informal (out-of-classroom) contexts. Such research may examine, for
example, cognitive, motivational, attitudinal, curricular, teaching-related, technology-based,
organizational, or societal factors and processes that are related to the development and
understanding of stochastic knowledge. In addition, research may focus on how people use or
apply statistical and probabilistic information and ideas, broadly viewed.

The Journal encourages the submission of quality papers related to the above goals, such as
reports of original research (both quantitative and qualitative), integrative and critical reviews of
research literature, analyses of research-based theoretical and methodological models, and other
types of papers described in full in the Guidelines for Authors. All papers are reviewed internally
by an Associate Editor or Editor, and are blind-reviewed by at least two external referees.
Contributions in English are recommended. Contributions in French and Spanish will also be
considered. A submitted paper must not have been published before or be under consideration for
publication elsewhere.

This statement maintains SERJ’s focus on research related to core aspects of learning and
teaching of statistics and probability in classroom-based contexts at primary, secondary, and tertiary
levels. However, it reflects the growing recognition that learning occurs in many types of out-of-
school contexts, such as in the workplace or at home. People of all walks of life, not only “pupils” or
“students”, engage with diverse tasks and situations where knowledge of statistics or probability,
however acquired, is called for and put to use. The growing availability of computers, and the
dissemination of statistical data and information via the Internet, further contribute to blurring of
traditional boundaries between formal and informal learning. Hence, teaching, learning, and using are
increasingly intertwined and have to be seen as occurring within a broadening social sphere. Our
revised Goals and Policy Statement therefore encourages research that addresses an expanded set of
issues related to improving the way people understand and use statistical and probabilistic knowledge.
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Paper types and revised author guidelines. The updated Goals and Policy Statement lists a
range of the kinds of paper which are sought by SERJ. In addition to research papers based on diverse
methodologies, we are also encouraging other types. Among these are reflective or theoretical
analyses, epistemological studies, and critical or integrative literature reviews which are based on
research and which can contribute to future research, theory-building, or educational practice.

We are also pleased to announce a new paper format - Brief Reports. Such papers, up to 2500
words, can report, for example, on replication and extension studies, psychometric studies, results of
program evaluations, or preliminary conclusions from innovative research projects. While such
studies could of course lead to full-length manuscripts, the possibility of submitting a Brief Report
offers international researchers an additional and more economical publication channel that has the
potential for faster turnaround, while maintaining the same scientific standards as in full-length
papers.

We are presently revising our Guidelines for Authors, in light of the changes described here, as
well as due to the need to fine-tune details of paper formatting and other technical aspects of
preparation of papers either for submission for review or for publication. Further details about Brief
Reports and about changes in paper submissions will be included in these revised Guidelines for
Authors which will appear in early 2005 on the SERJ Website. Please contact either of the editors if
you seek information on the Brief Report format before the updated Guidelines for Authors are
published.

Alert regarding duplicate conference and journal submissions. We draw readers’ attention to
issues concerning submissions of papers originally written for a conference for possible publication in
SERJ. Many authors use a conference presentation as a springboard for preparation of a paper for
later submission to a research journal; we are happy to be part of that cycle. However, due to the
blurring of what a “publication” means in this age where the Internet enables rapid worldwide
availability of full papers, we want to reiterate the need to avoid duplicate publication, which is a
standard policy in many journals. Our policy is that papers “published” by conference organizers (on
the Internet, in printed Proceedings, or on CD) will not be accepted for consideration and review by
SERJ unless they include substantial new data and textual material, beyond what appeared in the
published conference paper. This applies to both refereed and non-refereed conference papers.

In closing, we thank our readers for their continued interest and support of SERJ, which is
reflected in the increasing number of entries to and downloads from the SERJ website. We are
especially grateful to our dedicated referees, whose names are listed in this issue. Finally, we thank
the other members of SERJ’s Editorial Board, whose counsel and support underlies the
announcements of the various changes announced in this issue.

FLAVIA JOLLIFFE AND IDDO GAL
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RESEARCH ON REASONING ABOUT VARIABILITY:
A FORWARD1

GUEST EDITORS:

DANI BEN-ZVI
University of Haifa, Israel
dbenzvi@univ.haifa.ac.il

JOAN GARFIELD
University of Minnesota, USA

jbg@umn.edu

We are very pleased to introduce this special issue of the Statistics Education Research Journal
(SERJ), which presents cutting-edge research in an area of increasing importance: Reasoning about
variability. The notion of variability and the importance of its role in statistics have been documented
by David Moore, the well-known statistician and former president of IASE and ASA. Moore (1990)
describes statistical thinking as recognizing the omnipresence of variability and considering
appropriate ways to quantify and model the variability of data. Wild and Pfannkuch (1999) further
describe the centrality of variability in statistical thinking, as revealed by their studies of expert
statisticians solving statistical problems: “Variation is the reason why people have had to develop
sophisticated statistical methods to filter out any messages in data from the surrounding noise” (p.
236).

We note that the terms variability and variation are often used in the teaching and research
literature interchangeably, and this may add to a confusion regarding this complex area. Reading and
Shaughnessy (2004) address this problem and offer the following definitions for the two terms:
“Variation is a noun used to describe the act of varying or changing condition, and variability is one
noun form of the adjective variable, meaning that something is apt or liable to vary or change” (p.
201). However, they note that educators and researchers often refer to variability as the characteristic
of the entity that is observable, and the term variation as the measuring of that characteristic. So a
distinction is made between what is observed (what is varying) and what is measured. Moore (1997)
points out that both variability and the measuring and modeling of that variability are important,
however he does not distinguish between terms used to describe these phenomena. The papers in this
special issue do not necessarily follow these definitions; however they mostly refer to “variability” to
represent how data vary.

Despite the attention paid by statisticians and statistics instructors to this important topic, to date
little has been published about how people, particularly novices and statistics students, actually reason
about variability, or how this type of reasoning develops in the course of statistics instruction.
Examples for challenging questions that call for careful attention by researchers and educators are:
What are the simplest forms of variability that children can understand? What are instructional tasks
and technological tools that promote the understanding of variability? What are the common
misconceptions regarding variability? What are the difficulties that people encounter when dealing
with variability in data? What does correct reasoning about variability look like? What are ways to
assess understanding of variability? How does an understanding of variability connect and effect
understanding of other statistical concepts and types of reasoning? What are useful methodologies for
studying the understanding of variability?  What type of understanding of variability is sufficient for a
statistically literate person?

                                                       
Statistics Education Research Journal 3(2), 4-6, http://www.stat.auckland.ac.nz/serj

© International Association for Statistical Education (IASE/ISI), November, 2004
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In response to these challenges, “Reasoning about Variability” became the theme of the third and
most recent international research forum on Statistical Reasoning, Thinking and Literacy (SRTL-3),
held in July 2003 at the University of Nebraska, USA. The SRTL-3 forum built on the two previous
SRTL forums, held in 1999 in Israel and in 2001 in Australia. The five papers appearing in this
special issue include one invited paper (Gould) and four peer-refereed papers (Hammerman & Rubin,
Ben-Zvi, Bakker, Reading) that are based in part on presentations and discussions at SRTL-3.

A unique aspect of the SRTL forums is the opportunity to bring together a small number of
researchers whose work is focused in a particular area. They have an opportunity to present their
research in extended sessions that permit lengthy discussions among the participants. In addition,
many researchers present video clips of students discussing and explaining their actions and
reasoning; this allows for intensive review and discussion of research methods and results by all
participants.

At SRTL-3, a variety of researchers from diverse backgrounds and countries presented studies
that examined different aspects of reasoning about variability. For example, some looked at the
inherent variability of data, variability as represented in a univariate or bivariate distributions, the role
of variability in comparing groups, students’ understanding of particular measures of variability (e.g.,
the standard deviation), and variability in different sampling contexts (Lee, 2003). The studies
presented involved students from elementary school through college, and some studies also examined
teachers’ reasoning about variability. After five days of presentations and discussions, the participants
were reinforced in their belief that variability is a complex topic to understand, learn and teach, and
that its understanding is a fundamental component of statistical reasoning and thinking. We also
began to design a hypothetical learning trajectory that may be useful to help guide teachers as they
aim to develop students’ understanding of this topic. We see the role of innovative technological
tools, appropriate teacher guidance and curricular tasks, as well as using good data sets, as crucial in
helping students develop this idea.

The first paper in this Special Issue, by Gould, is based on his opening address at SRTL-3 and
designed to provide a statistician’s view of the importance of noticing, understanding and analyzing
variability and using measures of variation when making sense of data. This paper frames issues and
provides examples that help to appreciate the complexity of the conceptual issues that researchers and
educators have to grapple with. The paper by Hammerman & Rubin focuses on secondary level
teachers who are learning statistics and attempting to cope with variation in data using the innovative
Tinkerplots software (Konold & Miller, 2004). The paper by Ben-Zvi provides a detailed qualitative
analysis of the ways by which two seventh grade students started to develop views (and tools to
support them) of variability in comparing groups task using various statistical representations. The
paper by Bakker describes activities and use of technological tools by advanced 8th-grade students
and how their reasoning about variability and variation is developing. The paper by Reading suggests
hierarchies to assess high school students’ understanding of variation, one for more qualitative
descriptions and the other for more quantitative descriptions of variation.

The research studies presented in this special issue have several common features. Their topics
reflect the shift in emphasis in statistics instruction, from statistical techniques, formulas, and
procedures to developing statistical reasoning and thinking. These studies employ various types of
qualitative methodologies, which appear to have uncovered many interesting points about how
students and teachers reason about variability. Most of them use extended teaching experiments, or
represent cases where researchers collaborated with teachers in field settings or designed specialized
learning episodes or environments, to be able to elicit detailed and deep data about students’ actions
and reasoning.

Most of the studies in this special issue emphasize the role of technology (statistical software or
specially designed tools) in developing students’ statistical reasoning about the variability of data.
This is not surprising, given how the discipline of statistics has depended on technology and how
technology has been driving changes in statistical practice. Although there are many technological
tools available, including graphing calculators, computers, and the World Wide Web, there is still a
lack of research on how to best use these tools and how they affect student learning. Regardless of the
type of technology used or the level of the students studied, all the studies attempt to understand the
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development of conceptual models that students (or teachers) use to reason about data and its
variability. Together, these studies help us understand the complexity of the idea of variability, and its
interconnectedness to core statistical ideas of data, sampling, distribution, and center.

The forthcoming issue of SERJ (May 2005) will also include a special section of papers related to
reasoning about variability which will enable us to continue the attention to research on this important
area. Among them will be two invited papers which will reflect on the collection of papers in this
special issue, by Cliff Konold (University of Massachusetts, Amherst, USA) and Maxine Pfannkuch
(University of Auckland, New Zealand). We hope that their responses will lead to productive
discussions about the importance of the notion of variability in statistics education as well as about
ways to further study and improve its development in students at different educational levels and
contexts.

We appreciate having the opportunity to put together these papers and responses for publication in
SERJ, and especially value all the contributions of the co-editors, in particular, Iddo Gal (University
of Haifa, Israel), who oversaw this special issue and offered many suggestions to improve the quality
of the papers. We also thank all of the participants at SRTL-3 who contributed to discussions of
earlier versions of these papers and to those who served among the reviewers of these papers. We
invite readers with comments and suggestions to contact us. Finally, we invite researchers to review
information (see “Forthcoming Conferences” in this issue) on the forthcoming SRTL-4, to be held in
2005 in New Zealand, which will be devoted to Reasoning about Distributions.
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VARIABILITY: ONE STATISTICIAN’S VIEW2

ROBERT GOULD
Department of Statistics, UCLA

rgould@stat.ucla.edu

SUMMARY

Although variability is of fundamental concern and interest to statisticians, often this does not get
communicated to students who are taught instead to view variability as a nuisance parameter. A
brief survey of a few case studies, as well as a recounting of some history, shows that variability
is worthy of study in its own right, and examination of variability leads to insights that might have
been missed had we focused all of our attention on the “trend” of the data. As one of the key
components of statistical thinking, variability deserves more prominence in the classroom.

Keywords: Variability; Education; Statistical thinking

1. INTRODUCTION

Many of the papers in this special issue discuss naive conceptions of variation. Much has been
written on more experienced conceptions, particularly in the context of statistical thinking. Moore
(1990), for example, puts variation at the heart of the process of statistical thinking and addresses the
needs of statistical thinkers to acknowledge the omnipresence of variation, to consider variation in
collecting data, to quantify variation, and to explain variation. Wild and Pfannkuch (1999) provide a
thorough overview on the topic, placing variation in the context of a rather rich model of statistical
thinking. When educators think about how to move students from their naive conceptions towards a
more “professional” view, an understanding about how practitioners confront variation should be
useful, and it is hoped that this paper provides some examples that will aid in the process. Statisticians
are themselves a variable crew and these remarks should not be taken as a summary of the Profession,
but instead as the thoughts of one practitioner.

It is fair to say that statisticians have a complex relationship with variability. Statisticians
sometimes attempt to minimize variability, sometimes to maximize, sometimes to estimate or simply
to “analyze” variance. Many statistics educators claim variability to be one of the fundamental
concepts of statistics, for example, Moore (1990) and Snee (1990). Yet when most students first
encounter statistics, they find that variability plays second fiddle to “central tendency”. The
conceptualization of data as “signal versus noise”, which according to Pfannkuch (1997) some
statisticians consider one of the major contributions of Statistics to Science, teaches students that the
central tendency, however it’s measured, is of primary importance and variability is simply a
nuisance. A noisy one at that.

College level statistics does not completely ignore variability, of course. Many texts and one
hopes many instructors discuss the importance of examining the shape of the distribution before
making any conclusions about the data. DeVeux, Velleman and Bock (2004) write in their
introductory statistics textbook that “the three rules of data analysis are 1) make a picture 2) make a
picture and 3) make a picture.” Most students learn, often in the first weeks of the course, that the
mean by itself is not a sufficient summary of a distribution. But after that variability is brushed aside
as attention focuses on estimating the mean, and students are taught that standard deviation is a
nuisance parameter that must be estimated if one is to do a proper hypothesis test on the mean or

                                                       
Statistics Education Research Journal 3(2), 7-16, http://www.stat.auckland.ac.nz/serj
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calculate a confidence interval for the mean or perform a comparison of means. Some introductory
courses teach ANOVA, which although it pays tribute to variability in its name, is really about the
simultaneous comparison of means from several populations.

The definition for variability used in this discussion is derived from Moore’s (1997) definition of
data analysis as “the examination of patterns and striking deviations from those patterns”. Although
Moore was describing the activity of data analysis as a by-product, he provides a wonderfully general
definition of variation; variation is that which is not pattern. A case study in Section 2 will illustrate
how useful and rich variability, using this broad definition, can be. A short examination of the history
of statistics in Section 3 shows that Variation and Center have a long-standing rivalry. Finally,
Section 4 illustrates the role variability plays in the analysis of three small data sets.

2. AN EXAMPLE OF REASONING WITH VARIABILITY

In 1982, Morton et. al. conducted a study to determine whether parents who worked around lead
could expose their children to dangerous amounts of lead. Lead poisoning is particularly dangerous
for children because excess levels of lead interfere with a child’s development. For example, lead-
based paint is no longer used in the interior of homes because children might ingest flakes of paint.
But adults who work around lead might get sufficient amounts of lead dust on their skin or clothing to
pose a hazard to their children.

The data consist of the blood lead levels (measured in micrograms per deciliter) of 33 children
whose parents worked at a battery factory in Oklahoma and whose work exposed them to lead. We
also have the lead levels for a control group consisting of an additional 33 children, matched for age
and neighborhood, whose parents did not work around lead. The data themselves are taken from
Trumbo (2001).

The “research question” is phrased so as to invite a comparison of means. Is the typical lead level
of the exposed children higher than the typical lead level of the control children? It is instructive to
imagine a world in which means or medians are computed only as a last resort, and attempt to answer
this question without relying on the concept of central tendency. Consider the histograms of the lead
levels of the two groups of children (Fig. 1) below, which are presented with only frequency
information. One displays the distribution of the control group, the other the exposed group. Can you
tell which is which?

Figure 1. Lead levels in blood of 33 children. Which histogram comes from the exposed group?

Even though one does not know the scale (actual values on the x-axis) of each group, nor their
means or spread, it is fairly straightforward to identify the right-skewed histogram (on the left) as
belonging to the exposed group. The reason is that the shape of the sample distribution is consistent
with our theory of how the exposure happens; children receive varying amounts of additional
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exposure beyond the “normal” exposure represented by the control group. Thus, shape, even in the
absence of information about absolute values, contributes important information that helps us in
making sense of the data in light of the research question.

Of course, knowing the actual values (shown in Figure 2) and through them the means of the two
groups contributes additional understanding. Indeed, the numeric values themselves carry quite a bit
of the story. Most medical experts find lead levels of 40 mg/dl and above to be hazardous, and levels
of 60 and above to require immediate hospitalization. Without any significance testing, it’s quite
apparent that the means are different and that the exposed group is dangerously higher.

At its heart, though, this study is concerned with a causal question: did the parents’ exposure at
work cause their children’s elevated levels? While the difference in means establishes that the causal
question is worth entertaining, it provides little evidence towards answering the question. Because this
is an observational study, not a controlled experiment, definitive causal conclusions are impossible.
However, I propose that the difference in shape between the two groups, while by no means
confirming causality, by itself takes us closer to a causal conclusion than would a consideration of the
means alone. The reason for this is that the proposed mechanism for the children’s contamination had
consequences for both the center and the shape of the distribution of lead levels. Had the centers
differed but the shapes been similar we would not have been inclined to believe that the parents’
exposure could have been the cause, but might instead suspected, perhaps, deliberate poisoning. On
the other hand, had the centers for both groups been the same but the shapes appeared as they do here,
then we would still have had strong reason for suspecting that parents’ exposure to lead was a threat
to children.

Exposed
0 10 20 30 40 50 60 70 80

lead Dot Plot

Figure 2. Blood lead levels for both groups of children

The interplay between the center and the spread of distributions of data is, of course, not new. A
brief survey of the history of modern statistics will show that there has long been some sort of
“tension” among data analysts as to the proper roles for center and spread.

3. HISTORICAL OVERVIEW

I make no claims to being a historian, and I use no primary sources for this survey. Unless
otherwise noted, the 19th century history is a paraphrase of Gigerenzer et al. (1997) and the history of
ANOVA is from Searle, Casella, and McCulloch (1992).

Adolphe Quetelet, impressed by growing evidence of “statistical regularities” in practically every
aspect of life that governments measured in the early 1800’s, founded “social physics” to determine
laws that governed society that would be analogous to those laws that governed the motion of the
planets. Some examples of statistical regularities, such as the fairly constant ratio between male and
female births, were well known at this time and not too surprising. But other regularities were more
surprising because they seemed to suggest an implicit order arising from chaos. Examples of such
regularities include Laplace’s demonstration that the number of dead letters at the Paris postal system
was fairly constant, as well as those later “discovered” in the homicide, crime, and marriage rates
published in the 1827 volume of the French judicial statistics.

Quetelet, along with others, believed that these regularities were not just descriptions of societies,
but instead represented some underlying “reality” about society. He invented l’homme moyen, the
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Average Man, to be an abstraction of the typical member of a society. While there might not be laws
that governed individuals, there were laws, Quetelet believed, that governed the behavior of the
Average Man. Hence the Average Man was not a mere description of a society, but something more
real.

Quetelet’s views were influential throughout Europe for much of the 19th century. Florence
Nightengale corresponded with him and called him the founder of “the most important science in the
whole world” (Coen, 1984). Adolph Wagner, a German economist, believed the power of statistical
regularity was so strong that in 1864 he compared it to a ruler with power so great that it could decree
how many suicides, murders, and crimes there would be each year in the kingdom. But, of course, this
ruler lacked the power to predict precisely who would commit, or fall victim to, these acts.

The Average Man was a useful tool because he could be used to compare traits of different
cultures and, presumably, his behavior (or more accurately, his propensity towards certain types of
behavior) could be predicted. However, he had troubling implications for the concept of free will. If
there were a quota for murders, by what mechanism were people compelled to fill it? Surely people
could choose to not fill the quota, if they wished. Interestingly for our purposes, by arguing in support
of the existence of free will in society, critics of the Average Man also argued in support of elevating
the use of variability in statistical analyses of social data.

Gustav Rumelin claimed that variability was a characteristic of the higher life forms and reflected
autonomy. Humans have free will and are therefore more variable, presumably, than single-celled
organisms. If humans were homogenous, then Statistics would be unnecessary, and therefore social
statistics should study variation rather than simply reporting the average. Wilhelm Lexis, a German
social statistician, studied the annual dispersions of these so-called statistical regularities and
compared them to chance models. In almost every case he found that the observed dispersions were
greater than that predicted by his chance models, and used this to conclude that the existence of free-
will prevented the existence of statistical regularity and, therefore, studying averages of populations
was a waste of time.

A generation later, in 1925, R.A. Fisher invented ANOVA to cover the need for “a more exact
analysis of the causes of human variability.” Ironically, ANOVA really tends to treat variability as a
nuisance and its main focus, once one is satisfied that the variance is behaving, is to concentrate on
comparing means. Nonetheless, once ANOVA was later framed in the context of the linear model, it
became possible for researchers to model and investigate variance components directly.

While this historical overview is a selective review, it is clear that discussions of the interplay
between measures of variability and measures of center have long been a part of modern statistical
development.  Social scientists’ struggle to understand how, when, and whether to assess variability
has been complex and at times controversial, but valuable.  Data analysts have learned that one must
consider both the center and the variability in order to understand scientific and social phenomena.

4. CASE STUDIES

The following three case studies should illustrate how and what data analysts learn from variation.
While the data presented here are real, the analyses are not. The analyses are meant to be instructive
and are not necessarily what a data analyst would actually perform.

4.1. CASE STUDY 1: UCLA RAIN

Time-series analyses are notoriously signal-noise oriented and provide a good opportunity to
examine the role of variability in a context where one might think that role is secondary. This series is
monthly rainfall at the campus of the University of California, Los Angeles from January 1936 to the
end of June 2003. A typical goal of an analysis of data of this type might be to model the trend so that
predictions for the future could be made, but here we focus more on how our view of the trend
changes as we re-organize the data.
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The three graphs below show, respectively, the time-series with the overall average superimposed
(Figure 3), rainfalls organized by month (Figure 4) and a smoothed time-series showing total annual
rainfall (Figure 5).
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Figure 3. Rainfall in inches at UCLA
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Figure 5. “Smoothed” total annual rainfall, with average annual rainfall indicated by horizontal line
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The unprocessed time-series (Figure 3) impresses mainly by its unruliness. The second graph
(Figure 4) shows a pattern any southern Californian would recognize: wet winters, dry summers. The
third graph (Figure 5) shows an historic trend and one can, for example, search for evidence of
drought. These last two graphs illustrate the relationship between center and variation suggested
within Moore’s definition of data analysis. Variation is defined in contrast to pattern. In the second
graph, we can see variation within a particular month; for example we can see that there was a
particularly rainy September with almost 5 inches of rain. We also notice that this amount is
substantial for any month, but is particularly heavy for September. We can also see variation across
months which provides an understanding of seasonal fluctuation. The third graph shows us annual
variation with respect to an overall mean, which might be of interest to farmers or climatologists.

4.2. CASE 2: LONGITUDINAL DRINKING PATTERNS

Do people drink less as they age? This was a question investigated by Moore et al. (2005).
Drinking patterns are fairly complex in that drinking varies quite a bit from person to person, and
individuals vary their drinking from year to year. One difficulty in such an analysis is in isolating the
effects of cohort (people born at a certain historic time might share drinking patterns) and period
(changes in price or supply might affect the entire population at a certain point in time.)

The data come from the 1971, ‘82, ‘87, and ‘92 waves of the NHANES study, a national,
longitudinal random sample of about 18000 U.S. residents (NCHS 1973 10a, 1973 10b, 1987, 1990,
1992, and 1994). Subjects were asked questions about the quantity and frequency of their drinking,
and responses were converted into a “quantity/frequency index” (qfi) that corresponds approximately
to the average number of drinks per week. Figure 6 shows what 1971 looked like. The story, once
again, is in the variety of drinking. Note the outlier above 80.

Figure 6. Drinks per week of a national sample in 1971

We see that the vast majority drinks little, but a minority drinks very much. The shape of the
distribution is interesting in that it tells us that a simple model, in which we look for “typical”
drinking with some people deviating from the norm, will be inappropriate. At the very least a log
transformation of the data is necessary, and thus our consideration of variation has affected our
conception of the model.
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The purpose of this study was to examine drinking over time. Figure 7 shows a Log
transformation of the QFI and indicates that drinking did in fact vary at the different waves of the
survey.
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Figure 7. Drinking index at each wave of the survey

One is compelled, at this point, to attempt to explain the variation with some sort of model. As a
first cut, many find it useful to talk about two types of variation: explained and unexplained, or if you
prefer, deterministic and stochastic (Wild & Pfannkuck, 1997). Deterministic variation is that which
we believe will have a regular structure, a structure that can be defined by a model. What is left over
is then stochastic variation.

Let’s consider a very simple model in which the only explanation for variation is time. We would
then have log(qfi+1) = 0.97 - 0.017*year as one model for the deterministic variation; we could
conclude that drinking amounts decreased slightly over time, while acknowledging that there was still
quite a bit of variance left unexplained. A more complex model would then chip away at the
unexplained variation bit by bit. For example, another source of variation is the individual; different
people drink different amounts and will change differently over time. We could then fit a mixed linear
model in which each individual is allowed his or her own slope and intercept (Laird & Ware, 1982).
The variation is now much more complicated; we have variation with respect to each individual’s
path as well as variation between individuals. Examination of these different sources of variation
might lead to further refinements of the model and force us to consider such questions as whether
observations within individuals are independent and whether slopes are correlated with intercepts.

One potential deterministic model for these data that includes age, cohort, and period explanations
for variation is log(qfi+1) = 0.4 - 0.13*(age in decades) + 0.18*(per capita consumption in alcohol) +
.035*(birthyear times age in decades). This model, if valid, suggests that drinking declines with age,
across all generations and periods of (recent) history, but the decline depends on when a person was
born. Those born more recently decline more slowly. We used per capita alcohol consumption to
control for historic variations in drinking. So this model says that even in times in which the country
as a whole drank more (or less), individuals on the average declined as they aged.

Although the end result of this analysis is a model for the trend, the model has been shaped and
refined by our conceptualization of the variation.
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4.3. CASE 3: CHIPMUNKS

About 15000 years ago, during the Wisconsin glacial stage, chipmunks that lived in the pinyon-
juniper woodland in the Mojave Desert region were able to move from mountain to mountain, since
the cooler temperatures allowed their pinyon and juniper trees to grow in the basins between
mountains. Later, these woodland areas retreated to higher elevations and with them the chipmunks.
This resulted in isolated chipmunk communities. Kelly Thomas, a graduate student at UCLA, wanted
to study morphological differences in separated chipmunk populations. She captured several
chipmunks at six different sites, took five morphological measurements of each chipmunk, and
wanted to compare them to see if there were differences in size and shape at different sites. This is a
fairly common activity for population biologists. They seek to quantify the shape of animals using,
ideally, a small set of numbers.

Principal Components Analysis (PCA) is a data reduction technique that focuses on the co-
variation of multi-variable samples. We use it here to attempt to reduce the number of variables we’ll
use to compare the chipmunks from five down to two. PCA does this by creating a set of linear
combinations of the original data that maximize the variation and are orthogonal to one another. The
reason for maximizing the variance is so that the resulting set of measurements will have the greatest
possible dispersion. This, in turn, will make it easier to distinguish between populations of
chipmunks. This is analogous to writing an exam to distinguish those who learned the material from
those who did not. If everyone receives approximately the same score, it is difficult to distinguish
those who really understood the material.

In the following analysis, each chipmunk provided two scores. Each score was a different linear
combination of its mass, body length, tail length, hind-foot size and ear length. The first score
emphasized overall mass and the second corresponded roughly to shape. Although the procedure was
not entirely successful with these data (the two scores accounted for only 50% of the total variation),
we gained some insight into the data. First, ear measurements were not strongly correlated with any of
the other measurements. On the other hand, chipmunks with long bodies tended to have long tails, and
those with big hind feet tended to have the greatest mass. More interestingly, by plotting the two
scores for all chipmunks, we were able to discern that chipmunks from the same sites tended to have
similar scores, which provided evidence that these scores could be useful for distinguishing
chipmunks from different regions.

This procedure is often used for exploratory analysis. This example used PCA to informally
assess similarities among chipmunks in similar sites. Interestingly, we did this by dealing directly
with the variation and covariation among the variables.

5. CONCLUSION

This paper has presented several examples illustrating how a statistician thinks about variability.
It falls on educators to consider how conceptions of variation aid or hinder how students learn
statistical thinking.

Wild and Pfannkuch (1999) mention imagination as one of eight “dispositions” that statistical
thinkers possess. My belief is that variation is the fuel to statistical imagination. The case studies
presented above illustrate, to various degrees, how consideration of variation drives the analysis by
provoking the statistical imagination to explore alternative models.

Statistical imagination begins when variation is observed. When confronted with a time-series,
one intuitively seeks for some sense of order out of the chaos. Might some of the “noise” be abated by
removing seasonal effects? Monthly effects? We can aggregate the data in different ways to get
different pictures of the “trend”, but in all ways, we are exploring different models of the variation in
order to better observe the trend.

By defining variation, we define trend. The process of modeling variation is made explicit in
time-series analysis, in which analysts consider explicit structures for variation to take into account
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local correlations between observations. Modeling variation and covariation is also done explicitly
when analyzing longitudinal models. The alcohol consumption case study discusses implications of
including different sources of variation in the model. For example, if one thinks (quite reasonably)
that a source of variation is due to different drinking behaviors between individuals, then one has a
more complex model than if one simply models the population as a homogeneous mass. Analysts
must explicitly build other assumptions about variability directly into the model. How do subsequent
observations within a person correlate? How do people within a subgroup co-vary with each other?
How do basic parameters of the model -- for example the rate at which people change their alcohol
consumption as they age -- correlate among individuals? The statistical imagination, guided by expert
substantive opinion, shapes the model through consideration of variation.

Models play an important role in statistics, and one hopes that introductory statistics students, at
least at the college level, learn not only to interpret basic statistical models, but also to develop an
understanding of the sometimes tenuous relationship between the model and reality. There is however
a danger, I believe, in over-emphasizing models to beginning students.

Chatfield (1988) distinguishes between “confirmatory” and “exploratory” analyses, and it is
models used in confirmatory analyses that I think should be de-emphasized. Confirmatory models
harden the boundaries between “signal” and “noise”.  The conceptualization of data as “signal and
noise” is of course very important, but perhaps the value-laden language creates too much of a sense
of finality and inhibits statistical imagination in students. This is signal, but this is noise, and one
should not pay attention to noise. In practice, one does pay attention to statistical noise. Confirmatory
models do provide the all-important p-value, but students who possess (or are taught to possess)
statistical imagination will see that models can be used for exploration and insight without necessarily
needing that final confirmation step. Principal components analysis is one example in which the
variation is the primary focus of the analysis, and, at least in the chipmunk case study above, no
model is produced or required. I don’t mean to overstate my case here. There is a model, in a general
sense, underlying the analysis. But it is used as just one step in an exploration, not as a final statement
about the structure of the data or reality. The lead case study is a good example of how the “signal” by
itself (or at least a narrowly defined signal) provides an incomplete analysis and, in fact, isn’t
sufficient for answering basic research questions concerning the effects of lead exposure on children.

An important reason for focusing students’ attention on variation is to encourage them to think not
in terms of procedures (“Which test do I apply here?”) but instead to exercise their statistical
imaginations in order to understand the real issues behind the data. Often this translates to a search for
causes of variability. Statistics courses perhaps give short shrift to the problem of inferring causality
and are known for merely cautioning students against making conclusions about causality based on
association. But students want, and maybe even need, causal explanations.

Pearl (2000) makes the point that causal explanations make an early appearance in the Bible. “Did
you eat that apple?” God asks Adam. “Eve made me” is Adam’s answer (greatly paraphrased).
Causality makes for good story-telling, and links data to reality. The search for causal explanations
can lead to heightened statistical imagination, and so students should be given the opportunity to
reason, for example, about how an intervention will affect the shape of a distribution. Assuming that
exposure to lead does lead to higher lead levels, why are the shapes of the lead distributions in Figures
1 and 2 natural?

If our primary goal is to teach statistical thinking, rather than statistical techniques, then we
should look to the noise, and not the signal.
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SUMMARY
New software tools for data analysis provide rich opportunities for representing and
understanding data. However, little research has been done on how learners use these tools to
think about data, nor how that affects teaching. This paper describes several ways that learners
use new software tools to deal with variability in analyzing data, specifically in the context of
comparing groups.  The two methods we discuss are 1) reducing the apparent variability in a data
set by grouping the values using numerical bins or cut points and 2) using proportions to
interpret the relationship between bin size and group size. This work is based on our observations
of middle- and high-school teachers in a professional development seminar, as well as of students
in these teachers’ classrooms, and in a 13-week sixth grade teaching experiment. We conclude
with remarks on the implications of these uses of new software tools for research and teaching.

Keywords: Representations; Software tools; Variability; Proportional reasoning; Group
comparison; Covariation; “Binning”

1. OVERVIEW

This paper reports on research at the intersection of two lines of inquiry:  1) What approaches do
people use to deal with variability in data?  and 2) How do new statistical visualization tools change
the strategies people use in analyzing data?  Each of these questions is worthy of study in its own
right.  Variability, while at the heart of statistics, presents a significant challenge to teachers and
students trying to develop a sophisticated set of statistical reasoning strategies. Its ubiquitous presence
in data makes simple statements that take all the data into consideration impossible, unless one can
somehow acknowledge and “tame” the variability by working with fewer numbers. In some ways, a
single measure such as the mean is the ultimate way to deal with variability in a distribution, since its
role is, in fact, to reflect all the values in a data set with just one number. However, values such as the
mean are notoriously difficult for students and teachers to understand as representing the entire data
set at once (Konold, Higgins, Russell, & Khalil, 2003; Konold, Pollatsek, Well, & Gagnon, 1997;
Konold et al., 2002; Mokros & Russell, 1995). So there is a need for other ways to deal with
variability that teachers and students can understand and appropriate.

Methods for handling the variability in data depend intimately on the tools at hand, and therefore
new software visualization tools are dramatically changing the way data analysis and statistics are
learned and taught. Until recently, and to some extent still, the techniques most students and their
teachers learned for describing a data set were primarily numerical, i.e., computing measures of center
such as the mean or median, and computing measures of variability such as the standard deviation or
inter-quartile range (IQR). The five-number summaries illustrated by box plots went one step further
in describing a distribution by including both central tendency and some indications of variability. All
these numerical characterizations have been made easier to obtain by the accessibility of calculators,
often with built-in statistical functions, so that any student is able to compute some basic statistics
about a distribution, even if she/he doesn’t really know what they mean.  With these current tools,
computations in general are easy, as are some rudimentary graphical manipulations, but the new kind
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of tool we discuss in this paper greatly expands the possible ways teachers and students can interact
with data.

Using any new tool or representation necessitates change in the content and pedagogy of statistics
instruction and in many cases teachers are unprepared for these changes. Even the primarily pencil
and paper data displays developed to simplify the task of visualizing a distribution in the past 30 years
(Tukey, 1977) can present a challenge to teachers. Dot plots, stem and leaf plots, and box plots are
particularly popular in elementary and middle school textbooks, and classroom conversations about
data are now expected to include more nuanced descriptions of distributions that include the shape of
the data, including issues of center, variability, skewness, and other characteristics best uncovered
with graphical representations. Many teachers, however, have limited experience with these new
approaches, so the potential for deeper classroom discussion afforded by these representations may be
lost. New interactive visualization tools, such as the one described in this paper, have the potential to
support further changes in classroom approaches to data analysis, and thus present yet another
challenge to teachers.  To effectively teach students about data analysis, teachers will have to both
know the mathematical content and understand students’ statistical reasoning as it develops. Because
of these new classroom responsibilities, we have worked primarily with teachers, as mediators of
student learning.

1.1. THE POTENTIAL EFFECTS OF NEW INTERACTIVE VISUALIZATION TOOLS

New interactive visualization tools (e.g., Tabletop™ (Hancock, 1995), Fathom™ Dynamic
Statistics™ (Key Curriculum Press, 2000), and TinkerPlots™ (Konold & Miller, 2004)) create yet
another set of new possibilities both for data display and for attaching numbers to graphs in
informative ways. No longer are we limited only to numbers that we can calculate from formulas,
often without looking at the distribution itself, and to a few static graphs. People using these software
tools easily see the shape of data and other distributional characteristics that numerical summaries
alone can’t show without constructing graphs by hand. More important, they can dynamically
manipulate data displays, and begin to get a feel for the data themselves and for relationships among
data attributes. These software tools make possible a pedagogical change that embodies a view of data
analysis that allows and even encourages students to transform graphs interactively and to request a
variety of numbers that represent the distribution as it is displayed in the graphs.

These new tools by themselves don’t reduce the complexity of data analysis, nor do they solve the
problem of variability. People still have to attend to what can be an overwhelming amount of
information, i.e., all the data values, although visualization tools hope to take advantage of our built-in
perceptual apparatus to ease this task. In addition, these tools give people more options for describing
distributions in ways that can be useful in statistical decision-making. The affordances these new tools
provide and how people use them have been explored to some extent, primarily by developers of the
particular tools and their collaborators (Bakker & Gravemeijer, 2004; Cobb, 1999; Hancock, Kaput,
& Goldsmith, 1992; Konold, 2002; Konold et al., 1997; Rubin, 1991, 2002; Rubin & Bruce, 1991).
However, these are only preliminary studies and barely scratch the surface of the inherent flexibility
and complexity of using these tools. Researchers and teachers need more detailed information about
what happens when learners analyze data with this kind of software over an extended period of time.

Interactive software data visualization tools which allow for the creation of novel representations
of data open up new possibilities for students (and teachers) to make sense of data, but also place new
demands on teachers to assess the validity of the arguments that students are making with these
representations, and to facilitate conversations in productive ways (cf. Ball, 1993; Ball, 2001). Just as
teachers in general need a deeper understanding of the mathematics they teach to work effectively in
reform-oriented classrooms (Ball, 1991; Ball, Hill, Rowan, & Schilling, 2002; Borko & Putnam,
1995; Hill & Ball, 2003; Russell et al., 1995; Schifter, 1997; Sowder, Philipp, Armstrong, &
Schappelle, 1998), so, too, will teachers need a deeper understanding of data and statistics (Rubin &
Rosebery, 1988; Russell et al., 2002) to use new software tools in their classrooms. Professional
development for teachers will need to address issues of mathematical content, as well as issues of
learning, representation, and pedagogy. By exploring and discussing data for themselves in new ways,
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teachers can develop a deeper understanding of the mathematics, and also of how classroom discourse
and pedagogy might change through use of new software tools. However, teachers’ experiences of
learning with these new software tools have not yet been explored.

Many of the teachers came to our professional development seminar thinking that statistics is
about mean, median, and mode. They knew how to calculate these statistics, though they didn’t
always have robust images about what they meant or how they were used.  In general, they had not
dealt with data sets that required them to confront significant variability, so that they didn’t have
strategies to apply to the new complexity they encountered using interactive visualization tools to
explore real data sets. Finding that there was a lot more to see and analyze in data than they had ever
imagined was both powerful and intimidating. We were interested in how these teachers, with their
diverse prior skills and experiences in data analysis, represented and made arguments about data.
Although our work was primarily with teachers, the strategies and approaches we saw them use were
similar to those students used in the classrooms we observed.

This paper, then, describes research that primarily involved teachers who were learning to analyze
data in a professional development seminar as well as students in several middle school classes. Our
research sought to answer two questions: 1) What statistical reasoning strategies do teachers employ
to handle issues of variability when analysing data? and 2) What new affordances does a tool such as
TinkerPlots™ provide for coping with variability? We will describe ways that students and teachers
used the new options available to them in TinkerPlots™ (Konold & Miller, 2004) to compare groups.
In this context, there is almost never a way to make a clear judgment by simply producing a picture or
two, except in the rare instance when there is no overlap between the distributions to be compared.
How does a choice of representation and measure help simplify the difficult task of making a decision
about two distributions which each have significant variability? We will describe two main
approaches that are made possible by TinkerPlots™—those that use categorizing or “binning”
continuous data to reduce the apparent variability; and those that use proportional reasoning, primarily
to deal with issues of unequal group sizes. We describe several examples of ways in which teachers
and students with access to TinkerPlots™ use each approach, comment on the validity of each
technique, demonstrate how each approach attempts to confront and handle some of the complexity
and variability inherent in data, and comment on the developmental course of the use of some of these
strategies.

1.2. A PERSPECTIVE ON LEARNING

Our view of learning influenced a variety of aspects of our research: our choice of format for our
teacher seminars, our choice of data sets and discussion topics, and our conclusions about teachers’
and students’ reasoning. Because learning to analyze data is a process that unfolds over time, we
believe that we need a series of rich tasks and deep discussions to understand teachers’ approaches
and how they develop. Although we offered a data analysis seminar for teachers, our focus was less
on teaching them specific concepts or techniques than it was on providing an environment in which
teachers could explore important ideas about data and statistics using new software tools, and on
conducting research on their thinking. Our teaching was, thus, strongly constructivist and our teaching
and research were closely integrated as we asked questions and facilitated discussions focusing on the
different ways that teachers were making sense of problems (cf. Duckworth’s (1996) notion of
“Teaching as Research”). Teachers often shared the several ways they made sense of particular
problems, and discussions served to clarify these different approaches through questioning and
explanations. Not all disagreements were resolved immediately, but teachers seemed comfortable
letting confusing ideas simmer and re-emerge over the course of several weeks.

From this perspective, it is also important that the data sets and problems we provided were
complicated enough to make important issues in data analysis salient. For example, if the data sets
that learners are given to compare always have the same number of cases in each group, they will
never have to confront the issue of unequal group size, or to think about ways to mathematically
“equalize” the numbers in each group—they’ll get the same results whether they compare groups
using absolute numbers or percentages. It is only when the groups are different sizes that the
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difference between using numbers or percentages becomes relevant. More complicated data sets,
messier ones, are both more realistic and can give learners a chance to grapple with some important
statistical ideas, though increased complexity may sometimes overwhelm novice learners. Helping
learners manage the confusion that comes with this complexity so that it doesn’t overwhelm them is
an important part of our teaching.

Finally, we believe that learning is a slow, non-linear process of constructing and building more
and more robust understandings over time. Powerful ideas, especially those requiring a move towards
abstraction, may need to be built and re-built several times before they become solid and can be used
in a wide variety of situations. They may appear to be in place at one point in time, but later, can
appear to be “lost” when they are needed in a different, more complex context. The example of sixth
graders embracing and then questioning the use of percentages (described in section 4.2) illustrates
this. This view of learning is an important lens to use in reading the descriptions that follow, as
teachers and students may appear to be reasoning inconsistently. Iterative building and rebuilding of
ideas, we claim, is one of the hallmarks of the learning of important and difficult concepts.

2. REVIEW OF THE LITERATURE

Some of what makes working with data complex is the tension between attending simultaneously
to individual values and to aggregate properties of distributions. While expert data analysts move
fluidly between appropriate attention to these different levels of understanding data, this is a difficult
perspective to attain. Several other views of data typically precede seeing it as a distribution with
aggregate properties. One common perspective is to view data as a collection of individual values
without any relationship to one another (Bakker & Gravemeijer, 2004; Hancock et al., 1992).

Konold and colleagues (Konold & Higgins, 2002; Konold et al., 2003) argue that children see
data in several simpler ways before ever noticing aggregate and emergent features of data sets. Their
fourfold schema includes the following different ways of viewing data, which we consider useful for
examining the thinking of adults as well as children:

1. Data as a pointer to the data collection event but without a focus on actual data values—in this
view, data remind children of their experiences, “We looked at plants. It was fun.”

2. Data as a focus on the identity of individual cases—these can be personally identifiable, “That’s
my plant! It’s 18 cm tall,” extreme values, “The tallest plant was 37 cm,” or interesting in some
other way.

3. Data as a classifier which focuses on frequencies of particular attribute values, or “slices,”
without an overall view—“There were more plants that were 15 to 20 cm than 10 to 15 cm.”

4. Data as an aggregate, focusing on overall and emergent characteristics of the data set as a whole,
for example, seeing it as describing variability around a center, or “noise” around an underlying
“signal” (Konold & Pollatsek, 2002)—“These plants typically grow to between 15 and 20 cm.”

It is possible to make group comparisons from any of the case, classifier, or aggregate
perspectives, i.e., comparing extreme values, comparing the numbers in particular slices, or the more
canonical comparison of means, respectively. However, aggregate views are preferable, as they are
required to look beyond the data towards making inferences about the underlying populations or
processes represented by data samples. Konold and Pollatsek (2002) argue that it is sometimes easier
to use aggregate measures of center when comparing groups than when looking at data distributions
on their own. When comparing groups, they claim, it is clear that the focus is on underlying processes
rather than the particulars of the data at hand, although earlier work (Konold et al., 1997) found that
students had difficulties thinking of underlying “propensities” even when comparing groups. In the
work reported here, both teachers and students only rarely used formal measures of center to
characterize data sets even when comparing groups. Still, among the several methods we will report,
there were some that demonstrated aggregate thinking without involving the use of measures of
center.



21

As we and others suggest, data are most interesting when they are used to make inferences beyond
themselves, that is, when they are seen as representative of a larger population about which one wants
to generalize. This process of generalizing from a sample to a population is notoriously difficult.
When comparing groups with data seen as a sample, the inherent variability of a particular set of data
is complicated further by the fact that we must also determine whether observed differences in data
reflect underlying differences in populations, or are merely due to chance fluctuations in a sample.
The difficulty that people have in understanding the relationship between sampling variability and the
inherent variability of the underlying population is well documented (Rubin, Bruce, & Tenney, 1990;
Saldanha & Thompson, 2002; Sedlmeier & Gigerenzer, 1997; Watson & Moritz, 2000). Yet, while
issues of sampling variability sometimes arose for teachers and students in this study, such variability
is not the focus of this paper. We will, however, point to instances when issues of sampling were
salient.

The TinkerPlots™ software we used in this study made it easy to divide data into “bins” in which
cases within a range of values of an attribute are grouped together. The impact of such a
representation has been little explored. Cobb (1999) reports how students using his minitools (Cobb,
Gravemeijer, Doorman, & Bowers, 1999) were able to partition data in equal sized groups, allowing
them to make arguments about the position of the middle half of the data (using a representation akin
to box plots); and were able to partition data into groups with a specified interval width, allowing for
arguments about the numbers or percentages on either side of a fixed value. Cobb, McLain and
Gravemeijer’s (2003) 8th grade (age 13) study argues for the utility of breaking bivariate data into a
series of distributions of equal width “slices” of the independent variable in order to look for patterns
in the position of these distributions and their means across the slices, that is, splitting bivariate data
into a series of group comparisons which, they argue, is conceptually (if not actually) what expert data
analysts do when looking for a regression line. Meletiou and Lee (2002) describe difficulties that
students have with histograms, another form of grouping data, stating that “the research literature tells
us very little about how understanding of histograms and other graphical representations develops”
and calling for further research. Finally, some studies argue that students often like to characterize
data by “hills” (Cobb, 1999), “modal clumps” (Konold et al., 2002) or “bumps” (Bakker, 2004), that
is, central slices of a distribution containing a large proportion of the data, though these categorization
schemes rely on natural breaks in the shape of a data distribution rather than equal width “bins”.

When people use the “binning” features of software, they typically describe what they’re seeing
either by general comments on the shape of data, by comparing the number of data points in different
bins, or by comparing the percentage of data points in different bins. The multiplicative reasoning,
including proportional reasoning, needed to use the percentage strategy is important to thinking well
about data, and it has been highlighted by several researchers. Shaughnessy (1992) in his review
article claims that the ratio concept is crucial in statistics and often lacking among students (p. 479).
Upon re-examining their comprehensive framework for middle school students’ statistical thinking
(Mooney, 2002), Mooney and colleagues (Mooney, Hofbauer, Langrall, & Johnson, 2001) changed
just two elements—they modified the category for organizing and reducing data, and added the
important missing element, multiplicative reasoning, which they describe as, “reasoning about parts
of the data set as proportions of the whole to describe the distribution of data or to compare data sets”
(p. 438). Saldanha & Thompson (2002) argue that seeing a sample as a “quasi-proportional small-
scale version of a larger population” is an important conceptual move for students in making
statistical inferences. In a 7th grade (age 12) teaching experiment, Cobb (1999) proposed, “our goal for
the learning of the classroom community was that reasoning about the distribution of data in
multiplicative terms would become an established mathematical practice that was beyond
justification” (p. 11) and described a fair amount of reasoning by use of “qualitative proportions” in
their analysis. In a subsequent 8th grade (age 13) teaching experiment focusing on looking for patterns
in bivariate data, Cobb and colleagues (Cobb et al., 2003) took multiplicative reasoning as the starting
point. In fact, the multiplicative reasoning needed to normalize data, that is, to make the scale of
numbers the same so they can be compared, is a powerful technique used widely throughout statistics.
Examples include rescaling variability in standard deviation units when calculating Z-scores,
calculating the mean to yield a per case measure of an attribute, or using percentages instead of counts
to deal with differences in sample size, as we will see in this study.
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While important in statistics (and elsewhere), proportional reasoning can be difficult, especially
for students who are attempting to distinguish it from additive reasoning (Harel & Confrey, 1994).
Lamon (1994) details some of this complexity that is especially relevant for data analysis, stating that
proportional reasoning requires “unitizing”, i.e., “the ability to construct a reference unit or unit
whole, and then to reinterpret a situation in terms of that unit” (p. 93), as well as “norming” which
includes the idea of percentages, i.e., “reconceptualizing a system in relation to some fixed unit or
standard” (p. 94). These transformations require shifting attention from units to relationships among
units, a more abstract idea. At the same time, working with these relationships reduces the amount of
data to which one must attend at the same time which, Lamon argues (citing Case (1978; 1980)) may
“facilitate reasoning [by] easing the load on the working memory” (p. 112).

This paper describes our experiences studying teachers’ and students’ uses of binning and
proportional reasoning strategies using a computer tool that makes each of these strategies more
accessible and flexible. Since such tools are new and not yet widely disseminated, we know very little
about how teachers’ and students’ strategies develop when they have these resources available. Which
components of the software do teachers use and how do they take advantage of the interactive
possibilities afforded by the software? What can we learn about teachers’ and students’ statistical
reasoning by analyzing their interaction with these new tools? What implications can we draw from
these data for teaching and learning?

3. CONTEXTS AND METHODS

The data for this paper come from several sources, all connected with the Visualizing Statistical
Relationships (VISOR) project at TERC in Cambridge, Massachusetts, USA. VISOR is a teacher
professional development and research project studying how people learn about data analysis and
statistics and how computer visualization tools can enhance that learning. In VISOR, the professional
development and research goals were often mixed. We offered opportunities for teachers to explore
data topics such as ways of describing data, stability of measures and the role of sample size, making
inferences about group comparison and co-variation situations, and confidence intervals, among
others. However, we focused less on teaching teachers specific things than on exploring their thinking
in the context of use of computer software tools. Teachers explored a variety of data sets using two
innovative software tools, TinkerPlots™ (Konold & Miller, 2004) and Fathom™ Dynamic
Statistics™ (Key Curriculum Press, 2000). In the group, they also talked about teaching about data
analysis, and brought in examples from their own classrooms of their students’ thinking and work
using these tools. By focusing on how people think about and explore data, the project hoped to help
teachers develop a sense of themselves as data analysts, to understand better some of the issues that
arise in learning about data and statistics, and to feel more confident teaching about data in richer and
deeper ways.

In the VISOR seminar, we worked with a group of 11 middle- and high-school teachers (8
women, 3 men; 6 middle school, 5 high school; 10 White, 1 Black) from mostly urban Boston-area
schools, meeting biweekly for three hours after school over the course of two years. In fact, only eight
of the teachers continued into the second year. In its third and final year, VISOR worked with a new
group of nine teachers. Teachers varied in their comfort with computers and in their prior experience
with statistics, some had had very little exposure, a few taught AP Statistics (Advanced Placement
high-school courses that provide college credit) or had done data analysis in industry. While some
taught semester- or year-long statistics courses, most only taught about data and statistics during a few
weeks each year.

We videotaped group sessions, took extensive field notes, and collected teachers’ work from the
seminar, including video feeds from the computer work of one small group each session. After each
session, we created a rough log of the videotape, developing more detailed transcripts for certain
sections as needed in our analytic work. We also observed teachers in their classrooms, and collected
field notes and examples of students’ work, as well as copies of what teachers brought in from their
classrooms. Several times during the two years, we conducted formal, individual, audio- or
videotaped interviews with teachers on a variety of topics. Finally, one of us conducted a 13-week
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teaching experiment on data analysis with a group of 12 relatively advanced sixth grade students (age
11–12) from an urbanized suburb of Boston, taking field notes and reflective teaching notes after each
session, and also collecting examples of student work.

Our research goals and methods were primarily descriptive and exploratory, within the goal of
discovering how teachers used new capabilities of TinkerPlots™ to compare groups. The authors,
who collaboratively led the seminar as well as the research, met regularly to discuss teachers’ prior
work, to puzzle through what the data showed about how different teachers were making sense of the
problems, and to plan sessions to illuminate and highlight different conceptions. These analyses most
resembled a combination of group clinical interview (Clement, 2000) and teaching experiment
methodologies (Steffe & Thompson, 2000). The authors were sometimes joined in these discussions
by Bill Finzer (designer of Fathom™) and Cliff Konold (designer of TinkerPlots™) to focus on
aspects of the software tools that might affect teachers’ thinking. We also met regularly with a
research team at TERC to more closely analyze the formal, transcribed interview data. In this process,
pairs of researchers separately analyzed each transcript using a combination of etic codes developed
from our theoretical frameworks, and emic codes that emerged from the interviews themselves (Miles
& Huberman, 1984; Patton, 1990). We wrote memos about each participant and discussed
discrepancies in our analyses until we reached agreement. We then compared across participants to
look for common themes and methods, as well as for interesting variations.

3.1. SOFTWARE TOOLS

While we used both TinkerPlots™ and Fathom™ in VISOR sessions, the TinkerPlots™ software
provided the platform for the examples we will use in this paper. TinkerPlots™ is a data analysis
environment primarily for middle-school classes that provides students with a wide range of tools to
create traditional and non-traditional data representations. By various combinations of sorting and
separating data into categories, ordering or highlighting information by the value of an attribute, and
stacking and otherwise organizing data, users can make graphs that are both familiar and very
different from those typically seen in school or, for that matter, in most research settings. Users can
display numerical information about plots: the value and position of the mean, median, mode, or
midrange; the number or percentage of cases in bins or between sets of moveable dividers; or the
value at a moveable horizontal or vertical line. The software offers tools for displaying data as value
bars (in which the length of each bar represents the magnitude of the value of an attribute for a case),
or fused into rectangular or circular areas. Finally, it provides tools for creating box plots, as well as
innovative “hat plots” that partition the data like box plots, but based on user specifications such as
percentages of the range or of the data, or numbers of standard or average deviation units from a
center.

3.2. DATA SETS

While our work with teachers and students involved exploring a wide variety of data sets, the
results we present in this paper focus (primarily) around two data sets. The first, explored in the
middle of the first year, was invented but realistic data, modified from Cobb et al. (1999), comparing
the efficacy of two drug protocols for treating patients with HIV-AIDS. Of the 232 patients in the
sample (160 men and 72 women), 46 randomly received an Experimental protocol and 186 received
the Standard protocol. Outcomes were measured in patients’ T-cell blood counts and teachers were
given information from an AIDS education group stating that normal counts ranged from 500 to 1600
cells per milliliter. We added a gender attribute to the original data designed in such a way as to show
an interaction between gender and protocol in their effects on T-cell counts, that is, differences across
categories and an interaction of categories in a numerical attribute.

The second data set, explored early in the second year, consisted of real survey data of 82 students
(34 girls and 48 boys) attending two western Massachusetts high schools (51 from Holyoke and 31
from Amherst) collected by Cliff Konold in 1990 and included with TinkerPlots™ (US Students:
Konold & Miller, 2004). Attributes include students’ height and weight, number of older and younger
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siblings, hours spent doing homework and working, and average grades received, among others.
Teachers focused on school and gender differences in grades received and on hours per week spent
doing homework, that is, differences across categories in a categorical and a numerical attribute.

We will also look briefly in this paper at two data sets exploring the relationship between two
numerical attributes, both of which were explored late in the second year of VISOR. The first
compares the median age in each state with the percent of the state population voting for George W.
Bush in the 2000 U.S. Presidential election. The second looks at the relationship between average
state educational spending and number of teen births per 100,000 population in the U.S.

These data sets offering different types of data and relationships among data allowed us to see a
range of ways that teachers and students thought about and dealt with the variability in data using
TinkerPlots™.

4. RESULTS AND DISCUSSION

We discuss in this section results pertaining to our research questions and the relationships
between them.  We describe how teachers with diverse statistical analysis and teaching experiences
approach issues of variability, especially when comparing groups with one numerical and one
categorical variable. We also document in less detail examples of looking at the relationships between
two numerical variables. Throughout this section, we also relate these findings to our second research
question, regarding the affordances offered by a statistical visualization tool like TinkerPlots™.

The purpose of describing teachers’ use of TinkerPlots™ in comparing groups is two-fold: First,
it suggests the kinds of strategies that students might use as well when they have TinkerPlots™ as a
resource. In fact, as described below, we have confirming evidence from observations in classrooms
that students and teachers share these approaches. Second, it helps us learn how teachers approach
comparing groups tasks and, therefore, what they need to learn to guide a statistically meaningful
conversation for their students.

The teachers in the VISOR seminar created many previously unseen (at least by us) graphs and
were extremely creative in their approaches to comparing groups in the data sets described above. In
general, our results confirmed Konold et al.’s (1997) observation that students (in this case teachers)
seldom use a measure of center as their first method for comparing two data sets presented in
graphical form. We report here on two key types of strategies that teachers used in comparing groups
with TinkerPlots™, describe how essential design features of TinkerPlots™ influenced these
strategies, and comment on whether and how these techniques developed as the VISOR seminar went
on. In addition, we describe evidence that students’ use of TinkerPlots™ brings up many of the same
data analysis issues that arose in the teacher seminar. We situate these descriptions in the general
dilemma teachers and students are facing:  How to make comparisons between two groups when each
of them exhibits considerable variability.

The primary strategy we analyze is one that is both new and unusually easy to use in
TinkerPlots™, analyzing a distribution by dividing and chunking it into several pieces. While many
statistical analysis packages provide ways to create histograms and even to change their bin sizes in a
limited way, it is the flexibility that TinkerPlots™ provides for manipulating and observing
information about sections of a distribution that creates a new and powerful tool for learners. Dividing
a distribution into bins is effortless in TinkerPlots™, as this representation is a primitive among the
graph operations TinkerPlots™ makes available. The strategy of creating multiple “bins” along an
axis effectively reduces the number of actual values in the distribution, thus reducing apparent
variability.

The need for the second strategy we describe arises in some part from using the binning strategy
in the context of comparing groups. If any two groups are of unequal sizes, the binning process will
require an understanding of proportional reasoning to compare the two groups. In this context, we see
both teachers and students struggling with the difference between additive and multiplicative
reasoning. The first pays attention to the number of points in a bin, while the second focuses on the
proportion of points in each bin. TinkerPlots™ supports both of these kinds of reasoning in slightly
different ways. We analyze here the ways in which TinkerPlots™’ features affect students’ and
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teachers’ uses of additive and multiplicative reasoning and explore the new strategies and dilemmas
that arise from the use of TinkerPlots™ features.

4.1. ANALYZING DATA IN BINS

One of the most common techniques both teachers and students used to compare groups consisted
of limiting the number of unique values in the data sets by creating two or more bins. Considering a
set of data points as a relatively small number of groups of values is not a new idea; in fact, it is the
basis for many statistical representations. Histograms and box plots both partition data sets into
groups within which all values are essentially the same for analytical purposes.

The role of bins in TinkerPlots™ is notable because the software automatically goes through a
“binned” stage as data are separated according to the value of a highlighted attribute; the user does not
need to imagine or specifically request a graph with bins. Thus, many more of the graphs produced in
our seminar used bins than might have been the case with other software tools. This representational
strategy is not specific to TinkerPlots™. In fact, we have seen similar binning approaches when
teachers and students analyze data with pencil and paper. But the immediacy of TinkerPlots™’
binning functions affords more complex strategies. We describe below some of the common ways
teachers and students used bins to compare groups.

Each of the methods described below highlights some of the consequences of regarding data in
bins. They are all examples of a tension inherent in data analysis; finding the right balance between
the advantages of reducing variability as a way to deal with the complexity of data, on the one hand,
and the risks of making claims that might not be true, or would have to be qualified, were all the data
included in the analysis, on the other. Several of the examples below also illustrate the interplay of
contextual and strictly numerical ways of looking at data, which we frequently observed in teachers’
discussions of their analyses.

Using cut points, both system- and user-generated
One of the simplest ways to create bins in a distribution is to divide it into two parts. We have

used the term “cut point” to designate a value in a distribution which divides it into two groups above
and below that point.  When a user begins to separate the values of a variable, TinkerPlots™
immediately provides a single cut point using the software’s rule of using a value roughly at the
rounded midrange.

Figure 1. Comparing the percent of each protocol above a single cut point
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If the data are split into two subgroups as well, we get a two-by-two representation (see Figure 1).
A legitimate comparison between the two groups, then, would involve comparing the percentage of
each group above and below the bin boundary. Understanding the importance of using percents rather
than counts is an issue we discuss in Section 4.2, below. In fact, TinkerPlots™ supports this
comparison by making it possible to display the percents in each bin. In Figure 1, an argument can be
made for the superiority of the experimental treatment based on the larger percentage of experimental
cases in the high T-cell bin. Remember, high T-cell counts are better.

While this kind of representation was common early in our seminar because it was so easy to
create, teachers quickly grew to reject this representation because it hid so many of the details of the
shape of the data. A more common representation was Figure 2. Here we see that the teacher created
seven bins and displayed the percents in each. In this particular case, the analysis proceeded by adding
together the percents in the bins above 500 T-cells per ml for each protocol, replicating the analysis in
Figure 1. At other times, however, these kinds of multi-bin graphs were analyzed in very different
ways, as described below under “Comparing slices.”

Figure 2. AIDS T-cell data in seven bins with row percents

A more sophisticated approach using TinkerPlots™ was to use a different tool, dividers, that
allows the user to specify exactly where she wants to put one or several cut points. In Figure 3, the
teacher has placed the cut point at exactly 500 using a divider tool to split the distributions into two
parts. This representation is different from a binned representation in that the user has to be explicit
about creating and moving a divider (by grabbing the small white square at the right side of the page).
Note that in this case, the default setting at which TinkerPlots™ drew the first bin and the cut point
value that this teacher has chosen are the same: the difference is that the teacher has detailed control
of the dividers and could change the cut point to 495 or even 497.

Representations with dividers arose fairly early in the seminar, although it remained difficult for
some teachers who had trouble mastering the tool and therefore continued to use primarily bins in
their analyses. This representation is interesting because, while imposing a cut point, it also retains
visual information about the rest of the shape of the distributions. Unlike Figures 1 and 2, the exact T-
cell value of each point is represented on the graph. This became a preferred graph for some teachers
who would routinely “separate a variable completely” (create a representation without bins), then
impose their own dividers. Figure 3 is also different from the rest of the graphs in this paper because
the continuous variable is displayed vertically, but that is not unusual in TinkerPlots™, since it is
equally easy to put a variable on either axis.
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Figure 3. Using a divider to compare percentage of T-cells
above and below a user-specified cut point

This description of three graph types is not intended as a developmental sequence, as different
teachers made different choices in representations at any point, and an individual teacher might have
alternated among several kinds of representations. There are, however, a few general points to be
made about trends in teachers’ choices.

Most teachers did prefer Figure 2 over Figure 1 (at least, after the first week or two), even though
they performed essentially the same analysis with each: adding up the percentage of cases with values
over 500.  In fact, using Figure 2 to make the argument requires more work than Figure 1, since the
percents above 500 are not yet totaled. Our observations lead to this hypothesis: The teachers used
Figure 2 so that they could CHOOSE the cut point based on the shape of the data, then use their
chosen cut point to compare percents across groups with regards to that cut point. Working with a cut
point from Figure 1 runs the risk of choosing a value that would seem more or less representative of
the data depending on the distributional shape. Figure 2 combines the ease of using bins with a desire
to see the shape of the data. In this case, we hypothesize that if the distribution were less symmetrical,
teachers may have wanted to use a different approach than the single cut point one. Some tentative
findings from research not reported here support this hypothesis.

What influenced a teacher to choose between Figures 2 and 3 in analyzing a data set? As
described above, teachers did not move from using only a graph like Figure 2 to using only a graph
like Figure 3.  However, it often happened that when teachers “completely separated” a graph, such as
that in Figure 3, they then re-binned the data (which one can do easily in TinkerPlots™). Our
hypothesis about this tendency is that, faced with a large number of points stacked unsteadily on the
axis, teachers often chose to retreat to a representation with more built-in structure and less apparent
variability. Interestingly, in none of these examples were teachers likely to look at a measure of center
such as mean or median.

All of these graphs were generated as part of the teachers’ discussion of the AIDS data, which
took place after three months of the seminar. In generating and making arguments from graphs such
as Figures 1 through 3, teachers often used the value 500 as a cut point, since that was the lower end
of the normal range of T-cell counts according to the information sheet we had given them. Using
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these representations, teachers argued in support of the Experimental treatment’s superiority by noting
that the percentage of patients above 500 was greater in the Experimental group than in the Control
group. Using graphs such as Figure 3, teachers noted that, “The Experimental treatment yields a
higher percentage of participants in the normal range (above 500). [Figure 3] shows that in the
Experimental protocol, 80% of participants were in the normal range, while in the Standard protocol,
only 41% of participants had T-cell counts above 500.” One teacher was more effusive, saying, “A
huge preponderance don’t get much better than 500 in the Standard, though a huge preponderance do
better than 500 in the Experimental.”

Exploring these three classes of representations led to a discussion in the group about the rigidity
and arbitrariness of the cut point, a discussion that included both contextual and statistical arguments.
Some teachers wondered how rigid the value of 500 was from a medical perspective, would T-cell
counts of 495 mean someone was nearly healthy? What about 450? One teacher made an analogy
with grouping people by height saying, “If somebody was right at the borderline that doesn’t mean
they’re short.” Other teachers speculated that there could be a biological mechanism that created a
sharp distinction in sickness rates once T-cell counts reached a specified level. “There may be a magic
number that’s very close. To get infected by a germ, there has to be a minimum number. If you get
less than the minimum number, you get nothing.” Teachers also made arguments for the significance
of the cut point 500 grounded in the shape of the distribution. Some people noticed that there was a
large gap in the data for the Experimental group just below 500, which gave them confidence in using
this value to divide the data. This, in turn, led to further context-driven speculation about a possible
genetic difference in response for the people at “the low end of the Experimental protocol.”  The back
and forth between patterns observed in the data and those driven by the context led the participants
beyond what they would have seen by just looking at the distribution as numbers. After they had all
seen the entire distribution, most teachers seemed comfortable with reducing variability by imposing a
single cut point, although there was some disagreement about exactly where to put it, thus focusing on
this one distinction rather than trying to integrate and deal with the variability of the entire data set at
once.

In some ways, all of these uses of cutpoints can be seen as examples of viewing data as a
classifier using Konold et al.’s (2003) schema, i.e., attending only to the frequency of data in a
particular bounded range, e.g. below 500. From another perspective, though, comparing percentages
of the two groups above or below a particular value can be seen as paying attention to aggregate
features of all of the data since, paraphrasing one student speaking about the Amherst-Holyoke data
set, ‘knowing that 55%…are above the cut point means that 45% are below the cut point.’ A
comparison of counts above a cut point across two distributions, however, does not take all of the data
into account except in the rare case of equal sized groups—an important distinction that we will
discuss in more detail below.

There are several ways that cut point reasoning can go awry, however. When cut points
distinguish only a small portion of a data set, just a few points on one side of the cut point and the rest
on the other, they essentially serve to identify unusual values or outliers and conclusions based on
these subgroups may not be robust. In addition, cut points only describe an aggregate view of data
when comparing the percentage of data on either side of a single cut point. We contrast this use of a
single cut point with a form of pair-wise comparison of values between two groups that uses “slices”
of a distribution, i.e. portions of a distribution formed by more than one cut point, so that the
distribution is divided into more than two sections. Performing a comparison using several slices is,
indeed, using a classifier view of data. The difference between “slices” and the divisions formed by a
single cut point is that a single slice in the middle of a distribution effectively disregards everything
else about the distribution—information that could radically change an interpretation based solely on
the data in the slice itself. Several examples of these problems with slices follow.

Comparing slices
Although we have no examples of teachers exploring the AIDS data using pair-wise comparisons

across internal slices, we have seen both teachers and students make such comparisons using the
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Amherst/Holyoke data set. These observations mirror those that other researchers (Konold &
Pollatsek, 2002; Watson & Moritz, 1999) have noticed in students comparing groups.

For example, when two teachers were using the Amherst/ Holyoke data to answer the question “In
which town do students spend more hours doing homework per week?” they proceeded to divide the
data into seven bins. They then agreed to discount both the bottom bin (less than four hours) and the
top four bins (greater than 12 hours) to focus just on the two “middle” bins in which most of the data
were clustered (see Figure 4). They argued that they had “clear explanations” for what was going on
with both the bottom and top groups, so that it was acceptable to exclude them from the analysis.
Specifically, they argued that the number of students doing fewer than four hours of homework a
week was the same in both schools and could be discounted because it would add nothing to the
comparison. By contrast, they said, “The top is a lifestyle no matter where they live,” and therefore
should also be discounted because it didn’t represent something about the typical student. Here is
another example of teachers’ preferring binned data (as in Figure 2) to fully separated data (as in
Figure 3) so that they could understand the data in easily visible chunks, even though they often just
accepted the chunks that the software provided.

Figure 4. Looking at a slice of Homework hours in two Schools. Teachers focused on students who
did between four and twelve hours of homework each week.

Having constructed this graph and chosen to focus on just the “typical” students, the teachers
compared the percentage of students from each school in each of the two bins they found interesting.
In the 4- to 8-hour bin, they found 27% of Holyoke students and just 16% of Amherst students; in the
8- to 12-hour bin, they found 24% of Holyoke students and 32% of Amherst students. These two
comparisons within slices led them to conclude that Amherst students did more homework than
Holyoke students. In fact, they were comparing the comparisons, noticing that a higher percentage of
Holyoke students were in the 4- to 8-hour bin, and a higher percentage of Amherst students were in
the higher, 8- to 12-hour bin. They reasoned that, since Amherst had a higher percentage of students
who studied eight to 12 hours and Holyoke had a higher percentage studying between four and eight
hours, Amherst students must do more homework. The teachers also looked at the data another way,
noticing that the ratios of students in the two bins within each of the schools was different—roughly
equal numbers in Holyoke study “8 to 12” and “4 to 8” hours respectively, whereas twice as many
Amherst students study “8 to 12” hours as study “4 to 8” hours. This confirmed their view that
Amherst students studied more than Holyoke students

However, there are problems with their argument. A slice-wise comparison across groups when
there are multiple slices effectively ignores the rest of the distribution, i.e., if you only know about the
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percentage of students in each school who study between four and eight hours, you can’t really say
much about the overall pattern. As stated, the conclusion doesn’t account for differences in study
habits of those who study more than 12 hours who, if included, might lead to a different analysis and
conclusion.

We can view the teachers’ approach to this analysis from the perspective of reducing variability.
By putting the data into bins, they reduced the overall variability to just seven categories. By using
both data-based and contextual arguments to discount the relevance of several of these bins, they
further reduced the variability in the data and, in the end, compared just four numbers. This level of
detail was sufficient for them until they were asked how much more Amherst students studied than
Holyoke students. They then found their representation and analysis insufficient to answer the
question. In fact, in trying to come up with some kind of number, these teachers wondered whether
the horizontal position of points in each bin had any quantitative meaning, and had to be reminded
that bins served merely as categories without distinguishing among their members.

Dividing distributions into multiple bins, then making an argument to disregard those on the
extremes, was a common approach throughout the seminar, both using TinkerPlots™ and on paper. It
is, we conjecture, an extension of the strategy of “disregarding outliers.” In fact, one of the pieces of
“statistical knowledge” with which several of the teachers entered our seminar was:  “If you’re using
the mean, it’s important to disregard the outliers.” Or, differently stated, “If there are outliers, use the
median.” With a TinkerPlots™ binned representation, it is simple to disregard entire groups of
“outliers” because there is no visible difference in value among points in the same bin.

Figure 5. Comparing Grades in Schools by looking at the A/B slice

Another example of people looking at slices to compare distributions comes from the 7th grade
class of one of our participating teachers. Using the same data set, but looking at grades received by
students across the two schools, one student looked only at the students who received a mix of As and
Bs (the A/B column, second from the left in Figure 5) to argue that more Holyoke students got better
grades than Amherst students, although we don’t know if she was referring to numbers or percents as
they’re both displayed and both point in the same direction. Likely, this student was focusing on the
highest category about which she could make a comparison, since no Amherst students got straight
As, though such a focus on a single slice ignores the variability and shape of the distribution.

In contrast to focusing on an internal slice created by more than two cut points, some students
used a single cut point to split the data set between the A/B and B categories so they could compare
the percentage of students in each school getting either As or As and Bs (55% Holyoke, 30%
Amherst). They argued persuasively from that observation that Holyoke students got better grades.
However, others thought such a comparison wasn’t fair, that “you shouldn’t pay attention just to the
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smart kids,” and wanted to look at the students getting Bs or Bs and Cs. They seemed to be torn
between a desire to look at more of the data, expanding their view to include kids more in the middle
in addition to the “smart kids,” and wanting to limit their view by looking at a single slice, such as just
those students getting Bs.

Another student in this discussion proposed expanding the number of students being considered
by moving the cut point to just below the B range. That would mean that 80% of Holyoke students
would be included and 50% of Amherst students, which seemed both like a large enough fraction of
the students in the sample, and a large enough percentage difference to be able to draw the conclusion
that Holyoke students get better grades than Amherst students. One could argue, although these
students didn’t, that setting the cut point below B is really more of a comparison of the lower end of
the distribution than of the upper end, i.e., which students get worse grades? Again, we see a tension
in students’ techniques between, on the one hand, narrowing their perspective on the data by using
bins to reduce the variability and number of points they have to attend to and, on the other hand,
expanding the scope of data they’re considering to include a minimum number of students with which
they feel comfortable.

The ease of creating bins in TinkerPlots™ supported both cut point representations and the
possibility of focusing just on internal bins as “slices,” which produced a kind of argument that we
conjecture would not have occurred as often otherwise. For some middle school students, the
distinction between slices and cut points remained problematic. In general, the distinction between
slices and cut points presented fewer problems to the teachers in our seminar after the beginning, but
one teacher continued to routinely disregard the ends of a distribution for contextual reasons and
focus on the middle. For example, in analyzing the weight of student backpacks before and after a
hypothetical assembly on the topic of back problems caused by heavy backpacks, it was this teacher
who disregarded those carrying less than 4 pounds as being “slackards.”

4.2. PERCENTAGES AND PROPORTIONAL REASONING

Working with unequal size groups brings up the issue of additive versus multiplicative reasoning.
Figure 6 illustrates the difference between additive and multiplicative reasoning. In this binned
representation, both numbers and percents are displayed in each bin. Thus, it is possible, and even
made relatively simple by TinkerPlots™, to compare the number of subjects with T-cell counts above
500 in the Standard vs. Experimental subgroups (using additive reasoning). In the case of Figure 6,
this would lead to the incorrect conclusion that the Standard protocol was more effective because
there are more subjects above 500 in the Standard condition. Of course, the correct way to make this
comparison is by using percents, using multiplicative reasoning. Several of the teachers in our
seminar correctly compared the two drug protocols by looking at the percentage of patients with T-
cell counts above the “healthy” cutoff of 500. Interestingly, however, several teachers in our seminar
struggled with the distinction between an analysis based on numbers of points and one based on
relative percents. The tendency to use counts rather than ratios was surprisingly robust.

Another task we gave teachers was to judge if the Experimental treatment was as good for women
as it was for men. Figure 6 is one representation that could support this analysis. In each bin, every
man is colored green and every woman is colored red. By visually separating the males and females in
each bin, teachers looked at the rough proportion of men to women in each of several ranges of T-cell
counts. A further step one group of teachers took was to create a circular fuse in each bin to create pie
graphs (Figure 7). These two representations, though, provide very different views of the data, since
in Figure 7, the salient part of the representation is the ratio of men to women (green to red) and the
number of cases in each bin is displayed only as a number. In Figure 6, however, we see which bins
have more data, but the pattern of proportions is less apparent. Note that Figures 6 and 7 have
different bin boundaries than Figures 2 and 3; depending on the sequence of steps the user has taken
to arrive at the graph, bin boundaries may be placed slightly differently.  The user can also specify the
number of bins and the bin boundaries.
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Figure 6. Binned representation showing proportions and numbers simultaneously

Figure 7. Pie graphs showing shift in gender proportions for Experimental protocol and rough
consistency for Standard protocol

Teachers made an unusual argument using Figure 7. Some teachers used these pie graphs to
notice patterns in proportions across the entire data set, specifically the rough shift of the gender
proportions from low to high T-cell counts for the Experimental protocol (more females had low T-
cell counts; more males had high T-cell counts) compared with the rough consistency of the gender
distribution for the Standard protocol. The pie graphs enabled teachers to emphasize the fraction of
the data of each gender in each bin precisely because the numbers were visually normalized into a
single circular whole for each bin, even though the numbers in each bin were different. For several
teachers, this was a most compelling graph because of the salience of the visual pattern. One teacher
said, “I like the circle because it captures the whole….I can see the three-fourths for that region much
better on a pie chart than with a histogram.”

Even though the counts are displayed in each bin, the pie graph representation makes it difficult to
discern information about numbers in each bin, numbers that must be big enough to draw conclusions
with any confidence. For example, there is only one person in the 450 – 540 range for the
Experimental protocol, so the fact that the circle is all green gets more visual “weight” than it should.
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One teacher found this problem quite disconcerting. She said, “You may like it, but I don’t. I think it
distorts the numbers.” Instead, she preferred Figure 6, which she could visually inspect for
proportionality, while also being able to see the relative numbers going into that proportion. “I prefer
the histogram because I can actually see the counts. With pie charts you think percent[age]s, you
don’t think numbers.” Still, Figure 7 supports a kind of argument that is not salient in Figure 6 and it
is an argument that bears consideration.

While this particular graph (Figure 7) was compelling for a subset of the teachers, pie charts
seldom appeared after this data set. It is possible that the teachers who didn’t like the pie charts
because they “distorted the numbers” convinced the others that, despite its simplicity, this graph was
likely to be misleading.

As noted above, some learners are troubled by how these representations hide absolute numbers,
while others are not. We’ve seen both students and adults look at sets of pie graphs and forget that
some of them represent only three points while others represent 30. When this is pointed out to them,
they do know that it would be easy to dramatically change the proportions in the set of three by
changing only one data point, and therefore they’re less likely to trust that proportion than the
proportion in a pie graph representing more data points.  Still, we have seen many teachers forget
about this concern unless it comes up in conversation.  Although we do not have enough evidence to
know why, we hypothesize two contributing factors.  First, several teachers described how easily they
saw patterns in a sequence of pie graphs; visually these patterns are much more striking than the
numbers in the bins. Second, we also know that at the time the group worked on the AIDS data, their
appreciation of the effects of sample size was relatively weak, so they may not have focused on that
aspect of the representation.

Using proportions in the form of percentages or pie graphs to equalize groups of unequal size is a
powerful and sometimes new idea for students in middle school. In the 6th grade teaching experiment
conducted by one of the authors, several students were excited when they realized that by using
percentages to compare groups of different sizes, they could “make it seem like they’re even.” This
was much preferable to other ideas they had been considering to deal with unequal group sizes,
primarily removing points from the larger group until it had the same number as the smaller (Watson
& Moritz, 1999).  Students were uncomfortable with this solution mostly because they couldn’t figure
out which points to cut without introducing a bias.

An interesting related issue arose in the 6th grade group among some students who weren’t wholly
comfortable with proportional reasoning. When students were using percentages even though they
knew that the groups were different sizes, some worried that each “percent” meant a different thing in
each of these groups—that is, ten percentage points may have been six students in one group, and
eight students in the other group. How could they compare percentages when they meant different
numbers of students? These hardly seemed equivalent. A similar issue arose in a discussion with a
VISOR teacher discussing the money earned each week by a sample of Australian high school
students. “It’s very confusing because if you’re realizing four girls equals seven percent whereas only
one boy equals four percent…I mean if I didn’t put the numbers, I could have just said, ‘Okay,
percentage-wise the boys make more [money per week].’ But if you look really at how many kids
each of those really affect...” In all these examples, we see a tension for both students and teachers
between recognizing the power in being able to “make groups even” by putting everything on a
common scale of 100, and distrusting that transformation and being drawn back to worrying about
absolute numbers.

In these examples, we see teachers and students using proportional representations to deal with
the variability of group size that is often encountered in data. We also see them struggling with how to
simultaneously retain information about group size which is often put in the background, if not
completely hidden, when emphasizing proportional views. TinkerPlots™ provides ways to represent
both proportional and count information, with relatively more emphasis on one or the other in
different views. Pie graphs, for example, focus on proportions without considering absolute counts.
By making all these combinations of representations possible—counts without percents, or percents
without counts in bins—TinkerPlots™ provides a wide choice of representations and possible
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arguments. This, in turn, forces students and teachers to confront and discuss the conclusions that can
be drawn, legitimately or not, from each representation.

4.3. BINNING IN THE CONTEXT OF COVARIATION

The teacher seminar had gone on for several months before we approached covariation. By that
time, the strategies described above—binning of various sorts, using cut points, comparing slices,
using both additive and multiplicative reasoning—had been thoroughly explored, but only in the
context of comparing groups in which a single numerical distribution is partitioned into bins, and
compared across one categorical attribute. But how would binning and the relationship between
counts and percents play out in the context of covariation where there are two numerical variables?

Interestingly, teachers often extrapolated their binning methods to work in a 2-dimensional
covariation situation, taking advantage of TinkerPlots™’ tools to easily create bins on each axis,
thereby partitioning the plane into a “matrix” of boxes (similar to Konold, 2002).  For example, in an
analysis of a data set on states, relating percent who voted for Bush in the 2000 election to median
age, some teachers produced a graph of this “matrix” form by creating four bins on the X-axis and
five on the Y-axis for a total of 20 boxes (see Figure 8).  Each cell in the matrix contains a
“rectangular fuse” of all the data points that belong there. Each small square in a fused rectangle of
data points represents a single point—a state—and its color represents the Bush vote; darker colors
represent larger percents, as illustrated in the legend in the top right.  The data points have not been
ordered within each rectangle, so the colors create a checkerboard pattern.

Figure 8. “Matrix” of Median age by Percentage voting for Bush in 2000

Here, the X-axis (median age) is divided into four bins, each representing a 5-year interval. The
Y-axis is divided into five bins, each representing a 10% interval of votes for Bush. Thus, for
example, the box that includes states whose median age is between 35 and 40 AND which voted
between 45% and 55% for Bush has 18 states in it.

Characterizing relationships in these kinds of data is still difficult, even after reducing the
variability by binning in this way, and the statements teachers made based on these graphs reflected
that. One of the most interesting ways teachers described this kind of graph was to make non-
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probabilistic statements of the form, “No country with a life expectancy under 40 has a female
literacy rate over 50%.” This kind of statement essentially takes the “stochastic” out of statistics and
reduces variability still further by finding an “absolute” statement that one might imagine being true
for other samples. Using Figure 8, teachers made statements like:  “Any state in which the median age
is between 40 and 45 has a Bush vote between 45% and 55%,” or, “Any state in which the Bush vote
is between 25% and 35% has a median age of 35 to 40.” In making these statements, teachers were
noticing columns or rows of the matrix that have only one cell filled; if more than one cell in a
column or row is filled (e.g., the row of states in which 35% to 45% voted for Bush), these kinds of
statements can’t be made. Note that while these statements are strictly true according to the graph,
they are each based on only two states and ignore much of the variability in the data. They are not
reflections of the underlying process that may link these two variables, a process that is inevitably
noisy and that won’t produce exactly the same results every time (Konold & Pollatsek, 2002).

Teachers often migrated towards descriptions that focused on the deterministic, non-stochastic
statements they could make from the data rather than the noisy processes underlying the bigger
picture. In fact, we’ve noticed that some people seem to actively avoid making statements about the
likelihood of certain features of data being due to chance, preferring instead to handle variability by
finding subsets of the data about which they can make more deterministic claims. People want to say:
“If I do X, Y will happen. If that’s not always true, I can try again with a more precise understanding
of the relationship between X and Y.” For some people, such a belief in a microscopic version of
causality is preferable to the necessity of confronting an inherently variable process. Coming up with
a story that predicts exactly some, even if not all, of a data set removes those items from consideration
in a stochastic framework.

We might consider the teachers’ focus on a small subset of the data in this kind of deterministic
way as an example of a “classifier” view of the data (Konold et al., 2003) since the teachers appear to
be attending to a small set of data points without considering their relationship to the rest of the
distribution. While their thinking does have some “classifier” characteristics, these teachers are
thinking in a more complex way. They have some awareness of the rest of the data set, since the cell
being described must be picked out from, and is therefore seen in relation to, the other cells in that
row or column. Still, like cut points that isolate only a few unusual points, this kind of a view doesn’t
consider much of the data at once. Using Figure 8 to create an argument of this kind does not create
an overall description of the relationships between the variables.

There are other examples, however, of a covariation “matrix” in which this kind of argument
would be more defensible. For example, using the same States data set, one of the teachers produced
the graph shown in Figure 9. In describing this graph, this teacher called attention to “the empty
quadrant” in the upper right, which enabled him to say something like, “If a state spends at least
$6789 per student, its teen birth rate will be less than 46 per 100,000.” The teacher created this graph
by placing horizontal and vertical lines at the means for each variable and then felt comfortable
making the statement even though there are actually three states where educational spending is above
$6789 but whose teen birth rate is more than 46 per 100,000. We conjecture that it was the form of the
argument he was concerned with, more than the exact details; he knew that there were values of
Ed_Spending and TeenBirths for which a statement like his would actually be true.

In fact, other teachers who made similar graphs used slightly different lines in order to completely
isolate the “empty quadrant” so that it contained NO points. Is the teacher who left in a few points
more comfortable with variability than those who excluded all points before drawing conclusions?
Note that while this is a deterministic statement similar to the one above relating median age to
percentage voting for Bush, it takes into account characteristics of the entire data set, since there is a
significant visual “hole” in the graph, a more global than local phenomenon. And, while this teacher
did not explicitly describe these data as representing a signal and noise, one can imagine his statement
turning into an appropriate stochastic claim.

It is interesting to note that Figure 9 does in two-dimensions what Figure 3 seems to do in one-
dimension. It retains a detailed display of the overall shape of the data while marking and focusing on
important or interesting regions. That is, both graphs involve a fully separated view of continuous
variables and use dividers set at a contextually relevant value (in Figure 3, a T-cell count of 500), or
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reference lines set at both mean values, and then online “pencil” marks (Figure 9) to point to or get
information about the graph and thus, the data. While comparable information can be obtained using
bins, among our teachers, use of pointing tools on top of a fully separated display is more consistently
connected to global statements about the data than are binned representations. A display of the full
shape of the data seems to lead to a somewhat more holistic, aggregate view; or perhaps it just doesn’t
also support a classifier view. Yet, these types of uses of tools are less common and perhaps more
difficult to conceptualize than are methods of binning. It’s not clear whether the use of certain tools
enables more sophisticated thinking, or whether teachers and students who have more sophisticated
ways of thinking use specific tools to express their ideas.

Figure 9. Finding an “empty quadrant” in the data (the circles are the teacher’s)

5. CONCLUSIONS AND IMPLICATIONS

This study was designed to examine the strategies that teachers and students use to handle
variability in data distributions, and to explore the possibilities for data representation and analysis
that new statistical visualization tools make available. Analyzing data with such tools, in this case
TinkerPlots™, makes visible reasoning that we could not have observed before. Much as new media
both support the emergence of new ways of creating art and may reveal more of the artist’s process,
these new tools enable new representations and in so doing give us a window into the reasoning
behind them. The tools offer the opportunity to examine reasoning strategies that build on the new
representations they afford, as well as provide the cauldron within which these strategies emerge.

Our observations of teachers dealing with variability in the context of comparing groups agree
with those of Konold et al. (1997): using measures of center was by far less common than the other
strategies we have described in this paper. Our experience is, in fact, that seeing a distribution makes
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it harder to accept a measure of center, especially a mean, as being representative of the entire
distribution, with its particular spread and shape. In this sense, the binning capacity of TinkerPlots™,
we believe, filled a “need” these teachers had to describe a distribution when the variability was
perhaps more compelling than any measure of center. So our focus on binning was both because it
was a new and very visible function of TinkerPlots™ and because we saw teachers using it in ways
that helped solve a data analysis problem for them.  Thus, we saw teachers using binning from early
on and as time went on, they continued to use bins but became more sophisticated in their use of
them.  They became able to indicate more specifically which bin lines would help them make their
points or to use the more flexible, but more complex, dividers to make their argument for a difference
between groups (e.g. see Figure 3, in which teachers created a divider at a T-cell count of 500).

The difficulty of describing portions of distributions using percents rather than counts, i.e.,
multiplicatively rather than additively, is one that has been documented by other research (Cobb,
1999), and we know that students and teachers struggle with this distinction using paper versions of
dot plots.  But two features in TinkerPlots™ highlight the issue.  First, the presence of bins in
comparing groups of unequal size provides an immediate need for multiplicative thought — how does
one compare a bin in one distribution with the same bin in the other?  How does one interpret the
changing numbers as bins grow or shrink?  Second, because TinkerPlots™ can provide the count
and/or the percent of values in a bin, i.e., calculating the percent is no more difficult than counting the
points, both values are equally available and the conversation about appropriate measures is quite
likely to come up, as it did in our examples.  We also note that looking at percents and NOT counts
(as in Figure 7, in which there was a pie chart in each bin) can also lead one astray. After several
months, most of the teachers reasoned multiplicatively most, but not all, of the time.  Surprisingly,
however, some teachers continued to slip back into the additive type of reasoning, although they
could be “pulled back” out of it through conversation.

How do these results relate to Konold’s taxonomy described above (Konold & Higgins, 2002;
Konold et al., 2003)?  The two relevant pieces of that taxonomy in this context are “classifier” and
“aggregate.”  Those using a “classifier” view tended to view slices of the distributions out of context
of the rest of the distribution, e.g. by comparing the number of students who make Bs between
Amherst and Holyoke as a way to compare the entire two distributions.  Even looking at these two
bins as percents rather than counts doesn’t solve the problem.  Because the analysis ignores the
distributions on either side of the bin of interest, it counts as a “classifier” view and does not answer
questions about the entire distribution.  On the other hand, making statements that take the entire
distribution into account (e.g. 25% of this distribution is above 500 and 75% of the other distribution
is above 500) is an example of “aggregate” thinking.  So is using a measure of center such as the
mean, but because of how easy it was for teachers to make other kinds of graphs, they rarely used
measures of center.

Since TinkerPlots™ makes classifier and aggregate comparisons equally easy, the stage is set in a
classroom for discussions of alternate analyses. Valuable perspectives can emerge from questions
such as: Do two arguments about the same data set that rely on different representations always
agree?  What might be the relationship between an argument based on a classifier view and one based
on an aggregate view of the same data set?  Comparing data sets can also lead to new ideas:  In what
ways are the bins in the Amherst/Holyoke data similar to those some teachers created in analyzing the
AIDS data?  In what ways are they different? Because it is also possible to display measures of center
and variability (e.g. box plots) on a graph, classroom discussions can include comparisons of using
bins, cut points, and/or aggregate measures as a basis for analysis.

Teaching with a tool like TinkerPlots™ requires an in-depth understanding of the kinds of
thinking the tool might engender and make visible. Once thinking is made visible, it can be discussed,
challenged, and made more robust. But becoming aware of student thinking also raises new
challenges for teachers, as these new ideas can be difficult to comprehend, their validity can be
difficult to assess, and helping students work from them to more canonical ideas involves navigating
complex and unexplored conceptual terrain. It is our experience that there is no substitute in teaching
with a new tool for using it first as a learner, especially in a group in which alternate views of data and
representation are likely to arise, as they certainly will in the classroom. Using a tool as a learner can
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also help teachers experience the importance of complex data sets that pose particular challenges, e.g.,
unequal group sizes, and encourage the asking of more than one question.

We realize that many of our hypotheses and tentative conclusions are not “statistical” in nature,
but we believe that the kind of study that follows a small group of teachers or students using new
tools over two years can uncover new ways of thinking that a shorter and more controlled study could
not. The teaching experiment model upon which this research is based (Ball, 2000; Cobb, 2000; Steffe
and Thompson, 2000) uses a different set of methodologies and has different goals from a study that
can be evaluated with a quantitative statistical analysis. A teaching experiment is based on a two-
phase cycle that includes a development phase and a research phase. This cycle occurs multiple times
during any teaching experiment, roughly after every session, in the course of planning for the next
one. Teaching experiments make it possible to gather rich, multi-dimensional data that takes into
account the interactions of individual students, the classroom social context, the resources available
and the teacher’s facilitation. A teaching experiment can identify multiple learning paths, as the
methodology takes as a basic principle that individuals have different learning “stories.”

The flip side of a teaching experiment’s power to look deeply at a complex progression of events
is that the information it provides is based on a small number of participants, e.g., a classroom of
students, who are not guaranteed to be representative of a larger group. Based on our research, there
are three categories of generalization that we feel are worthy of future study. 1) Generalizing to other
groups. Do teachers not in the special subset of “those who were willing to collaborate with us” use
TinkerPlots™ in different ways? How do middle school students use TinkerPlots™ to deal with
variability? What difference would it make if we had just middle school teachers or just high school
teachers in our seminar? 2) Generalizing to other interactive visualization tools. There are a few
similar tools on the market now (TableTop™, Fathom™) and there are certain to be more. What
aspects of these tools have similar affordances to TinkerPlots™? In what ways do they support
different approaches to variability? 3) Generalizing to other professional development situations. We
worked with this group of teachers for two years, and they were willing to stick it out for that long.
What would happen in a shorter course? Do teachers use TinkerPlots™ differently if they have access
to the software at home, not just in school? In addition to these issues of generalization, we have
observed that some learners were more able to describe and discuss data as a sample. We have some
preliminary evidence that this awareness may affect the representations that learners create and find
compelling, but that is just the beginning of another complex story.

Our study explored the thinking of teachers and students as they grappled with, and tried to make
intelligent use of, new software tools. An exploratory study of this kind, which involved researchers
both as educators and observers of complex behaviors in a new arena, is bound to raise more
questions than it answers, and we believe that is part of its value. We hope that our conclusions, while
based on selective and at times incomplete evidence, can provide researchers and teachers with new
ideas as well as with new research hypotheses regarding the role of new software tools in statistics
education.
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SUMMARY

Variability stands in the heart of statistics theory and practice. Concepts and judgments involved
in comparing groups have been found to be a productive vehicle for motivating learners to reason
statistically and are critical for building the intuitive foundation for inferential reasoning. The
focus in this paper is on the emergence of beginners’ reasoning about variation in a comparing
distributions situation during their extended encounters with an Exploratory Data Analysis (EDA)
curriculum in a technological environment. The current case study is offered as a contribution to
understanding the process of constructing meanings and appreciation for variability within a
distribution and between distributions and the mechanisms involved therein. It concentrates on
the detailed qualitative analysis of the ways by which two seventh grade students started to
develop views (and tools to support them) of variability in comparing groups using various
statistical representations. Learning statistics is conceived as cognitive development and
socialization processes into the culture and values of “doing statistics” (enculturation). In the
light of the analysis, a description of what it may mean to begin reasoning about variability in
comparing distributions of equal size is proposed, and implications are drawn.

Keywords: Variability; Comparing distributions; Statistical reasoning; Exploratory data analysis;
Enculturation; Appropriation

1. SCIENTIFIC BACKGROUND

1.1. ENCULTURATION

Research on mathematical cognition in recent decades seems to converge on some important
findings about learning, understanding, and becoming competent in mathematics. Stated in general
terms, research indicates that becoming competent in a complex subject matter domain, such as
mathematics or statistics, “may be as much a matter of acquiring the habits and dispositions of
interpretation and sense making as of acquiring any particular set of skills, strategies, or knowledge”
(Resnick, 1988, p. 58). This involves both cognitive growth and socialization processes into the
culture and values of “doing mathematics or statistics”. Many researchers have been working on the
design of learning environments and teaching in order to “bring the practice of knowing mathematics
in school closer to what it means to know mathematics within the discipline” (Lampert, 1990, p. 29).
This study is intended as a contribution to the understanding of these processes in the area of
Exploratory Data Analysis (EDA), focusing on reasoning about variability in comparing distributions.

One of the ideas used in this study is that of a process of enculturation, which is included in
several recent learning theories in mathematics education (cf., Resnick, 1988; Schoenfeld, 1992).
Briefly stated, this process refers to entering a community (or a practice) and picking up the
community’s points of view. The beginning student learns to participate in a certain cognitive and
cultural practice, where the teacher has the important role of a mentor and mediator, or the
enculturator. This is especially the case with regard to statistical thinking, with its own values and

                                                       
Statistics Education Research Journal 3(2), 42-63, http://www.stat.auckland.ac.nz/serj

© International Association for Statistical Education (IASE/ISI), November, 2004



43

belief systems and its habits of questioning, representing, concluding, and communicating. Thus, for
statistical enculturation to occur, specific thinking tools are to be developed alongside collaborative
and communicative processes taking place in the classroom.

1.2. RESEARCH ON VARIATION

Bringing the practice of knowing statistics at school closer to what it means to know statistics
within the discipline requires a description of the latter. Based on in-depth interviews with practicing
statisticians and statistics students, Wild and Pfannkuch (1999) provide a comprehensive description
of the processes involved in statistical thinking, from problem formulation to conclusions. They
suggest that statisticians operate, sometimes simultaneously, along four dimensions: investigative
cycles, types of thinking, interrogative cycles, and dispositions. They position variation at the heart of
their model of statistical thinking as one of the five types of fundamental statistical thinking.

Pfannkuch and Wild (2004) further explain the centrality of reasoning about variation in data
inquiry problems:

Adequate data collection and the making of sound judgments from data require an understanding of how
variation arises and is transmitted through data, and the uncertainty caused by unexplained variation. It is a
type of thinking that starts from noticing variation in a real situation, and then influences the strategies we
adopt in the design and data management stages when, for example, we attempt to eliminate or reduce
known sources of variability. It further continues in the analysis and conclusion stages through determining
how we act in the presence of variation, which may be to either ignore, plan for, or control variation.
Applied statistics is about making predictions, seeking explanations, finding causes, and learning in the
context sphere. Therefore we will be looking for and characterizing patterns in the variation, and trying to
understand these in terms of the context in an attempt to solve the problem. Consideration of the effects of
variation influences all thinking through every stage of the [statistical] investigative cycle. (Pfannkuch &
Wild, 2004, pp. 18–19)

According to Wild and Pfannkuch (1999), there are four aspects of variation to consider: noticing
and acknowledging, measuring and modeling (for the purposes of prediction, explanation or control),
explaining and dealing with, and developing investigative strategies in relation to variation. Reading
and Shaughnessy (2004) suggest two additional aspects of variation that need to be considered;
describing and representing. They claim that these six aspects of variation form an important
foundation for statistical thinking.

Studies of reasoning about variation include investigations into the role of variation in graphical
representation (Meletiou & Lee, 2002), comparison of data sets (Watson & Moritz, 1999; Watson,
2001; Makar & Confrey, 2004), probability sample spaces (Shaughnessy & Ciancetta, 2002), chance,
data and graphs in sampling situations (Watson & Kelly, 2002), and variability in repeated samples
(Reading & Shaughnessy, 2004). Hierarchies to describe various aspects of variation and its
understanding have been developed by Watson, Kelly, Callingham, and Shaughnessy (2003) and by
Reading and Shaughnessy (2004) in the context of repeated samples.

Noticing and understanding variability encompass a broad range of ideas. The basic form of
variability in data is the variation of values within one distribution. Comparing distributions creates
the impetus to consider other types of variability that exist between groups. Makar & Confrey (2004)
discuss three different ways that teachers consider issues of variability when reasoning about
comparing two distributions. They analyzed (1) how teachers interpreted variation within a group -
the variability of data; (2) how teachers interpreted variation between groups - the variability of
measures; and (3) how teachers distinguished between these two types of variation.

1.3. RESEARCH ON COMPARING DISTRIBUTIONS

Comparing groups provides the motivation and context for students to consider data as a
distribution and take into account and integrate measures of variation and center (Konold & Higgins,
2003). At an advanced level, comparing distributions can stimulate learners to consider not only
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measures of dispersion within each group, but comparisons of measures between groups, and hence to
consider variation within the measures themselves (Makar & Confrey, 2004). Watson and Moritz
(1999) suggest that comparing two groups provides the groundwork to the more sophisticated
comparing of populations or two treatments in statistical inference. Without first building an intuitive
foundation, inferential reasoning can become recipe-like, encouraging black-and-white deterministic
rather than probabilistic reasoning.

There is some evidence however that the group comparison problem is one that students do not
initially know how to approach and the challenge may remain even after extended periods of
instruction. Students’ difficulties may stem from the multifaceted knowledge necessary for comparing
groups, such as understanding distributions (Bakker & Gravemeijer, 2004), representativeness
(Mokros & Russel, 1995), and variability in data (e.g., Meletiou, 2002). Students also have difficulties
in adopting statistical dispositions, such as tolerance towards variation in data, and integration of local
and global views of data and data representations (Ben-Zvi & Arcavi, 2001; Ben-Zvi, 2002; Ben-Zvi,
2004).

Watson and Moritz (1999) observed two response levels in group comparison tasks completed by
students during school years. In the first cycle, responses compared data sets of equal sizes, with or
without success depending on the specific context. They did not recognize and/or did not resolve the
issue of unequal sample size. In the second cycle, the issue of unequal sample size was resolved with
some proportional strategy employed for handling different sizes.

There are a number of studies in which students who appeared to use averages to describe a single
group or knew how to compute means did not use them to compare two groups (Bright & Friel, 1998;
Gal, Rothschild & Wagner, 1990; Hancock, Kaput & Goldsmith, 1992; Konold, Pollatsek, Well, &
Gagnon, 1997; Watson & Moritz, 1999). Konold et al. (1997) argue that students’ reluctance to use
averages to compare two groups suggests that they have not developed a sense of average as a
measure of a group characteristic, which can be used to represent the group. Cobb (1999) proposes
that the idea of middle clumps (“hills”) can be appropriated by students for the purpose of comparing
groups.

1.4. THE RESEARCH QUESTION

Based on these perspectives and studies, the following research question is used to structure the
current study and the analysis of data collected: How do junior high school students begin to reason
about variability as part of an open-ended group-comparison task given in a rich and supportive
classroom context? Such a context involves a computerized environment, peer collaboration and
classroom discussions, guidance of a teacher and curriculum-based tasks. The current study is
different from some of the studies described above: It follows closely the dynamic behavior and
discourse of two novice seventh grade students engaged with an EDA task. The students are observed
within their classroom during an extended period of engagement with curriculum-based data
investigation. A qualitative detailed analysis of the protocols is used, taking into account all kinds of
actions, discussions and gestures within the situations in which they occurred. The goal is to trace the
emergence of beginners’ reasoning about variation in a comparing distributions situation, including
the development of cognitive structures and the sociocultural processes of understanding and learning.

2. METHOD

Descriptions of the research setting, the statistics curriculum and the specific activity are followed
by a profile of the students, technology used, and methods of data collection and analysis.

2.1. THE SETTING

This study took place in a progressive experimental school in Tel-Aviv, Israel. Skillful and
experienced teachers, who were aware of the spirit and goals of the Statistics Curriculum (SC), taught
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three classes. The SC was developed in Israel to introduce junior high school students (grade 7, age
13) to statistical reasoning and the “art and culture” of EDA (described in more detail in Ben-Zvi &
Friedlander, 1997b; Ben-Zvi & Arcavi, 1998). The curriculum is characterized by the teaching and
learning of mathematics using open-ended problem situations to be investigated by peer collaboration
and classroom discussions using computerized environments (Hershkowitz et al., 2002). The design
of the curriculum was based on the creation of small scenarios through which students can experience
on their own, with limited teachers’ guidance, some of the processes involved in the experts’ practice
of data-based enquiry. The SC was implemented in schools and teacher courses and subsequently
revised in several curriculum development cycles.

The SC emphasizes student’s active participation in organization, description, interpretation,
representation, and analysis of data situations on topics close to the students’ world, with a
considerable use of visual displays as analytical tools (in the spirit of Garfield, 1995, and
Shaughnessy, Garfield, & Greer, 1996). It incorporates technological tools for simple use of various
data representations and transformations of them (as described in Biehler, 1993, 1997; Ben-Zvi,
2000). The scope of the curriculum is 30 periods spread over two to three months, and includes a
student book (Ben-Zvi & Friedlander, 1997a) and a teacher guide (Ben-Zvi & Ozruso, 2001).

2.2. THE SURNAMES ACTIVITY

The Surnames  activity, which is the focus of the current study, is the second full data
investigation of the SC. It comes after an investigation involving the analysis of a time-series dataset
with tabular data about Olympic 100 meters running times and a time plot of these data. The students
are asked to compare the length of a set of surnames collected in their own class (35 Hebrew names)
with a set of surnames from an American class that were given to them (35 English names). Equal
sized data sets are used to simplify some aspects of the complex situation of comparing groups found
in other studies (e.g., Gal, Rothschild & Wagner, 1990; Konold, Pollatsek, Well, & Gagnon, 1997),
primarily students’ difficulties with proportional reasoning. It was expected that the Surnames activity
will support the development of beginners’ reasoning about variability from the intuitive and simple
to the more sophisticated and expert-like reasoning. The Surname data were given in a table (a part of
it is presented in Figure 1).

Israeli Class (Hebrew names) American Class (English names)
Student’s
Number

First
Name

Surname
Surname’s

Length
Student’s
Number

First
Name

Surname
Surname’s

Length
1 4 1 Kenneth Auchincloss 11
2 5 2 Melinda Beck 4
3 7 3 Edward Behr 4
4 3 4 Patricia Bradbury 8
5 8 5 William Burger 6
6 4 6 Mathilde Camacho 7
7 5 7 Lincoln Caplan 6

Figure 1. The upper part of the spreadsheet table displaying the raw data
(There were 35 students in each class.)

In order to understand the analytic and interpretive challenge faced by the students, the two
distributions are presented graphically in Figure 2. As a background, it is important to note that the
variability between the two groups of names is in part due to differences in the structure of English
and Hebrew. In modern Hebrew, as in Arabic and some other Semitic languages, words are often
written without some vowels, making Hebrew words shorter than English words. Vowels are usually
optional and if needed are written as diacritical marks under, within or above the letters, using dots
and dashes which signify different types of vowels. These diacritical marks are not displayed in the
second and third columns of Figure 1. There are additional cultural and historical factors that
contribute to the variability in name length within and between the two language groups.
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Figure 2. Double bar chart of the two surname groups

The whole Surnames activity took place during approximately three 90-minute lessons. Most of
the time was spent on students’ work in pairs in the computer lab, led by the student textbook. The
teacher’s interactions with the students were short and mostly occurred in reaction to their request for
help. A session started with 5-10 minutes whole class introductory discussion and usually ended with
a summary led by the teacher. In a preparatory lesson, students were asked: “What is the favorite shoe
color and shoe size in your class? Compare the results to other seventh-grade classes”. Students
collected, organized, displayed and interpreted the data, compared the groups, and composed a
summary report for a shoe company. Several statistical concepts and tools were informally
introduced, or revisited, such as, statistical question and hypothesis, sample, categorical and
quantitative variables, absolute and relative frequency, bar charts and frequency table.

In the following lessons, which are the focus of this report, three methods were offered by the
curriculum-based materials to compare distributions: (a) absolute and relative frequency distributions
presented in tables; (b) basic measures of variation and center, such as range, mode, mean, and
median; and (c) graphical representations, such as a double bar chart. These statistical methods and
tools were introduced to help students in describing and interpreting the surnames data and the
variability in it, searching for trends and drawing conclusions on comparing the two groups. The
purpose of the activity was to set the stage for students to consider data as a distribution and provide
many opportunities to notice, acknowledge, intuitively deal with, and describe the variability within
and between distributions.

2.3. PARTICIPANTS

This study focuses on two students, A and D, who were above-average ability students (grade 7,
age 13), very verbal, experienced in working collaboratively in computer-assisted environments, and
willing to share their thoughts, attitudes, doubts, and difficulties. They agreed to participate in this
study, which took place mostly within their regular classroom periods and included being videotaped
and interviewed (after class) as well as furnishing their notebooks for analysis. While not necessarily
representing their classmates, verbal and able students provide a better opportunity for collecting
valuable and detailed data on their actions, thoughts and considerations.

When they started to learn this curriculum, A and D had limited in-school statistical experience.
However, they had some informal ideas and positive dispositions toward statistics, mostly through
exposure to statistics jargon in the media. In primary school, they had learned only about the mean
and the uses of some basic diagrams, such as bar and pie charts. Prior to, and in parallel with, the
learning of the SC they studied beginning algebra based on the use of spreadsheets to generalize
numerical linear patterns (Resnick & Tabach, 1999).
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The students appeared to engage seriously with the curriculum, trying to understand and reach
agreement on each task. They were quite independent in their work, and called the teacher only when
technical or conceptual issues impeded their progress. The fact that they were videotaped did not
intimidate them. On the contrary, they were pleased to speak out loud, address the camera explaining
their actions, intentions, and misunderstandings and share what they believed were their successes.

2.4. TECHNOLOGY

During the experimental implementation of the curriculum a spreadsheet package (Excel) was
used. Although Excel is not the ideal tool for data analysis (Ben-Zvi, 2000), there are several reasons
for choosing this software. Spreadsheets provide direct access that allows students to view and
explore data in different forms, investigate different models that may fit the data by, for example,
manipulating a line to fit a scatter plot. Spreadsheets are flexible and dynamic, allowing students to
experiment with and alter displays of data. For instance, they may change, delete or add data entries in
a table and consider the graphical effect of the change or manipulate data points directly on the graph
and observe the effects on a line of fit. Spreadsheets are adaptable by providing control over the
content and style of the output. Finally, spreadsheets are common, familiar, and recognized as a
fundamental part of computer literacy (Hunt, 1995). They are used in many areas of everyday life, as
well as in other domains of the mathematics curricula, and are available in many school computer
labs. Hence, learning statistics with a spreadsheet helps to reinforce the idea that this is something
connected to the real world.

2.5. DATA COLLECTION AND ANALYSIS

A diverse body of data was collected to study the effects of the new curriculum. The behavior and
reasoning of the two students on which the present study focused was analyzed using lengthy video
recordings of whole class sessions, classroom observations, interviews, and students’ notebooks and
research projects. In addition, observational data and summative assessment data were also collected
for the whole class to support other research objectives, but are beyond the scope of this paper.

The analysis of the videotapes was based on interpretive microanalysis (see, for example, Meira,
1991): a qualitative detailed analysis of the protocols, taking into account verbal, gestural and
symbolic actions within the situations in which they occurred. The goal of such an analysis is to infer
and trace the development of cognitive structures and the sociocultural processes of understanding
and learning.

Two stages were used to validate the analysis, one within the SC researchers’ team and one with
four researchers in science education, who had no involvement with the data or the SC (triangulation
in the sense of Schoenfeld, 1994). In both stages the researchers discussed, presented, and advanced
and/or rejected hypotheses, interpretations, and inferences about the students’ cognitive structures.
Advancing or rejecting an interpretation required: (a) providing as many pieces of evidence as
possible (including past and/or future episodes, and all sources of data as described earlier) and (b)
attempting to produce equally strong alternative interpretations based on the available evidence. In
most cases the two analyses were in full agreement, and points of doubt or rejection were refuted or
resolved by iterative analysis of the data. In the presentation of transcripts, comments in block
parentheses are clarifications suggested by the author, and were verified by a triangulation process.

3. RESULTS: STUDENTS’ DEVELOPMENT OF REASONING ABOUT VARIABILITY

This paper describes how A’s and D’s novice views slowly changed and evolved towards an
expert perspective while comparing two data sets of the same size. The focus is on how they began to
notice and acknowledge variability in the data and make use of special local information in different
ways as stepping-stones towards the development of global points of view of describing and
explaining the variability between the groups. The study identifies seven developmental stages of
their reasoning about variability (Figure 3).
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Stage 1 On what to focus: Beginning from irrelevant and local information.

Stage 2 How to describe variability informally in raw data.

Stage 3 How to formulate a statistical hypothesis that accounts for variability.

Stage 4 How to account for variability when comparing groups using frequency tables.

Stage 5 How to use center and spread measures to compare groups.

Stage 6 How to model variability informally through handling outlying values.

Stage 7 How to notice and distinguish the variability within and between the distributions in a
graph.

Figure 3. The seven suggested stages through which the two students progress

Stage 1. On What to Focus: Beginning from Irrelevant and Local Information
When the teacher introduced the whole class to the Surnames problem situation, she asked the

students to hypothesize about interesting phenomena regarding names in general, without first
providing them with any data. After a brief discussion about students’ intuitive hypotheses, the
teacher focused the discussion on name length in various cultures and countries, and presented the
main task: Compare the surname length of the Israeli and the American groups. The teacher
considered some sample quick responses (e.g., “American surnames are longer than Israeli
surnames”, “They are about the same”) as an indication that the students had enough familiarity with
the context of the task in order to engage meaningfully with the data. When the introduction was over,
A and D moved to the school computer lab to work on the Surnames activity. Their work was guided
by a list of questions that appeared in the Student Workbook which was part of the SC.

After A and D added the names of their classmates to the Excel table (a part of it presented in
Figure 1), they started working on the first question in their Workbook, “Look at the table and suggest
a research question about length of surnames.” The raw data, i.e., names, were displayed in a table on
the computer screen. After a short discussion they agreed on posing the question, “Which of the two
countries has longer names?” This initial focus on finding the “winning” group resembles the type of
questions suggested in the introductory whole class discussion and was typical of students’ questions
in the experimental classes. This formulation, deterministic in nature and ignoring the complexity
involved in comparing groups, is not surprising at this beginning stage of working on a complex data-
analysis task.

In the second question, students were asked to formulate a hypothesis regarding interesting
phenomena in the data. The question, which was proposed to ‘push’ students to look at the data and
consider patterns and variability, provoked the following exchange between A and D . (The row
numbers in the transcripts are provided to assist later in referring to specific sentences.)

1 A We have to phrase now a hypothesis regarding interesting phenomena in the data.
2 D Interesting phenomena, interesting phenomena. O.K., we should find interesting phenomena.

We’ll find interesting phenomena. [Reads the question again] “Formulate a hypothesis about
interesting phenomena in the length of surnames”. I didn’t understand what it exactly means.

3 A O.K., lets skip this [question], since we don’t have anything interesting at hand. We may
shortly find something.

4 D I don’t think we should skip this, we’ll simply ask what the precise intention is. I didn’t
really understand: Shall we hypothesize about ‘Mc’s’? [There are three surnames in the
American class, beginning with the letters Mc, such as McDaniel.] No! I don’t understand.
[Laughing] This isn’t funny. I'll ask Michal [their teacher] to come and help us.

Their remarks indicate that questions like “phrase a hypothesis regarding interesting phenomena
in the data” may encounter an initial inability to focus attention on relevant (even informal) aspects of
the data. A and D seemed to be unable to make full sense of the intention of the question and its
formulation. Their focus on irrelevant features of the data, or their inability to focus on anything at all
[row 3], is similar to their reaction at the beginning of the first problem situation in the SC–Olympic
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Records (analyzed in detail in Ben-Zvi & Arcavi, 2001). In both activities, they were aware that their
observations, such as names beginning with Mc, might not be relevant. They somehow recognized
what not to focus on, but were uncertain about what may qualify as ‘interesting phenomena’ in this
context, or how to reply to such questions, and finally requested the teacher’s assistance to help them
overcome this difficulty.

In the above brief discourse the students did not notice global features of the data and the
variability within it. Their initial local focus on what they saw as outstanding regularity in the data
(the three “Mc” surnames) seems to restrict them from observing the distributions as a whole.
Interestingly, this phenomenon was already observed when these students worked on their first
activity of the SC (see section 2.2). There, they were similarly attentive to the prominence of “local
deviations” in data and this appeared to keep them from creating more global interpretations of data.
Only after the following teacher intervention were they able to start focusing on relevant information,
taking into account the variability in the data.

Stage 2. How to informally describe the variability in raw data
When A and D requested the teacher’s help in answering the hypothesis task, the following dialog

took place.

5 A [Asking the teacher] What does it mean?
6 D What does it mean to “phrase a hypothesis about interesting phenomena”?
7 A That there are many names beginning with ‘Mc’?
8 T About the length of surnames. OK?
9 A What is ‘interesting phenomena’?
10 T Are there no interesting phenomena in the data?
11 A [Cynically] It’s very interesting that there is a Michael…
12 T You are asked about length!
13 D About length … An interesting phenomenon is that there is a [counting letters in the Hebrew

name Levkowitz] 1, 2, 3, 4, 5, … [7] letter name here and a 4 there [Cose in the American
class].

14 T OK. You suggest that there are very short names and very long ones.
15 A Do we have to compare?
16 D So what’s the hypothesis?
17 T I don’t know [what the hypothesis is]. First, it’s a phenomenon. What do you think? Are

there many long or many short [surnames]?
18 A There will be a lot more of the long in USA.
19 D More long than short.
20 T OK. You have a hypothesis: In the USA…
21 A But what is long, and what is short?
22 T That’s a different question.
23 A What should we write?
24 D Perhaps longer than this? Or…
25 A What name is considered long?
26 T OK. Longer than this – that’s a comparison. When you compare these groups, you say – I

expect that there will be so and so here… That’s comparing two groups. That’s all right.

The students were uncertain about the intention of the question (“phrase a hypothesis”) as well as
the meaning of the phrase “interesting phenomena”. The fact that a particular research question
(comparing the two groups in terms of surname length) had been introduced at the beginning of the
activity did not help them to focus and they seemed to be overwhelmed by the complexity of the data.
Their initial observations are irrelevant and local (Mc’s, Michael). It seems that there are three factors
interacting to produce the students’ inability to proceed: (a) the lack of understanding of the intent of
the question, (b) the lack of understanding of the phrase “interesting phenomenon”, and (c) the
complexity of the data. These factors played a role in causing confusion in other parts of the
transcripts of these students (cf. Ben-Zvi & Arcavi, 2001).
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The teacher’s initial help consisted of calling their attention twice to the investigated variable,
namely, the length of a surname. Only her second trial [row 12 in the transcript above] pushed D to
compare the surname length of two students (one from each class) [13]. Thus, he began focusing on
the correct variable and noticing one aspect of the variability in the data, but in a very local way. The
teacher accepted his answer as being in the right direction, and suggested a generalization of his local
observation [14]. This intervention represents a generalization ‘jump’ by the teacher not reflected in
the students’ previous comments. She then nudged them to quantify the variability in the data in a
simple way [17].

In response to the teacher’s direct question, the students suggested that the long surnames are
more frequent in the USA group [14–15]. It is hard to determine at this point if A considered only the
variability within the American group, or the variability between the groups. Whichever interpretation
is taken here, this initial consideration of variability later became the foundation on which A and D
developed an informal model of the variability within, as well as between, the two groups. The
students’ first attempts to describe the variability in the data by comparing long and short names
raised a new concern about the borderline between long and short names [21], which was not resolved
at this stage, and may be the beginning of an attempt to handle variability by grouping the data. The
interaction with the teacher closed with her recommendation to focus on comparing groups.

Stage 3. How to formulate a statistical hypothesis that accounts for variability
The above interaction with the teacher helped the students to re-focus and propose a hypothesis.

The following dialogue between A and D took place immediately after the teacher left them.

27 D Our hypothesis about interesting phenomena in the length of surnames is: In the USA,
surnames will be...

28 A Will be longer...
29 D Longer than in Israel…
30 A Usually than in Israel...
31 D Usually, not always, usually.
32 D Let’s see, we have Levkowitch here [in the Israeli class] and Cose there [in the American

class] – that’s different.
33 A Enough, enough, come on.
34 D OK, never mind.
35 A So, in the USA... the surnames…
36 D Will be usually longer.
37 A Very nice!

After the previous discussion with the teacher, the students were able to formulate a sensible
hypothesis regarding the comparison between the two groups that took into account the variability in
the data. They began with a deterministic proposal for a rule, ‘surnames in the USA are longer than in
Israel’. However, they noticed immediately that this assertion does not take full account of the
situation presented by the data, and decided that variability should be included in their description by
adding the constraint “usually, not always” to the rule. Understanding that some surnames can
“behave differently”, i.e., deviate from a general rule they formulated, can be considered an important
step in the development of their acceptance of the existence of and tolerance to variability. In other
words, they began to adopt the statistical perspective of trends that are generally true, but still have
exceptions.

This new understanding is evident in D’s provision of an “opposite example”, an Israeli name that
is longer than a USA name, to show that the ‘rule’ holds even if there are opposite cases. D suggested
this same example in the previous discussion with the teacher. While at that time it limited his ability
to formulate a general hypothesis and view the data globally, here it is an expression of comfort with
global views of the data that include variability. Hence, this opposite example, which derailed D from
being on the right track on the first occasion, helped him adopt a statistical view of variability at this
subsequent time.
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Why might the students have initially focused on deterministic relationships between the variables
and paid special attention to the unusual case? A possible explanation for their perspective can be
found in their short-term learning history. A  and D  used spreadsheets in their algebra studies
(immediately before they started to learn the EDA unit), to explore patterns, generalize, model
mathematical problems, create and use formulae, and draw tables and graphs. Most of the tables
investigated were linear correspondences between two sets of values. The students were accustomed
to generating tables with the spreadsheet by ‘extending’ the pattern of constant differences between
adjacent cells through the act of ‘dragging’ a pair of cells to duplicate this difference to the rest of the
cells in the column resulting in long tables with clearly defined patterns. Using the same exploratory
learning environment may have evoked for them the same deterministic nature of the relationship
between variables found in algebra, which they incorrectly applied in statistics in order to make sense
of data. Thus, their first focused observations referred to what was salient to them and a familiar part
of their practices, the ‘differences’ between adjacent data entries not being constant. The only
regularity they found in the data was a set of three Mc names. Maybe they implicitly began to sense
that the nature of these data in this new area of EDA, as opposed to algebra, is disorganized, and it is
not possible to capture it in a single deterministic formula, e.g., the previous “Usually, not always”
comment.

At the end of this episode the two students seemed very satisfied with their answer. However, it
was hard to appreciate at this stage how fragile their current understanding was. Additional
difficulties with their abilities to acknowledge, explain, describe and deal with the variability in data
in the context of this “noisy” and complex data situation unfolded in later stages of their work.

Stage 4. How to account for variability when comparing groups using frequency tables
After the students formulated a research question and hypothesis they were introduced by the

student textbook to different concepts related to frequency in the context of the surnames
investigation: frequency, relative frequency, and creating univariate frequency tables using
spreadsheets. At this stage, A and D worked smoothly with the software and tasks, explaining every
step and overcoming technical and conceptual hurdles. The following dialogue took place when they
completed the production of two univariate frequency tables and were asked to use them to compare
the two groups. See Figures 4 and 5, which are recreations of actual displays students generated on
their own.

Israeli class American class
Surname’s

length
Frequency Relative

frequency (%)
Surname’s

length
Frequency Relative

frequency (%)

2 1 3 4 4 11
3 7 20 5 2 6
4 11 31 6 10 29
5 4 11 7 4 11
6 4 11 8 9 26
7 6 17 9 2 6
8 2 6 10 1 3

Total: 35 100% 11 3 9
Total: 35 100%

Figure 4. Frequency table of surname’s
lengths in the Israeli class

Figure 5. Frequency table of surname’s
lengths in the American class

38 D [Reads the task] Use the frequency tables that you generated to compare the surnames’
length in the two countries… Emm… They [the American surnames] are really a little bit
longer. In the USA there are no 2 or 3-letter names…

39 A Yes. And in Israel…
40 D … since they [the 2 or 3-letter names] are a bit short.
41 A The table [Figure 4] starts from…
42 D From 2 [letters] to 8 [letters].
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43 A The [Israeli] surname length is from 2 to 8… And in the USA they’re from 4 to 11… In
other words, in the USA 2 or 3-letter names are not considered at all.

44 D They’re considered, but there are simply none.
45 A There are none, or there is exactly one in the whole USA, something like that… And in

Israel, names with 9, 10, and 11 letters are not considered, because there are none.
46 D Because they [American names] have vowels. For example, Raz, Itzik Raz [a student in their

class]: Here [in Hebrew] it’s R and Z, and there [in English] it’s R, A, and Z – three letters,
did you understand?

47 A In Israel, names with 9, 10, and 11 letters are not at all considered, because there are none.
There may be one or two all over the country, yes, yes.

48 D Like Levkowitch.
49 A So, for example, we see that names with 8 letters are 6% in Israel.
50 D There – they are 26%.
51 A In the USA they are 26%.
52 D 20% more.
53 A 20% more, and it’s a lot more, and…
54 D A lot more, interesting, lovely… Actually, emm… just a second… That’s exactly all I’m

saying…
55 A I assert that in the USA there are more… the names…
56 D There are longer names, right.
57 A Longer according to the comparison between these tables [Figures 4 & 5]. It may not be

certain, but at least according to these tables… So, in the USA table, there are no 2 and 3
letter-names while there are 9, 10, and 11, but none in Israel. This means that the names are
longer. [Writing this conclusion in his notebook.] Now, we also see here that in Israel, there
are many more 4-letter names, which is considered pretty short.

58 D Having a 4-letter name is the coolest matter in Israel.
59 A So maybe because of that, there are more of those [surnames] in Israel, and in the USA – the

names are longer. Therefore there aren’t many names with 4 letters there. I brought up the 4
letters just as an example.

The students were faced with an unfamiliar and complex situation, presented in two separate
frequency tables that included many values (Figures 4 & 5). Their purpose was to find ways to justify
their hypothesis that surnames in the USA are usually longer than in Israel using the two frequency
tables they had just created. On their own, they constructed a comprehensive argument, consisting of
the comparison of two kinds of “special” values within the distributions: disjoint edge values –
present in one distribution and absent from the other (and vise versa), and common edge values – the
first and the last common values of the two distributions.

They began their argument by looking at the distributions’ edges, moving from the lowest to the
highest edge, and the range of values in between. D used the left “tail” (the shortest surnames in Israel
that are missing in the USA group) as a justification for the claim that American surnames are “a little
bit longer” [38]. They continued by noticing the different ranges of the groups; however, they did not
make explicit use of them as measures of dispersion [41–43]. Then A argued symmetrically about the
right “tail” of the USA distribution that is missing in Israel. While this opposite symmetry between
the distribution edges seems to strengthen their confidence in the claim that the USA surnames are
longer, it does not help them see the horizontal shift between the two generally-similar distributions.

Once the disjoint values were considered, the students moved on to compare the frequencies of
the neighboring values, namely the last and the first common values of the distributions (8 and 4-letter
names respectively). A suggested that the large differences in the relative frequencies of these values
provided additional support to their hypothesis. They also informally acknowledged that 4-letter
surname is the ‘mode’ in Israel [58]. These comments may represent first steps towards understanding
density in a distribution.

A  and D integrated contextual knowledge to support their understanding of, and in order to
account for, the variability in the data. First, D suggested a causal explanation to account for the group
differences, namely the use of vowels in English versus diacritical symbols in Hebrew. He also
provided an example of one Israeli surname Raz, which has three letters in English but only two in
Hebrew [46]. A further speculated that their sample implied the rarity of very short and very long
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surnames in the USA and the Israeli populations respectively [47]. D supported him bringing up his
frequently mentioned example of Levkowitz, a relatively long Israeli surname in their class. In these
actions, A and D were trying to synthesize statistical and contextual knowledge to draw out what can
be learned from the data about the context of the problem. The context of the problem supports their
statistical reasoning by providing reasonable explanations to the emergent patterns in the variation. At
the end of this dialogue they wrote the following synthesis in their notebooks.

A “In the USA, the names are longer than in Israel. [This sentence was written and later erased by A.] In
the American table, there are no names with 2 and 3 letters, and there are names with 9, 10, 11 (none
in Israel). In Israel, short names are more frequent; In the USA, the long names are more frequent.”

D “In the USA, the names are longer than in Israel (according to the tables). In the American table, there
are no names with 2, 3 letters, and there are of 9 to 11.”

Arriving at a general conclusion was not a straightforward process for both students; however,
they seem to be in different positions. D, without much doubt, accepted that the conclusion “In the
USA, the names are longer than in Israel” captured the essence of the situation, and was less
disturbed by the presence of outlying values, or irregular patterns in the data. In contrast, A struggled
more with the variability presented in the data, and was more attentive to the prominence of “local
deviations”, which kept him from dealing more freely with global views of data. This could have been
the reason for his erasing the general conclusion in his written summary. On the other hand, the rest of
his conclusion is a beginning step to modeling variability and conceptualizing the use of ‘density’ in
comparing distributions.

Stage 5. How to use center and spread measures to compare groups
In the second part of the Surnames activity the students were introduced to basic statistical

measures of center (mode, mean, and median), spread (range) and outliers. They used the computer to
find the statistical measures of the two groups and organized them in a table. See Figure 6 which is a
recreation of the actual display the students generated. The next question was to use these measures to
compare the groups. The students were uncertain how to answer the question and asked for help.
After the teacher approved one answer as being in the right direction, A and D started to interpret the
table.

Statistical Measures Israeli Class American Class
Number of Students 35 35
Mode 4 6
The maximal value 8 11
The minimal value 2 4
Range 6 7
Mean 4.83 7.06
Median 4 6
Outlying values 2, 8 5, 9, 10

Figure 6. Statistical measures of the two classes (The correct median of the USA group is 7.
For the outliers, the students chose values with minimal frequency.)

Using the statistical measures table that they generated (Figure 6), the students started comparing
the groups by noticing that both the maximal and the minimal values of the Israeli group are smaller
than those of the American group. However, they erroneously concluded that the range is also smaller
since the two extreme values are smaller in the Israeli names. While the range does happen to be
smaller, it is not for the reason stated. This shows a misinterpretation on the part of the students. Once
they noticed that the mean and the median also behaved in a similar way, they inferred that all the
statistical measures of the Israeli distribution are smaller than those of the USA distribution. In spite
of their fluent work at this stage, their actions seem to be merely procedural, missing both the
meaning of measures as representative numbers (Mokros & Russel, 1995), and the distinction
between center and spread measures.
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Stage 6. How to model variability informally through handling outlying values
Dealing with information in the last row of the measures table (Figure 6) initiated the following

dialogue about outliers.

60 D But in the outlying values…
61 A In fact here it’s [different than the rest of the measures]… You expect that in Israel the

outlying values will be higher [larger] than in the USA, since there are less high [long
surnames in Israel]. But in fact you see here that in Israel the outlying values are not so high
[large].

62 D I am confused now, I don’t understand. Not correct, because if your data…
63 A If everything in Israel is smaller, then you would expect that the outlying values, yes, will be

high [large] numbers, since there are few of them; and in the USA, the outlying numbers –
will be lower [smaller], since there are few of the low [short surnames].

64 D Yes, but this is not correct.
65 A But in fact in the USA also - the high [large surnames] are the outliers.
66 D 9 and 10.
67 A Right, 10 and 9 are outliers, but 11 is really high [long].
68 D Correct.
69 A Well, let’s not write about that.

So far, the comparing of the two groups using statistical measures had been a straightforward and
monotonous task. However, the outliers in the last row of the measures table presented a new
challenge to the students: how to compare sets of numbers (2 and 8 in Israel vs. 5, 9, and 10 in USA)
that had no trivial pattern and meaning. Furthermore, A’s pre-conceptualization of outliers as unusual
and least frequent values in a distribution made him predict that the outliers in Israel would be only
the long surnames since the Israeli surnames tended to be short (and vice versa in the USA
distribution).

A seems to deal with distributions’ variability with a plain dichotomous model. In his mental
model, he divides the distributions to two groups: The short surnames that include the majority of the
Israeli values, and the long surnames - the minority (and vice versa in the USA). This model appears
to have helped him deal, describe and quantify the variability by reducing the ‘noise’ within the
distributions. He consequently predicted that the variability between the groups would be also
straightforward [61]. Once the students realized that the outliers were telling them a conflicting, more
complex ‘story’ of the variability in the data, they did not find an alternative explanation and gave up
on the resolution of the conflict.

It appears that having to deal with the outlier as a concept (i.e., a principled class of observations,
not just some specific data points) contributed to the complexity of the students’ conceptual task and
understanding at this stage. A few minutes before the above dialogue took place, they came across
outliers and chose to define them as “the highest and the lowest values”. The meaning of the Hebrew
word for outlier is “exceptional or unusual” and may have influenced their definition choice. Thus,
from their perspective, the modal value was also an outlier. The teacher’s explanation that outliers are
individual data points that fall outside the overall pattern of the distribution made them abandon the
mode as an outlying value, but left them with the view of outliers as merely the least frequent values.

Through their dealing with the outliers, the students presented a simplistic view of the
distributions in order to handle the variability in the data. In their model, resembling a skewed
distribution, the majority of the distribution concentrates in one interval, while the less frequent
values, the outliers, are positioned in a disjoint interval. This model helped them to present clearly the
difference between the distributions, which followed opposing patterns. In their view, the selection of
outliers is based on low frequencies, meaning they are exceptional, since they are rare. In that respect,
the students’ consistent use of “high” and “low” to describe the “long” and “short” surnames in all the
dialogues can be attributed to their focus on the variability in frequencies and not only to a careless
use of language.
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Stage 7. How to notice and distinguish the variability within and between the distributions in a
graph

In the third and final part of the activity, the students were guided to generate graphical displays
of the data and were asked to use them to compare the distributions. The following dialogue took
place after they created a double bar chart of the two groups (similar to the graph displayed in Figure
2).

70 D [Reading the task] Use the graph you generated (Figure 2) to describe the emerging trend in
the surnames’ length of the two countries.

71 A Let’s see: The USA… usually… no… hold on…
72 D It seems that it’s a lower trend in the USA.
73 A Not low, it seems about the same in the graph.
74 D Aha… No, higher trend.
75 A Hold on, the USA…
76 D Since you do not compare this to that, but rather this to that.
77 A [Cynically] Really!
78 D All right. [Unclear] … seven.
79 A So it’s higher here, it’s higher here, here, here, and it’s higher here; but in Israel it’s higher

here, here, here, and here.
80 D And here.
81 A And here.
82 D They balance each other.
83 A Look, the advantages [height differences] are bigger in Israel. No, not always. Let’s ask

someone [a teacher] what it means.
84 D I know what it means.
85 A What?
86 D It means that the emerging trend is…
87 A But it is not equal. Look, we said that the USA is longer… The USA leads in 8, 9, 10, and

11, while Israel leads only in 2, 3, 4, 5, and…
88 D We said that the USA names are longer, what’s the big deal?
89 A That’s right. So, the USA leads in the longer names. That’s also not a big deal since 2 was

not considered at all in the USA, while 11 was not considered at all in Israel.
90 D What’s the big deal? They were not considered because there are none.
91 A OK, but…
92 D They did not ignore data… It appears that in Israel the lengths of the lower names are…
93 A No…
94 D The length of the names
95 A In Israel… In Israel…
96 D The lengths of the lower names are…
97 A No. In Israel, the lengths of names with fewer letters have a higher frequency, but in the

USA, the lengths with… [having difficulties to complete the sentence]
98 D I know how to formulate this. Write down.
99 A No. I first want to hear what you have to say.
100 D OK. In Israel, the frequency of the names with low number of letters…
101 A Relatively low.
102 D … is higher than in the USA.
103 A Just a second, low – let’s say smaller than 5.
104 D Let’s assume so. …is higher than…
105 A No. But there is also one exception here.
106 D The frequency is higher than in the USA.
107 A But there is also one exception here.
108 D [Angrily shouting] OK, it’s in general! It’s a general trend! It’s not the trend for the

exceptional one.
109 A [Surprised by D’s reaction] Buu …
110 D OK. On the other hand, in the USA, the trend… the frequency of the long surnames is

relatively higher than in Israel.
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Although the students are familiar with generating and interpreting bar-graphs, handling this
particular double bar-graph (Figure 2) is a complex task for them. Their challenge is figuring out the
graph and understanding the variation embedded in the data. At first, the students provided conflicting
interpretations of the graph; their rather unclear statements [72-73] are initial attempts to find one
global description that accounts for variability by summarizing the difference between the bars in the
two groups. This attempt can be considered a progress in comparison to their previous interpretations
of graphs in the SC, which were mostly local, focusing on one or more individual values within the
distributions (Ben-Zvi & Arcavi, 2001). D suggested that their disagreement arose from their different
ways of reading the graph: ‘horizontal’ reading – comparing values, vs. ‘vertical’ reading –
comparing heights of bars (density, frequency).

The students then began focusing on comparing the heights of adjacent bars from the two groups.
Based on a method A suggested for summarizing the differences between the groups [76-79], they
counted how many times the bar of one group was higher than the bar of another group for each
surname value on the X-axis. For example, if for a surname length of 6 letters the bar for the Israeli
group was of height 4 and for the US group of height 10, then the US group was “winning” there.
However, this led them to an impasse: the number of “winning” Israeli and American bars was equal
[82]. A second trial to compare the height differences between adjacent bars also proved fruitless.

Only when they began focusing on the location of the “winning” bars of each group, did they
realize that the American bars are higher than the Israeli bars for the long names, while the Israeli bars
are higher for the short names. Thus, they reduced the problem of comparing each pair of bars to
comparing two subgroups, the relatively short and long surnames. Their previous success, in the
frequency table task, in handling the variability between the groups by dividing the distributions to
two groups seems to have helped the students out of impasse also here. This informal comparing
method resembles Cobb’s (1999) finding that the idea of middle clumps (“hills”) can be appropriated
by students for the purpose of comparing groups.

However, A  was not completely satisfied with the above realization and was particularly
concerned [103] about the distinction between short and long names. This issue, which worried him
also at the beginning of the activity [21], was triggered here by the lack of clear-cut borderline
between the groups: 5 and 7-letter names are more frequent in Israel and the 6-letter names are more
frequent in the USA (see Figure 2). While A could not ignore the presence of this deviation in favor of
a global summary of the variability between the groups, D was not disturbed by the ‘noise' in the data.
He claimed that their comparison is general and therefore they must ignore the one exception [108].

They requested the teacher’s approval before they wrote a summary in their notebooks: “The
emerging trend is that the frequency of relatively short names (up to 5 letters) is higher in Israel than
in the USA, but the frequency of relatively long names is higher in the USA than in Israel.” Thus their
final description of the variability between the groups was based on comparing the frequencies of two
subgroups ignoring the deviation from the trend in the center.

4. DISCUSSION

This study was undertaken to contribute to our understanding of the process through which
students develop ways to reason about variability within and between distributions. The study
examined the first steps of two students who worked on a group-comparison task in a rich technology-
based environment. In this environment, as happens in regular classes, students’ work and intuitions
are supported by formal curricular materials and ongoing instructional activities. The results
illustrated several aspects, discussed below, of students’ emerging understanding of variability in
comparing groups and the role of supporting factors in that process, in particular the teacher’s role.
Conclusions and implications are discussed further below.

4.1. STAGES IN DEVELOPMENT OF REASONING ABOUT VARIABILITY

A and D started by trying to make sense of general questions normally asked in EDA tasks. Their
learning trajectory included coming up with irrelevant answers and feeling an implicit sense of
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discomfort with them, asking for help, getting feedback, trying other answers, working on a task even
with partial understanding of the overall goal, and confronting the same issues with different sets of
data and in different investigation contexts. This problem-solving process is consistent with several
other research findings (see, for example, Moschkovich, Schoenfeld, & Arcavi, 1993; Magidson,
1992): novices may be either at a loss (when asked these kinds of questions) or their perceptions of
what is relevant are very different from the experts’ view.

When looking at raw data (stages 1-2), the students initially did not notice global features of the
data and the variability within them. Their initial focus on what they saw as outstanding regularity in
the data, the three “Mc” surnames, was based on attention to local features and seems to have
restricted them from observing global features of the distributions. As noted in an earlier activity of
the SC, A and D were attentive to the prominence of “local deviations” in data and this kept them
from dealing more freely with global views of data. It is interesting that they did not benefit from this
earlier experience. Only after the teacher’s intervention they started focusing on relevant information
and took into account the variability in the data. Their reasoning about variability evolved then from
observing differences between two values, to distinguishing between long and short names, to
noticing and informally describing the variability between the groups. They finally arrived (stage 3) at
a formulation of a rule or hypothesis that took into account the variability in the data (“usually, not
always”).

In the frequency table task (stage 4), A and D focused on individual edge values, not noticing the
global features of the distribution and ignoring the center interval of the distributions (5 to 7 letters).
Possible sources of their difficulties could have been their being novices in the new area of EDA, and
the type of representation used, two single frequency tables, which seems complex to analyze and less
supportive in terms of displaying general trends. Their initial focus on distribution edges is consistent
with other studies, for example, Biehler (2001). Novice students tend to focus on the “least” and the
“most” while describing the variability between two distributions using box plots.

The students’ insignificant and monotonous use of statistical measures (stage 5) to compare the
groups (“Everything is smaller”) resembles students’ reluctance to use averages meaningfully to
compare two groups in other studies. There are a number of studies in which students who appeared
to use averages to describe a single group or knew how to compute means did not use them to
compare two groups (e.g., Bright & Friel, 1998; Watson & Moritz, 1999). Konold et al. (1997) argue
that students’ reluctance to use averages to compare two groups suggests that they have not developed
a sense of average as a measure of a group characteristic, which can be used to represent the group
(see also Mokros & Russell, 1995). In addition, students in this study may be seeing averages as only
representing middles and having nothing to do with variation.

Throughout their dealing with and comparing the outliers between the groups (stage 6), the
students presented a simplistic view of the distributions in order to handle the variability in the data.
In their model, resembling a skewed distribution, the majority of the distribution concentrates in one
interval, while the less frequent values, the outliers, are positioned in another interval. This model
helped them to compare the distributions as following opposing patterns. In their view, the selection
of outliers was based on low frequencies, meaning they are exceptional, since they are rare. In that
respect, the students’ consistent use of “high” and “low” to describe the “long” and “short” surnames
in all the dialogues can be attributed to their focus on the variability in frequencies and not only to a
careless language flow.

They finally struggled (stage 7) with reading and interpreting the graph they generated (double
bar chart, Figure 2). They first practiced their reading of the graph, trying ‘vertical’ (density) and
‘horizontal’ (variation in values) interpretations of the variability presented in it. Then they used
different local methods to describe the variability in the data. Information they gained in handling the
frequency table task helped them in developing a dichotomous model to compare the groups.

The students’ development of reasoning about variability in comparing the groups was
accompanied by somewhat parallel development of global perception of a distribution as an entity that
has typical characteristics such as shape, center, and spread. This perception seems to be a
precondition to being able to describe the two distributions as generally similar in shape and
variability, but horizontally shifted (USA distribution shifted to the right of the Israeli distribution).
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Similar difficulties were demonstrated by eight-grade students working on “prediction” questions
about comparing groups (Bakker & Gravemeijer, 2004). These students did not shift a whole shape of
a distribution, but reasoned about just the individual bars or the majority (see also Biehler, 2001).

4.2. SUPPORTING FACTORS

The study describes the difficulties and successes of what A and D did and how they reasoned
about variation in the presence of supporting factors that are part of the learning environment in many
classes: carefully-planned curricular materials, computer tools, peer collaboration and teacher
interventions. It is difficult to tease out, however, what was “naturalistic” about students’ actions, and
what was an outgrowth of these external factors of the learning environment. What students can and
cannot do or think regarding variation is not merely a series of simple natural steps, but rather
reactions to and struggles with the challenges and tools (including computer tools, two frequency
displays, bar graphs, etc.) that were presented to them at each successive stage of an EDA journey. In
particular, students’ statistical reasoning and actions were developed throughout by introduction to
new cognitive tools and statistical concepts in a supportive learning environment.

Several factors appear to have helped the students develop their statistical reasoning about
variability:

a) Students repeatedly experimented with using different informal tools and methods, mostly local in
nature (e.g., comparing heights of adjacent bars in a graph) or invented simple models (e.g.,
dividing the distributions to two subgroups) that partially capture the variability in the data within
and between the groups.

b) Students were helped by previous experiences with these data and other sets of data. For example,
the dichotomous interpretation of the graph (stage 6) outgrows of previous handling of the
statistical measures table.

c) The context of the Surnames problem (e.g., the difference between Hebrew and English names)
supported A’s and D’s reasoning in the statistical sphere and provided reasonable explanations to
the patterns they observed in the variation. Integration of statistical knowledge and contextual
knowledge is considered a fundamental element of statistical thinking (Pfannkuch & Wild, 2004).

d) The incorporation of technological tools enabled students to simply and directly explore data in
different forms and experiment with and alter views or displays of data.

e) The interactions with the teacher helped students to adopt a statistical perspective but did not
instruct them in exactly what to do. A detailed description of the teacher’s role is provided in the
following section.

4.3. APPROPRIATION: A LEARNING PROCESS THAT PROMOTES UNDERSTANDING

The data show that most of the learning took place through dialogues between the students
themselves but also after brief conversations with the teacher. Of special interest were the teacher’s
interventions at the students’ request (additional examples of such interventions are described in Ben-
Zvi & Arcavi, 2001; Ben-Zvi, 2004). These interventions, though short and not necessarily directive,
had catalytic effects. They can be characterized in general as “negotiations of meanings” (in the sense
of Yackel & Cobb, 1996). More specifically, they are interesting instances of appropriation as a
nonsymmetrical, two-way process (in the sense of Moschkovich, 1989). This process takes place, in
the zone of proximal development (Vygotsky, 1978, p. 86), when individuals (expert and novices, or
teacher and students) engage in a joint activity, each with their own understanding of the task.
Students take actions that are shaped by their understanding; the teacher “appropriates” those actions,
into her own framework, and provides feedback in the form of her understandings, views of
relevance, and pedagogical agenda. Through the teacher’s feedback, the students start to review their
actions and create new understandings for what they do.

In this study, the teacher appropriated students’ utterances with several objectives: to reinforce the
legitimacy of an interpretation as the right ‘kind’ in spite of not being fully correct, to simply refocus
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attention on the question, to redirect their attention, to encourage certain initiatives, and implicitly to
discourage others (by not referring to certain remarks). The students appropriate from the teacher a
reinterpretation of the meaning of what they do. For example, they appropriate from her answers to
their inquiries (e.g., what phrasing an hypothesis or interesting phenomena may mean), from her
unexpected reactions to their request for explanation (e.g., “You suggest that there are very short
names and very long ones.”), and from inferring purpose from the teacher’s answers to their questions
(e.g., “About the length of surnames. OK?”). Appropriation by the teacher (to support learning) or by
the students (to change the sense they make of what they do) seems to be a central mechanism of
enculturation: entering and picking up the points of view of a community or culture (Schoenfeld,
1992; Resnick, 1988). In this process, the teacher is considered as an ‘enculturator’. As shown in this
study, this mechanism is especially salient when students learn the dispositions that accompany using
the subject matter (data analysis) rather than its skills and procedures.

4.4. LIMITATIONS OF THE STUDY

The two students described in this study were considered by their teacher to be both able and
verbal. Their choice was aimed to enable the collection and analysis of focused and remarkably
detailed data in order to draw, in very fine strokes, the “picture” of their emerging statistical reasoning
about variability. Even when a phenomenon seems important and the data interpretation was validated
and agreed upon, the question of the idiosyncrasy of the identified phenomenon may remain open.
Therefore, in other studies, the data and interpretations from students in the same class or from other
classes assist in checking for generalizability of the phenomena (cf., Ben-Zvi, 2002).

In presenting the students with tasks based on comparing two groups of equal size, some
complications are avoided. This is both an advantage and disadvantage for the overall aims of this
study. Research shows that the group comparison problem is one that students do not initially know
how to approach and the challenge may remain even after extended periods of instruction (e.g.,
Bakker & Gravemeijer, 2004). Avoiding some of the complexity of proportional reasoning, the key
for handling groups of different size, simplifies the task and may help researchers focus on and
expose students' reasoning about variability. In this study, students were “pushed” to consider other
complex statistical issues, such as integrating measures of variation and center and comparing
measures within each group and between groups. However, it should be acknowledged that the study
of students’ statistical reasoning about variability in comparing groups is not complete without
incorporating tasks of comparing unequal data sets.

5. IMPLICATIONS

The idiosyncratic aspects of this study restrict the provision of broad recommendations. However,
several conclusions that are tied to specifics of this study and its results, in the context of results from
similar studies, can be drawn. The learning processes described in this paper took place in a carefully
designed environment. This environment included: a curriculum built on the basis of expert views of
EDA as a sequence of semi-structured, yet open, leading questions within the context of extended
meaningful problem situations (Ben-Zvi & Arcavi, 1998), timely and non-directive interventions by
the teacher as representative of the discipline in the classroom (cf., Voigt, 1995), and computerized
tools that enable students to handle complex actions (change of representations, scaling, deletions,
restructuring of tables, etc.) without having to engage in too much technical work, leaving time and
energy for conceptual discussions (cf., Ben-Zvi, 2000).

In learning environments of this kind, from the very beginning students encounter, develop, and
work with ideas, concepts, cognitive tools and dispositions related to the culture of EDA, such as
making hypotheses, summarizing data, recognizing trends and variability, identifying interesting
phenomena, comparing distributions and handling numerical, tabular and graphical data
representations. Skills, procedures and strategies, such as creating and interpreting graphs and tables
or calculating statistical measures, are learned as integrated in the context and at the service of the
main ideas of EDA.
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It can be expected that beginning students will have difficulties, of the type described, when
confronting the problem situations of the curriculum. However, it is proposed that what A  and D
experienced should be an integral and inevitable component of a meaningful learning process if it is to
have lasting effects. If students were to work in environments such as the above, teachers are likely to
encounter the following learning phenomena:

* Students’ prior knowledge would and should be engaged in interesting and surprising ways,
possibly hindering progress in some instances but making the basis for construction of new
knowledge in others,

* many questions that would either make little sense to the students, or, alternatively, will be re-
interpreted and answered in different ways than intended, and

* students’ work that would inevitably be based on partial understandings, which will grow and
evolve.

This study suggests that in order to help students gradually build a sense of the meaning of the
data and statistical task with which they engage, multiple factors can and should be planned. These
include appropriate teacher guidance, peer work and interactions, and more importantly, ongoing
cycles of experiences with realistic problem situations.

Given that it is difficult to tease out the effects of what students learned or could or couldn’t do
from the enculturation processes and support of the teacher, further study is recommended that focus
more attention on the role of teachers and what they should do, or learn to do, in order to promote
statistical reasoning about variability. Much of students’ progress in the current study is influenced by
their interactions with the teacher that helped them adopt the statistical perspective but did not instruct
them in exactly what to do or how to reason. The role of the teacher which is considered as an
‘enculturator’ deserves further exploration.

It is generally recommended that students be provided with multiple opportunities to engage with
data in group-comparison tasks. The role of comparing unequal-size groups in promoting reasoning
about variability, which was not studied here, should be further explored. The students in this study
have gained from reading and interpreting multiple types of conventional data representations. The
role of student-invented data representations and new graphical tools available through educational
software and Internet has to be investigated to better expose the many ways variability is noticed,
measured, and modeled by students. It is hoped that the complexity involved in group-comparison
tasks can push students to think about the meaning of what they do and how they reason in statistics,
develop relevant actions and interpretations, and be more critical of their actions and interpretations.
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SUMMARY

This paper examines ways in which coherent reasoning about key concepts such as variability,
sampling, data, and distribution can be developed as part of statistics education. Instructional
activities that could support such reasoning were developed through design research conducted
with students in grades 7 and 8. Results are reported from a teaching experiment with grade 8
students that employed two instructional activities in order to learn more about their conceptual
development. A “growing a sample” activity had students think about what happens to the graph
when bigger samples are taken, followed by an activity requiring reasoning about shape of data.
The results suggest that the instructional activities enable conceptual growth. Last, implications
for teaching, assessment and research are discussed.

Keywords: Design research; Distribution; Instructional activities; Middle school level;
Sampling

1. BACKGROUND OF THE RESEARCH

The first time I visited an American classroom I attended a statistics lesson in grade 5. When the
teacher asked a question that sounded statistical but did not require a measure of center, one student,
Malcolm, thoughtlessly muttered “meanmedianmode,” as if it were one word. My impression was that
these students had been drilled to calculate mean, median, and mode, and to draw bar graphs, but did
not use their common sense in answering statistical questions. This small incident exemplifies what a
litany of research in statistics education reports on: too often, students learn statistics as a set of
techniques that they do not apply sensibly. Even if they have learned to calculate mean, median,
mode, and to draw histograms and box plots, they mostly do not understand that they can use a mean
as a group descriptor when comparing two data sets—to give one example that is well documented
(Konold & Higgins, 2003; McGatha, Cobb, & McClain, 2002; Mokros & Russell, 1995). This
problem is not typically American; it also applies to the Dutch context, but to a lesser extent. The
reason for this is probably that Dutch students mostly learn statistical concepts and graphs such as
median, mode, histogram, and box plot about three years later than in the USA.

Despite differences between the curricula in different countries, the underlying problem remains
the same: students generally lack the necessary conceptual understanding for analyzing data with the
statistical techniques they have learned. The problem many statistics educators encounter is that
students tend to perceive data just as a series of individual cases (a case-oriented view), and not as a
whole that has characteristics that are not visible in any of the individual cases (an aggregate view).
Hancock, Kaput, and Goldsmith (1992) note that students need to mentally construct such an
aggregate before they can perceive a data set as a whole. Many researchers have encountered the
same problem and experienced its persistency (e.g. Ben-Zvi & Arcavi, 2001; Wilensky, 1997).
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The above implies that students need to develop a conceptual structure with which they can
conceive data sets as aggregates. Konold and Pollatsek (2002) argue that students need to develop a
conceptual understanding of signal and noise in order to understand what an average value is about in
relation to the variation around that value. The present paper distinguishes two types of signals in
noisy processes or patterns in variability. First, the signal can be a true value with error as noise
around it. Such signals are apparent in repeated measurements of one item (Petrosino, Lehrer, &
Schauble, 2003). The “center clump” is then an indication of where the true value probably is.
Second, the signal might be a distribution, such as the shape of a smooth bell curve of the normal
distribution, with which we model data. The noise in that case is the variation around that smooth
curve. In either type of pattern, it is evident that students need good conceptual understanding before
they can recognize signals in noisy processes. This paper focuses on the second type of signal in noisy
processes or, other words, shape as a pattern in variability.

The concept of distribution is a structure with which students can conceive aggregate features of
data sets (Cobb, 1999; Gravemeijer, 1999). Petrosino et al. (2003, p. 132) write: “Distribution could
afford an organizing conceptual structure for thinking about variability located within a more general
context of data modeling.” Of course, distribution is a very advanced concept that, in its full
complexity, is far beyond the scope of middle school students (Wilensky, 1997). Nevertheless, it is
possible to address the issue of how data are distributed from an informal situational level onwards by
focusing on shape (Bakker & Gravemeijer, 2004; Cobb, 1999; Russell & Corwin, 1989). In the
research of Cobb, McClain, and Gravemeijer (2003), students came to reason with “hills” to indicate
“majorities” of data sets, which are informal terms to describe the hill shape of data sets and areas in
graphs where most data points seemed to be. Bakker and Gravemeijer (2004) report that students
reasoned how a “bump” would shift if older students were measured, and what would happen with the
bump if the sample “grew”, i.e., began to include more and more cases. The seventh-grade students in
their study came to see a pattern in the variability of different phenomena such as weight, height, and
wingspan of birds.

In the first teaching experiment I conducted in grade 7 (Bakker, 2004), I focused on the concept of
distribution, but this turned out to be too limited. Sampling, for instance, is also crucial to address in
an early stage of statistical data analysis (see also Bakker & Gravemeijer, 2004). The research
presented here focused on a broader set of key concepts that students, in my view, need to develop in
order to analyze data in a meaningful way: variability, sampling, data, and distribution (cf. Garfield &
Ben-Zvi, 2004). The main question of the overall research was, how can we promote coherent
reasoning about variability, sampling, data, and distribution in a way that is meaningful for students
with little statistical background?

The learning process aimed at in this research can be characterized as “guided reinvention”
(Freudenthal, 1991). Students were stimulated to contribute their own ideas, strategies, and language
in solving statistical problems (reinvention), but they were also provided with increasingly
sophisticated ways to describe how data were distributed and to characterize data sets (planned
guidance).

In this paper I report results from a teaching experiment that employed two instructional activities
I developed. The paper analyzes students’ learning process in order to learn more about their
development of key concepts underlying statistical data analysis, especially variability, sampling,
data, and distribution. The two activities used seemed particularly promising for fostering coherent
reasoning about these key concepts and were developed using a cyclic approach of designing
instructional materials, testing them during classroom-based teaching experiments, analyzing
students’ learning process, and revising the instructional materials. The first instructional activity,
growing a sample or a data set, is an elaboration of an activity described in Bakker and Gravemeijer
(2004). The second activity involved reasoning about shapes that students themselves had proposed.
In grade 7, it turned out to be difficult for students to reason with shape, except for high achievers
who reasoned with bumps. The teaching experiment reported here was therefore carried out in a
higher grade (8th).

Below, I first elaborate on the methodological approach of design research employed in this
eighth-grade teaching experiment, and then describe the subjects, data collection, and method of
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analysis. Results are then presented regarding students’ reasoning during two instructional activities,
“growing a sample” and “reasoning about shapes”. Finally, the results and their limitations are
discussed, as well as implications for teaching, assessment, and research.

2. METHODOLOGY AND SUBJECTS

2.1. DESIGN RESEARCH

To answer the question of how coherent reasoning about variability, sampling, data, and
distribution could be promoted, I needed to design instructional activities that could support such
reasoning as well as to understand how those activities supported students’ conceptual development.
If the kind of education aimed at is not yet available, the required conditions first need to be created.
Instructional design is therefore an important part of the research presented here. In general, if you
want to change something you have to understand it and if you want to understand something you
have to change it. In this approach, design and “research” are highly intertwined, and it will not
surprise the reader that this type of research falls under the general heading of “design research.”
Design research typically involves cycles of three phases: a preparation and a design phase (of
instructional materials for example), teaching experiments, and retrospective analyses (Cobb,
Confrey, diSessa, Lehrer, & Schauble, 2003; Gravemeijer, 1994).

1. Preparation and design phase. In the research presented here, the preparation phase consisted
of a literature survey, a historical study of the statistical concepts and graphs at issue (Bakker, 2003),
and the first reformulation of a Hypothetical Learning Trajectory (HLT), which Simon (1995) defines
as follows: “A hypothetical learning trajectory is made up of three components: the learning goal that
defines the direction, the learning activities, and the hypothetical learning process – a prediction of
how the students’ thinking and understanding will evolve in the context of the learning activities” (p.
136). The hypothetical learning trajectory of the present study was to support students in reasoning
about aspects of distribution and sampling using increasingly sophisticated concepts and graphs.
Further details about hypothetical learning trajectories can be found in a special issue of Mathematical
Thinking and Learning devoted to this topic: 6(2).

2. Teaching experiment. The HLT is tested and possibly revised during a teaching experiment.
The anticipations formulated in the HLT give guidance to both teacher and researcher of what to
focus on during instruction, interviewing, and observation. The teacher and researcher can adjust their
original plans if new ideas seem to be better, so they need not wait till the end of the teaching
experiment to change activities or even the end goal.

3. Retrospective analysis. The retrospective analysis is meant to find out if the anticipations of the
HLT were right, to find patterns in students’ learning processes and to understand the role of the
instructional materials (activities, software). New insights mostly lead to the revision of the
instructional materials, the end goals, or the route to be taken next time and a revised HLT that can
guide the next teaching experiment.

Overall, the idea behind developing an HLT is not to design the perfect instructional sequence,
which in my view does not exist, but to provide empirically grounded results that others can adjust to
their local circumstances. The HLT remains hypothetical because each situation, each teacher, and
each class is different. Yet patterns can be found in students’ learning that are similar across different
teaching experiments (Bakker, 2004). Those patterns and the insights of how particular instructional
activities support students in particular kinds of reasoning can be the basis for a more general
instructional theory of how a particular domain can be taught.

 2.2. SETUP, SUBJECTS, DATA COLLECTION, AND ANALYSIS

Setup. This paper focuses on the fourth and the sixth lessons of a series of ten lessons, each 50
minutes long. In these specific lessons, on which the restrospective analyses also centered, students
reasoned about larger and larger samples and about the shape of distributions. Half of the lessons
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were carried out in a computer lab and as part of them students used two software minitools (Cobb,
Gravemeijer, Bowers, & Doorman, 1997), simple Java applets with which they analyzed data sets on,
for instance, battery life span, car colours, and salaries (Figure 1). As a researcher I was responsible
for the instructional materials and the teacher was responsible for the teaching, though we discussed
in advance on a weekly basis both the materials and appropriate teaching style. Three pre-service
teachers served as assistants and helped with videotaping and interviewing students and with
analyzing the data.

a) b)

c) 

Figure 1. a) Minitool 1 showing a value-bar graph of battery life spans in hours of two brands.
b) Minitool 1, but with bars hidden. c) Minitool 2 showing a dot plot of the same data sets.

Subjects. The teaching experiment was carried out in an eighth-grade class with 30 students in a
public school in the center of the Dutch city of Utrecht in the fall of 2001. The students in this study
were being prepared for pre-university (vwo) or higher vocational education (havo). The top 35-40%
of Dutch students attend these types of education. The remaining 60-65% of students are prepared for
other types of vocational education (vmbo). Other relevant background information is that school
textbooks play a central role in the practice of Dutch mathematics education. Students are expected to
be able to work through the tasks by themselves, with the teacher available to help them if necessary.
As a consequence, tasks are broken down into very small steps and real problem solving is rare.
Students’ answers tend to be superficial, in part because they have to deal with about eight different
problem contexts per lesson (Van den Boer, 2003). The students in the class reported on here were not
used to whole-class discussions, but rather to be “taken by the hand” as the teacher called it; they
were characterized by the three assistants as “passive but willing to coorporate.” These eighth-grade
students had no prior instruction in statistics; they were acquainted with bar and line graphs, but not
with dot plots, histograms, or box plots. Students already knew the mean from calculating their report
grades, but mode and median were not introduced until the second half of the instructional sequence
after variability, data, sampling, and shape had been topics of discussion.
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Data collection. The collected data on which the results presented in this paper are based
(regarding the fourth and sixth lessons) include student work, field notes, and the audio and video
recordings of class activities that the three assistants and I made in the classroom. An essential part of
the data corpus was the set of mini-interviews we held during the lessons; they varied from about
twenty seconds to four minutes, and were meant to find out what concepts and graphs meant for
students, or how the mini-tools were used. These mini-interviews influenced students’ learning
because they often stimulated reflection. However, I think that the validity of the research was not put
in danger by this, since the aim was to find out how students learned to reason with shape or
distribution, not whether teaching the sequence in other eighth-grade classes would lead to the same
results in the same number of lessons. Furthermore, the interview questions were planned in advance,
and discussed with the assistants.

Analysis. For the analysis, I read the transcripts, watched the videotapes, and formulated
conjectures on students’ learning on the basis of episodes identified in the transcripts and video. The
generated conjectures were tested against other episodes and the rest of the collected data (student
work, field observations, and tests) in the next round of analysis (triangulation). Then the whole
generating and testing process was repeated, a method resembling Glaser and Strauss’s constant
comparative method (Glaser & Strauss, 1967). About one quarter of the episodes, including those
discussed in this paper, and the conjectures belonging to these episodes were judged by the three
assistants who attended the teaching experiment. The amount of agreement among judges was very
high, over 95%. Only the conjectures that all of us agreed upon were kept. An example of a
conjecture that was confirmed was that students tended to group data sets, real or imagined, into three
groups of low, “average”, and high values.

For analyzing students’ reasoning with diagrams I used the semiotics of Peirce (1976), in
particular his concepts of diagrammatic reasoning and hypostatic abstraction. Diagrammatic
reasoning involves three steps: constructing a diagram, experimenting with it, and reflecting upon the
results. An important part of the reflection step is to describe what is seen in diagrams (bars, dots,
relationships, shapes). The process of describing qualities of those objects can be called predication.
Van Oers (2000) uses the following definition: “Predication is the process of attaching extra quality to
an object of common attention (such as a situation, topic or theme) and, by doing so, making it
distinct from others” (p. 150). Next, hypostatic abstraction is one of the forms of abstraction that
Peirce distinguished: a predicate becomes an object in itself that can have characteristics. This is
linguistically reflected in the transition from a predicate (e.g. most, lying out) to a noun (majority,
outlier). Note that this paper focuses only on predication or hypostatic abstraction in instances of
diagrammatic reasoning.

3. RESULTS

This section presents the analysis of students’ reasoning during the two instructional activities on
which this paper is focused. The first, carried out in the fourth lesson, is reasoning about larger and
larger samples, or larger and larger data sets. I call this activity “growing a sample” (following
Konold & Pollatsek, 2002), though some readers may prefer to call it “growing a data set.” The term
“sample” is preferred here because one intention of the activity was to let students think about
samples versus populations. The second activity, carried out in the sixth lesson, is reasoning about
shapes of these data sets. For each activity, I first summarize the hypothetical learning trajectory
(HLT) of that lesson, and then present the analysis.

3.1. GROWING A SAMPLE

The overall goal of the growing samples activity as formulated in the hypothetical learning
trajectory for this fourth lesson was to let students reason about shape in relation to sampling and
distribution aspects in the context of weight. The idea was to start with students’ own ideas and guide
them toward more conventional notions and representations.
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Before getting to the growing samples activity, in a previous (third) lesson students had answered
the question of how many eighth graders could go into a hot air balloon if normally eight adults (apart
from the balloon pilot) were allowed. They also had made a prediction of a weight graph of eighth
graders, without having any data available yet. It was apparent that students tended to choose small
group sizes such as 10 or 15. The students had also had two lessons of experience with two the
minitools. The first minitool supplies a value-bar graph in which each bar has a length corresponding
to the data value it represents (Figure 1a); the second minitool provides a dot plot (Figure 1c). In the
first minitool, students can organize data, for instance by sorting or hiding subsets of data, and by
sorting the data by size. They can also hide the bars, so that they only see the endpoints of the bars
(Figure 1b). In the second minitool, these endpoints have been collapsed onto the axis. Students can
organize data with different options, for instance making their own groups, two equal groups
(precursor to the median), four equal groups (precursor to box plot), and fixed interval width
(precursor to histogram).

The activity of growing a sample built on the balloon activity. It consisted of three cycles of
making sketches of a hypothetical situation and comparing those sketches with graphs displaying real
data sets. In the first cycle students had to make a graph of their own choice of a predicted weight data
set with sample size 10. The results were discussed by the teacher to challenge this small sample size,
and in the subsequent cycles students had to predict larger data sets (one class, three classes, all
students in the province). Three such cycles took place as described below. The teacher and I tried to
strike a balance between engaging students in statistical reasoning and allowing their own
terminology on the one hand, and guiding them in using conventional and more precise notions and
graphical representations on the other.

First cycle of growing a sample
The text of the student activity sheet for the fourth lesson started as follows:

Last week you made graphs of predicted data for a balloon pilot. During this lesson you will get
to see real weight data of students from another school. We are going to investigate the influence of
the sample size on the shape of the graph.

a. Predict a graph of ten data values, for example with the dots of minitool 2.

The sample size of ten was chosen because the students had found that size reasonable after the
first lesson in the context of testing the life span of batteries. Figure 2a shows examples for three
different types of diagrams the students made to show their predictions: there were three value-bar
graphs (such as in minitool 1, e.g., Ruud’s diagram), eight with only the endpoints (such as with the
option of minitool 1 to “hide bars”, e.g., Chris’s diagram) and the remaining nineteen plots were dot
plots (such as in minitool 2, e.g., Sandra’s diagram). This means that their graphs were heavily
influenced by their experiences with the minitools.

Figure 2a. Student predictions (Ruud, Chris, and Sandra) for ten data points (weight in kg)

Ruud Chris

Sandra
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For the remainder of this section, the figures and written explanations of these three students are
demonstrated, because their work gives an impression of the variety of the whole class. The learning
abilities of these students varied considerably: Ruud and Chris’s report grades were in the bottom
third of the class whereas Sandra had the best overall report score of the class across all subjects. I
have chosen those three students because their diagrams represent all types of diagrams made in this
class, also for other cycles of growing a sample.

To stimulate the reflection on the graphs, the teacher showed three samples of ten data points on
the blackboard and students had to compare their own graphs (Figure 2a) with the graphs of the real
data sets (Figure 2b).

Figure 2b. Three real data sets in minitool 2

b. You get to see three different samples of size 10. Are they different than your own prediction?
Describe the differences.

The reason for showing three small samples was to show the variation among these samples.
There were no clear indications, though, that students conceived this variation as a sign that the
sample size was too small for drawing conclusions, but they generally agreed that larger samples were
more reliable. There was a short class discussion about the graphs with real data before students
worked for themselves again. The point relevant to the analysis is that students started using
predicates to describe aggregate features of the graphs. Please note that a grammatical translation into
English of ungrammatical spoken Dutch does not always sound very authentic.

Teacher: We’re going to look at these three different ones [samples in Figure
2b]. Can anyone say something yet? Give it a try.

Jacob: In the middle [graph], there are more together.
Teacher: Here [pointing to the middle graph of Figure 2b] there are many

more together, clumped or something like that. Who can mention
other differences?

Jacob: Well, uh, the lowest, I think it’s all the furthest apart.
Teacher: Those are all the furthest apart. Here [in the middle graph] they are

in one clump. Are there any other things you notice, Gigi?
Gigi: Yes, the middle one has just one at 70. [This is a case-oriented

view.]
Teacher: There’s only one at 70 and the rest are at 60 or lower? Yes?

Can you say something about the mean perhaps?
Rick: The mean is usually somewhere around 50.
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The written answers of the three students were the following:

Ruud: Mine looks very much like what is on the blackboard.
Chris: The middle-most [diagram on the blackboard] best resembles mine

because the weights are close together and that is also the case in
my graph. It lies between 35 and 75 [kg].

Sandra: The other [real data] are more weights together and mine are
further apart.

Ruud’s answer is not very specific, like most of the written answers in the first cycle of growing
samples. Chris used the predicate “close together” and added numbers to indicate the range, probably
as an indication of spread. Sandra used such terms as “together” and “further apart,” which address
spread. The students in the class used common predicates such as “together,” “spread out” and
“further apart” to describe features of the data set or the graph. For the analysis it is important to note
that the students used predicates (together, apart) and no nouns (spread, average) in this first cycle of
growing samples. Spread can only become an object-like concept, something that can be talked about
and reasoned with, if it is a noun. In the semiotic theory of Peirce (1976), such transitions from the
predicate “the dots are spread out” to “the spread is large” are important steps in the formation of
concepts.

Second cycle of growing a sample
The students generally understood that larger samples would be more reliable. With the feedback

students had received after discussing the samples of ten data points in dot plots, students had to
predict the weight graph of a whole class of 27 students and of three classes with 67 students (27 and
67 were the sample sizes of the real data sets of eighth graders of another school).

c. We will now have a look how the graph changes with larger samples. Predict a sample of 27
students (one class) and of 67 students (three classes).

d. You now get to see real samples of those sizes. Describe the differences. You can use words
such as majority, outliers, spread, average.

During this second cycle, all of the students made dot plots, probably because the teacher had
shown dot plots on the blackboard, and because dot plots are less laborious to draw than value bars
(only one student started with a value-bar graph for the sample of 27, but switched to a dot plot for the
sample of 67). The hint on statistical terms was added to make sure that students’ answers would not
be too superficial, as often happened before, and to stimulate them to use such notions in their
reasoning. It was also important for the research to know what these terms meant for them. When the
teacher showed the two graphs with real data, there was once again a short class discussion in which
the teacher capitalized on the question of why most student prediction now looked pretty much like
what was on the blackboard, whereas with the earlier predictions there was much more variation. No
student had a reasonable explanation, which indicates that this was an advanced question. When
comparing their own graphs (Figure 3a) with real data (Figue 3b), the same three students wrote:

Ruud: My spread is different.
Chris: Mine resembles the sample, but I have more people around a

certain weight and I do not really have outliers, because I have 10
about the 70 and 80 and the real sample has only 6 around the 70
and 80.

Sandra: With the 27 there are outliers and there is spread; with the 67 there
are more together and more around the average.
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Figure 3a. Predicted graphs for one and for three classes by Ruud, Chris, and Sandra

Figure 3b. Real data sets of size 27 and 67 of students from another school

Here, Ruud addressed the issue of spread. Chris was more explicit about a particular area in her
graph, the category of high values. She also correctly used the term “sample,” which was newly
introduced in the second lesson. Sandra used the term “outliers” at this stage, by which students meant
“extreme values” (not necessarily exceptional or suspect values). She also seemed to locate the
average somewhere and to understand that many students are about average. These examples illustrate

Chris

Sandra

Ruud
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that students used statistical notions for describing properties of the data and diagrams. From a
statistical point of view, these terms were not very precise. With “mean” students generally meant
“about average” or “the middle typical group”; with “spread” they meant “how far the data lie apart”.
And with “sample” they seemed to mean just a bunch of people, not necessarily the data as being
representative for a population (cf. Schwartz et al., 1998).

In contrast to the first cycle of growing a sample, students used nouns instead of just predicates
for comparing the diagrams. Ruud (like others) used the noun “spread,” whereas students earlier used
only predicates such as “spread out.” Of course, this does not always imply that if students use these
nouns that they are thinking of the right concept. Statistically, however, it makes a difference whether
we say, “the dots are spread out” or “the spread is large.” In the latter case, spread is an object-like
entity that can have particular aggregate characteristics that can be measured (for instance by the
range, the interquartile range, or the standard deviation). Other notions, outliers, sample, and average,
are now used as nouns, that is as conceptual objects that can be talked about and reasoned with.

Third cycle of growing a sample
The aim of the hypothetical learning trajectory was that students would come to draw continuous

shapes and reason about them using statistical terms. During teaching experiments in the seventh-
grade experiments (Bakker & Gravemeijer, 2004), experiments in two American sixth-grade classes,
and a visit to an American group of ninth graders, reasoning with continuous shapes turned out to be
difficult to accomplish, even if it was asked for. It often seemed impossible to nudge students toward
drawing the general, continuous shape of data sets represented in dot plots. At best, students drew
spiky lines just above the dots. This underlines that students have to construct something new (a
notion of signal, shape, or distribution) with which they can look differently at the data or the variable
phenomenon.

In this last cycle of growing the sample, the task was to make a graph showing data of all students
in the city, not necessarily with dots. The intention of asking this was to stimulate students to use
continuous shapes and dynamically relate samples to populations, without making this distinction
between sample and population explicit yet. The conjecture was that this transition from a discrete
plurality of data values to a continuous entity of a distribution is important to foster a notion of
distribution as an object-like entity with which students could model data and describe aggregate
properties of data sets. The task proceeded as follows:

e. Make a weight graph of a sample of all eighth graders in Utrecht. You need not draw dots. It is
the shape of the graph that is important.

f. Describe the shape of your graph and explain why you have drawn that shape.

 The figure of the same three students are presented in Figure 4 and their written explanations
were:

Ruud: Because the average [values are] roughly between 50 and 60 kg.
Chris: I think it is a pyramid shape. I have drawn my graph like that

because I found it easy to make and easy to read.
Sandra: Because most are around the average and there are outliers at 30

and 80 [kg].

Ruud’s answer focused on the average group, or “modal clump” as Konold and colleagues (2002)
call such groups in the center. During an interview after the fourth lesson, Ruud literally called his
graph a “bell shape,” though he had probably not encountered that term in a school situation before
(three other students also described their graphs as bell shapes). This is probably a case of reinvention.
Chris’s graph was probably inspired by line graphs that the students made during mathematics
lessons. She introduced the vertical axis with frequency, though such graphs had not been used before
in the statistics course. Sandra probably started with the dots and then drew the continuous shape.
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Figure 4. Predicted graphs for all students in the city by Ruud, Chris, and Sandra

In this third cycle of growing a sample, 23 students drew a bump shape. The words they used for
the shapes were pyramid (three students), semicircle (one), and bell shape (four). Although many
students draw continuous shapes, I did not exactly know what these shapes meant for them.
Therefore, in the next section, I analyze students’ reasoning with such shapes in the sixth lesson,
which built on the fourth lesson. Furthermore, almost all student graphs looked roughly symmetrical,
which is not surprising when the history of distribution is taken into account (Steinbring, 1980). In
real life, however, the phenomenon of weight shows distributions that are skewed to the right. The
skewness of weight data is caused by a “left wall effect” (two students had in fact drawn a left wall in
the fourth lesson). By a left wall I mean that the lower limit (say about 30 kg) is relatively close to the
average (53 kg) and the upper limit is relatively far away from the average (for example, sumo
wrestlers can weigh 350 kg). The lower limit of 35 kg serves as a left wall, because adults can hardly
live if they are lighter than 30 kg. This left wall in combination with no clear right wall causes the
distribution to be skewed to the right. So far we had focused on spread and center as the core aspects
of distribution, but skewness is another important characteristic of a distribution. Once there are
different shapes to talk about, for example symmetrical or skewed, students can characterize shapes
with different predicates. According to the hypothetical learning trajectory, skewness therefore had to
become a topic of discussion as well in the following lessons. The next section shows how this was
accomplished in the sixth lesson.

3.2. REASONING ABOUT SHAPES

In collaboration with the teacher, the following activity was designed with the purpose to make
shape and in particular skewness a topic of discussion. To focus the students’ attention on shape and
skewness, the five shapes depicted in Figure 5 were drawn on the blackboard. They included three
shapes mentioned by the students (a semicircle, a pyramid, a bell shape) and two skewed shapes (one
unimodal distribution skewed to the right, and one skewed to the left). Students had to explain which
shapes could not match the general distribution of people’s weights based on their knowledge. The
teacher expected that it would be easier for students to engage in the discussion if they could argue
which shapes were not correct, instead of defending the shape they had chosen.

Sandra

Ruud Chris
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Figure 5. Five shapes as drawn on the blackboard: (1) semicircle, (2) pyramid, (3) normal
distribution, (4) distribution skewed to the right, (5) distribution skewed to the left

The teacher chose students from the groups who thought that a particular shape on the blackboard
could not be right. For all shapes except the normal shape, many students raised their hands.
Apparently, most students expected a “normal” shape (number 3 in Figure 5).

1. First, Gigi explained why the semicircle (1) could not be right.

Gigi: Well, I thought that it was a strange shape (...) For example, I
thought that the average was about here [a little to the right of the
middle] and I thought this one [top of the hill] was a little too high.
It has to be lower. And I thought that here, that it was about 80, 90
[kg], and I don’t think that so many people weigh that much or
something [points at the height of the graph at the part of the graph
with higher values].

Teacher: (...) Does everybody agree with what Gigi says?

Tom: Yes, but I also had something else. That there are no outliers. That
it is straight and not that [he makes a gesture with two hands that
looks like the tails of a normal distribution]. I would expect it to
slope more if it goes more to the outside [makes the same gesture].

These students used statistical notions such as “outliers”, although in an unconventional way, and
height to explain shape issues, especially frequency. Furthermore, they used their knowledge of the
context to reason about shape.

2. Because all of the students seemed to agree that the semicircle was not the right shape, the
teacher wiped it off the blackboard and turned to the pyramid shape (2). This discussion involved
“outliers” (the extreme values) and the mean in relation to shape.

Mourad: Well, I didn’t think this was the one, because, yeah, I don’t think
that a graph can be that rectangular.

Teacher: The graph is not so rectangular? [inviting him to say more]
Mourad: No, there are no outliers or stuff.
Alex: It does have outliers; right at the end of both it does have outliers.
Student: That is just the bottom [of the graph].
Alex: At the end of the slanting line, there is an outlier, isn’t it? (...)
Anna: But the middle is the mean and everything else is outlier. [Other

students say they do not agree, e.g. Fleur]
Fleur: Who says that the middle is the mean?
Anna: Yes, yes, roughly then.
Teacher: Tom, you want to react.
Tom: Look, if you have an outlier, then it has to go straight a bit [makes

a horizontal movement with his hands]; otherwise it would not be
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an outlier (...) but that is not what I wanted to say. I wanted to
react, that it [this graph] could not be the right one, because the
peak is too sharp and then the mean would be too many of exactly
the same.

Mike: He just means that of one weight exactly all these kids have the
same weight, so if the tip is at I-don’t-know-how-many kilos,
maybe 60 kilos, that all these kids are exactly 60 kilos.

This transcript shows that students started to react to each other. Before this lesson they mainly
reacted to questions from the teacher, a type of interaction that is very common unfortunately (Van
den Boer, 2003). In other words, the activity stimulated students to participate and their passive
attitude started to change. Because the students agreed that the pyramid was not the right shape, the
teacher wiped this shape off the blackboard also.

3. Next, Sofie was asked to explain why the bell shape (3) could not be the right shape. Before
the discussion, almost all of the students thought this was the right shape (one girl admitted she did
not know).

Sofie: I had it that this was not the one, because there are also kids who
are overweight. Therefore, I thought that it should go a bit like this
[draws the right part a little more to the right, thus indicating a
distribution skewed to the right, like Figure 5.4]. (...)

Rick: That means that there are more kids much heavier, but there are
also kids much less, so the other side should also go like that [this
would imply a symmetrical graph].

Tom: Guys, this is the right graph!

Because there was no agreement, the teacher did not wipe the graph off the board.

4. Next, Mike had to explain why he thought that the fourth, skewed graph could not be right.

I thought that this was not it because... if the average is perhaps, if this it the
highest point, then this [part on the left] would be a little longer; then it would
have a curve like there [left half of the third graph]. I think that this cannot be
right at all, and I also find it strange that there are so many high outliers. Then you
would maybe come to 120 kilos or so. [Note that there were no numbers in the
graphs.]

5. Last, Ellen spoke about the fifth graph, which was skewed to the left:

Well, I think this one is also wrong because there are more heavy people than
light people. And I think that eighth graders are more around 50 kilos. That’s it.

Tom then objected, “it says 50 nowhere,” and a lively discussion between the two evolved.

Thus, as intended, skewness became a topic of discussion, even in relation to center and
“outliers”. Next time we would certainly want to pay more attention to what students mean by such
terms. Some students argued that the mean need not be the value in the middle. Still students seemed
to make no clear distinctions between midrange, mean, and mode. Because the mode is not a measure
that is often used in statistics, it was not the intention to address the mode unless students were
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already reasoning with it. Since students at this point argued about the mean versus the value that
occurred the most, the teacher and I decided to introduce a name for the mode, which these students
had not learned before.

Researcher: The value that occurs the most often has a name; it is called the
mode [pointing at the value where the distribution has its peak].
(...) Who can explain in this graph [skewed to the right] whether
the mean is higher or lower than the mode? (...)

Rick: There are just more heavy people than light people, and therefore
the mean is higher. (Note: Rick’s remark makes sense if we
interpret it to mean that heavy people are those to the right of the
mode and light people those left of the mode).

In this way, there were opportunities to introduce statistical terms and relate them to each other,
because students were already talking about the corresponding concepts or informal precursors to
them. Traditionally, the mode is just introduced as the value that occurs the most, but here it was
introduced as a characteristic of a distribution, albeit informally. The median was introduced later, in
the ninth lesson, as the value that yields two equal groups (as can be done in minitool 2).

4. DISCUSSION

The main question of the overall research was: how can we promote coherent reasoning about
variability, sampling, data, and distribution in a way that is meaningful for students with little
statistical background? By carrying out several teaching experiments, some instructional activities
turned out to be more effective than others. The activities analyzed in this paper, concerning growing
a sample and reasoning about shapes, appeared particularly engaging and useful. The purpose of this
paper was therefore to analyze students’ learning process as exemplified in these two instructional
activities and learn more about their development of concepts underlying statistical data analysis. I
used Peirce’s semiotics as an instrument of analysis in order to detect what the crucial elements of
those activities were and what kind of learning these activities supported. The next section (4.1)
discusses those key elements for each activity and speculates about what can be learned from the
analysis presented here. The last two sections address the limitations (4.2) and implications (4.3) of
the study.

4.1. THE INSTRUCTIONAL ACTIVITIES

Growing a sample (fourth lesson). The activity of growing a sample involved short cycles of
constructing diagrams of new hypothetical situations, and comparing these with other diagrams of a
real sample of the same size. The activity has a broader empirical basis than just the teaching
experiment reported in this paper, because it emerged from a previous teaching experiment (Bakker &
Gravemeijer, 2004) as a way to address shape as a pattern in variability and also resembles the
growing samples activity described by Konold and Pollatsek (2002) in a fifth-grade classroom.

The activity was also based on design heuristics that were defined during previous teaching
experiments (Bakker, 2004). One of those heuristics is to sometimes stay away from data so as to
avoid students adopting a case-oriented view. Also, by asking students to compare their own diagrams
with those representing real data, we invite them to “compare forests instead of trees”—compare data
sets instead of individual data points. Moreover, by letting students predict a situation, the need is
created to use conceptual tools for predicting that situation. By the cyclic approach taken such design
heuristics for statistics education were validated by the research.

In the design of the activity several other issues also played a role. First, the teacher and I have
wondered if the context of weight was suitable for this age group (13 years old). Many teachers and
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textbooks avoid this context because it is so sensitive, but we found it striking how well students
knew this context and how their predictions resembled the actual samples in many respects. The
delicacy of this subject might explain part of their engagement during class discussions.

Another important pedagogical issue is the length of class discussions. In earlier lessons the
teacher and I had noticed that these students found it hard to concentrate during class discussions for
longer than about ten minutes. A cycle of producing a diagram for a sample of a specific size, and
comparing it with a real sample requires only short periods of concentration. Providing real data in
between their inventions demanded short periods of reflection and feedback. We also promoted more
individual work than in a previous experiment so as to give all students the opportunity to predict and
reflect themselves as opposed to listen to other students during one long class discussion.

As a way to generalize the results, I analyzed students’ reasoning as an instance of diagrammatic
reasoning, which typically involves constructing diagrams, experimenting with them, and reflecting
on the results of the previous two steps. More generally, Bakker and Hoffmann (in press) argue that
diagrammatic reasoning forms an opportunity for concept development. In this growing samples
activity, the quick alternation between prediction and reflection during diagrammatic reasoning
appears to create ample opportunities for hypostatic abstraction, for instance of the notion of spread.

In the first cycle involving predicting a small data set, students noted that the data were more
spread out, but in subsequent cycles, students wrote or said that the spread was large. From the terms
used in this fourth lesson, I conclude that many statistical concepts such as center (average, majority),
spread (range and range of subsets of data), and shape had become topics of discussion (hypostatic
abstractions) during the growing samples activity. Some of these words were used in a rather
unconventional way, which implies that students needed more guidance at this point. Shape became a
topic of discussion as students predicted that the shape of the graph would be a semicircle, a pyramid,
or a bell shape, and this was exactly what the hypothetical learning trajectory (HLT) aimed at. Given
the students’ minimal background in statistics and the fact that this was only the fourth lesson of the
sequence, the results were quite promising. Note, however, that such activities cannot simply be
repeated in other contexts; they always need to be adjusted to local circumstances if they are to be
applied in other situations.

Reasoning about shapes (sixth lesson). The aim of reasoning about shapes was that students
would learn to reason about skewed shapes, and they did so in terms of the context (e.g. using
“heavy” and “light”). The satisfactory outcome of this activity was that the students came to reason
with statistical notions in a way they had not demonstrated before and were more engaged in the
discussion than we had observed before, and this included students with low grades for mathematics.

To learn from the results, I speculate on the crucial features of this activity. First, the lack of
formal rules and definitions probably makes it easier for low-achieving students to participate in the
discussion. I furthermore conjecture that the lack of data, the game-like character and students’
knowledge about the context were important factors, but also the fact that they had to argue against
certain shapes. Such reasoning is safer than defending the shape they think is right. Note that the way
in which mode, average, and other statistical notions were discussed contrasts drastically with what is
common in statistics curricula because average values and spread were discussed in relation to shape,
not just as computational operations on data values.

As mentioned in the beginning of the paper, I strove for a process of guided reinvention. This
notion hints at the challenge of striking the balance between giving guidance to students on the one
hand and giving them the freedom to reason using their own terminology on the other. This issue can
be illustrated with a metaphor that Frege wrote to Hilbert in 1895 (Frege was one of the first modern
logicians and philosophers of language, and Hilbert was a formalist mathematician). The topic was
using and making symbols in mathematical discourse.

I would like to compare this with lignification [transformation into wood]. Where the tree lives
and grows, it must be soft and sappy. If, however, the soft substance does not lignify, the tree cannot
grow higher. If, on the contrary, all the green of the tree transforms into wood, the growing stops.
(Frege, 1895/1976, p. 59; translation from German)

On the one hand, if statistical concepts are defined before students even have an intuitive idea of
what these concepts are for (such as mean, median, and mode), then the tree transforms into wood and
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students’ conceptual development can be hindered (as discussed in the beginning of this paper). On
the other hand, if teachers and instructional materials do not guide students well in a process of
reinvention, the tree stays weak and cannot grow higher. It is evident that the notions of average,
outliers, distribution, and sample in the present research needed to be developed into more precise
notions, but at least students developed a language that was meaningful to them, an image that could
be sharpened later on or, staying with the metaphor, a sappy part of the tree that can be lignified later.
With reference to the lignification metaphor, the teacher and I had been reasonably successful in
getting students to participate in reasoning about these shapes. However, they often used terms (in
particular “outliers”) in unconventional or vague ways, which is not surprising given the small
number of lessons (ten in total) of the teaching experiment.

In terms of diagrammatic reasoning, this lesson was mainly devoted to reflection on shapes, but
there were also examples of mental experimentation (what would the shape look like if...). Skewness
was addressed within the weight context, but had not been predicated yet in terms of “left-skewed” or
“right-skewed.” Students mainly used two distribution aspects in their reasoning, average and the tails
(what they called “outliers”). These notions are hypostatic abstractions that have become reasoning
tools. From the analysis I concluded that students probably had the following understanding of
distribution: there are many values around average (high rounded part in the sketch) and few low and
high values, which is evidenced by the horizontal tails of the shape. This was indeed aimed at in the
hypothetical learning trajectory.

4.2. LIMITATIONS

The purpose of analyses such as the one presented in this paper is that researchers and teachers
can adjust such instructional activities to their own circumstances. A hypothetical learning trajectory
always remains hypothetical, but others may learn from it, provided the conditions in which the
design research has been conducted are clear to the audience. According to Freudenthal (1991, p.
161),

[design] research means: experiencing the cyclic process of development and research so
consciously, and reporting on it so candidly that it justifies itself, and that this experience can be
transmitted to others to become like their own experience.

It is therefore necessary to highlight the conditions and limitations of this study, which we do in
this section.

Relevant information to judge the results in this paper is first that the teacher was experienced (11
years of teaching) and was preparing her dissertation in mathematics education. The other adults in
the classroom were myself and assistants, who interviewed and observed students, and avoided
teaching. Yet the mini-interviews probably had a learning effect, which means the interview questions
we asked should be considered part of the HLT. The growing samples activity was successful in one
seventh and one eighth grade class, but the activity of reasoning about shapes was only carried out in
a single eighth grade class. Unlike with the growing samples activity we do not have more empirical
support for the value of the reasoning about shapes activity than from this one class of 30 students.
The school was not exceptional for a havo-vwo-school in the center of a large Dutch city, which
implies that students probably belonged to the top 40% of Dutch students.

Researchers who would like to repeat such activities also need to take into account that we asked
students about sample size from the first lesson onwards and that we tried to foster a classroom
culture in which students were willing to discuss. This was not at all easy, because they were not used
to whole-class discussion, but like Dutch students, used to self-reliant working on small tasks of a
computational nature. We were therefore pleasantly surprised that a student, near the end of the
teaching experiment, characterized statistics as “a little arithmetic and a lot of thinking.”

As mentioned in the analysis of the growing samples activity, students’ diagrams were strongly
influenced by the two minitools they had used, but they also used line graphs taught in mathematics
lessons. It is hard to decide whether the use of the minitools limited students’ own diagrams to those
provided by the software or whether it inspired them to make diagrams they would not have made
without prior experience with the software. An argument for the former is that students did not make
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any other type of graph than they had used with the minitools or in mathematics lessons. An argument
for the latter is that the minitool representations were apparently meaningful to them despite the short
exposure to them (by the third lesson they had only seen the second minitool, but had no hands-on
experience with it). Other research designs such as comparative studies may be needed to decide such
issues.

Unlike with the instructional materials developed for grade 7, the statistics unit for grade 8 has not
been implemented in a school. Based on the experiences with two novice teachers who used the
materials for grade 7, I expect that other teachers than the experienced teacher I worked with would
need more time to reach similar results and it is possible that their students would not reach the same
quality of reasoning in a first attempt to teach the unit without researchers and assistants interviewing
in the classroom. The results presented in this paper therefore need to be interpreted as being possible
to recreate given favorable conditions of sufficient time and support being available.

4.3. IMPLICATIONS

As a springboard to implications for teaching, assessment, and research, I raise the following
question: why do almost all school textbooks follow the same routes and introduce mean, median, and
mode as a trinity, and provide students with graphical tools such as histogram and box plot long
before students have the conceptual understanding to use such tools sensibly?  G. Cobb (1993, parag.
53) compared the situation with a night picture of a city: “if one could superimpose maps of the routes
taken by all elementary books, the resulting picture would look much like a time-lapse night
photograph of car taillights all moving along the same busy highway”. Apart from the phenomenon of
copying what others do, one important reason for this phenomenon could be that mean, median,
mode, and graphs seem so easy to teach and, even more importantly, to assess. As argued in the
beginning of this paper, however, this view easily leads to superficial understanding if students are
not provided with ample opportunities to develop conceptual understanding of these statistical notions
and graphs. The instructional activities presented in this paper are attempts to give students such
opportunities.

Teaching. For several reasons, the approach taken in this paper is challenging for the teacher. The
teacher plays an important role in steering the topic of discussion towards statistically important
issues such as center and spread. This requires establishing a classroom culture in which students are
willing to engage in discussions, which can be hard if they are used to working self-reliantly.

As argued before, the episodes analyzed in this paper can be framed as instances of diagrammatic
reasoning, the key steps of which are making a diagram, experimenting with it, and reflecting on the
results. During this diagrammatic reasoning, hypostatic abstractions such as majority, average, and
shape can become objects and reasoning tools in the discourse. The analyses suggest the following
recommendations that are not tied to the particular instructional activities considered here.

First, it is clear students need to diagrammatize—make their own diagrams that make sense to
them, but also learn to make powerful conventional types of diagrams that are likely to become
meaningful to them. The results show that the minitools software had a large influence on the
diagrams students made themselves (see Section 4.2 for a discussion of this issue).

Second, students need to experiment with diagrams. Educational software such as the minitools
can be useful in this stage of diagrammatic reasoning. The software should offer diagrams that
students understand, but it should also offer opportunities for learning more advanced, culturally
accepted diagrams. Apart from physical experimentation, mental experimentation is important, for
instance when answering questions about hypothetical situations (Bakker & Gravemeijer, 2004).

Third, reflection should be stimulated. Throughout the research we noticed that the best reasoning
occurred during teacher-directed class discussions that were not in the computer lab. One of the core
issues of the reflection step is that students learn to describe (“predicate”) and predict aggregate
features of data sets, because that is an essential characteristic of statistical data analysis. Predicates
should become topics of discussion so that they can be taken as entities in themselves. For example,
talking about “most” data can lead to talking about the “majority”; describing how dots are “spread
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out” can lead to saying that “the spread is large.” These are examples of what Peirce called
“hypostatic abstraction.”

It is striking that these steps of diagrammatic reasoning, though they appear to be crucial to
learning statistics, are so underexposed in most school textbooks. If we accept that diagrammatic
reasoning is a basis for concept development (cf. Bakker & Hoffmann, in press), the above options
are worth considering. A possible sequence that teachers could follow is (1) let students make their
own diagrams but also offer types of diagrams that are likely to become meaningful, (2) enable
students to experiment with diagrams both physically (e.g. using software) and mentally (e.g. by
asking what-if questions), and (3) involve students in a reflection step in which they describe
precisely what they see (clumps, majorities, shapes) and where they see it in a diagram.

Assessment. The learning that results from an approach of the form taken here may be harder to
assess than whether students have learned to calculate average values or draw a histogram. In the
approach taken here, the teacher has to accept that students’ notions stay informal for a while,
provided enough effort is taken to make informal notions more precise. In countries and states with
high-stake accountability for the assessment of students’ progress, this may be difficult to accomplish
(cf. Makar & Confrey, 2004). We therefore need assessment items that assess what we find important
and that might be used on large-scale tests.

Research. More research is needed into the question of how students can develop their own
informal notions, such as center clumps, spread, and shapes, into conventional measures of center,
variation, and other distribution aspects, and how teachers can support this development. The semiotic
analysis suggests that one key issue is that the topic of a group discussion should be clear, and the
teacher plays an important role in directing students’ attention to that topic. Research is needed into
the question of how teachers can be supported to help students in this regard.
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SUMMARY

Variation is a key concept in the study of statistics and its understanding is a crucial aspect of
most statistically related tasks. This study aimed to extend and apply a hierarchy for describing
students’ understanding of variation that was developed in a sampling context to the context of a
natural event in which variation occurs. Students aged 13 to 17 engaged in an inference task that
necessitated the description of both rainfall and temperature data. The SOLO Taxonomy was used
as a framework for analyzing student responses. Two cycles of Unistructural-Multistructural-
Relational levels, one for qualitative descriptions and the other for quantitative descriptions, were
identified in responses. Implications of the extended hierarchy for describing understanding of
variation for research, teaching and assessment are outlined.

Keywords: Describing variation; SOLO Taxonomy; Inference task; Secondary students

1. INTRODUCTION

The analysis of variation, that is, the irregularities in data, is critical to the study of statistics (Wild
& Pfannkuch, 1999, p. 235). Despite this critical nature of variation, not much is known about how
students perceive variation. A prior review of the literature has shown that, despite the importance of
variation, most research examines the understanding of central tendency and that research on
understanding of variation is limited (Shaughnessy, Watson, Moritz, & Reading, 1999). In fact, the
work by Shaughnessy et. al (1999) is one of the first attempts to unpack, in a systematic way, what is
happening in students’ understanding of variation. Given that variation is critical to the study of
statistics, more research needs to be undertaken to better understand how students view and describe
variation. This study was undertaken to develop a hierarchy to assess students’ understanding of
variation. The results of this study are expected to assist researchers and teachers by providing a tool
for describing the level of statistical sophistication in the description of variation.

1.1. STUDENTS’ PROPENSITY TO DISCUSS VARIATION

When dealing with data, consideration needs to be given to both measures of central tendency and
measures of variation. So, which of these are students more likely to use if not prompted when
working with data? Research has shown that when engaged in reducing data, although some students
base their responses on measures of variation, many more students use measures of central tendency
(Reading & Pegg, 1996, p.190). This investigation involved Australian secondary school students for
whom most data reduction learning experiences deal with finding ‘mean, mode and median’, hence it
is not surprising that so few bother with measures of variation. On the other hand, in Australian
schools students are presented with few learning experiences that involve making inferences from
data and generally are not given specific instruction as to how to engage in such activities. Thus,
responses to tasks that involve making inferences are less likely to reflect approaches imposed by
teachers. In fact, analysis of secondary school student responses to open-ended questions involving
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making inferences from data showed that more students based an inference discussion on measures of
variation than measures of central tendency (Reading, 1998, p. 1430).

The conflicting student inclinations in these two different experiences, engaged in reducing data
and engaged in making inferences about data, suggest that students may have a propensity to consider
measures of variation when dealing with data but unless this is given a chance to develop, such a
propensity may eventually be overcome by the ‘push from teachers’ to discuss measures of central
tendency. Even more importantly though, if teachers concentrate their efforts on working with
measures of central tendency, then students will be denied the opportunity to experience situations
where they can begin to understand variation and to develop any propensity they may have to reason
about variation. Already researchers are recognizing the need to develop learning situations where
students can be encouraged to develop the notion of variability. One such approach is Bakker’s (2003)
‘growing samples’ activity that allows students to investigate the shape of distributions as a basis for
developing a better understanding of variability. However, the present research was not designed to
determine whether early attempts at inference by students are more likely to be based on measures of
central tendency or variation but, to consider aspects of reasoning about variation that do become
apparent when students make inferences.

1.2. CONSIDERATION OF VARIATION

The study of measures of variation in schools, such as the standard deviation, has developed
notoriety with teachers as being particularly cumbersome, resulting in many teachers having difficulty
developing the concept with students or avoiding it altogether. This is unfortunate given that many
students show, at least in some contexts, a natural propensity to base discussion of data on measures
of variation rather than central tendency (Reading, 1998). In order to be better prepared to equip
students with an understanding of variation, teachers need to understand how students reason about
variation and also to have a means for assessing how students reason about variation.

Concern over lack of attention to variation has prompted researchers to investigate in more detail
students’ understanding of variation. Some studies were undertaken following dissatisfaction with the
responses of Grade 4 students in the USA to a National Assessment of Educational Progress (NAEP)
test item (Shaughnessy et al., 1999; Reading & Shaughnessy, 2000). In this extended response item,
students had to predict the number of red gum balls in a sample of ten obtained from a gum ball
machine, and then explain their reason(s) for choosing that number. This task allowed students to
demonstrate their understanding of centrality (expected outcome according to formal probability
calculation) but not variability (in outcomes across repeated trials). Shaughnessy et al. (1999)
redesigned this task and analyzed pencil and paper responses to gain useful information about
students’ conceptions of variation in a similar sampling situation based around a candy bowl rather
than a gum ball machine. These modified investigations have been extended in various contexts
(Torok & Watson, 2000). In particular, Shaughnessy and Ciancetta (2002) allowed students to
experience the variability in results, with ten trials of a spinner task, before predicting the outcomes.

When outlining the foundations of ‘thinking statistically’ Wild and Pfannkuch (1999, p. 226)
identify ‘consideration of variation’ as one of the fundamental types of thinking. They list four
components of consideration of variation: noticing and acknowledging variation; measuring and
modelling variation for the purpose of prediction, explanation or control; explaining and dealing with
variation; and developing investigative strategies in relation to variation. Reading and Shaughnessy
(2004) have also suggested two additional components: describing variation; and representing
variation. To best investigate students’ reasoning about variation it is necessary to delve into as many
as possible of these components, and examine how students describe the variation they observe and
endeavour to interpret and/or use for inference.

2. DEVELOPMENTAL HIERARCHIES

The increasing popularity of research into cognitive frameworks� to assess students’ understanding
of phenomena when responding to learning or assessment activities has provided the impetus for the
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creation of developmental hierarchies in stochastics. Following is an introduction to a particular
model for explaining developmental growth and then a summary of aspects of existing developmental
hierarchies that particularly address variation.

2.1. THE SOLO TAXONOMY

Research into Developmental-Based Assessment (DBA), the assessment of students based on the
quality of their understanding and learning (Pegg, 2003), has contributed to the increased acceptance
of developmental frameworks. This approach to assessment, which focuses on the mental structure of
understanding, differs from outcomes-based assessment which focuses on what students are expected
to know. This paper focuses on the Structure of the Observed Learning Outcome (SOLO) Model, an
approach to assessment which rests on an empirically established cognitive developmental model
(Pegg, 2003).

The neo-piagetian SOLO Taxonomy (Biggs & Collis, 1991) consists of five modes of
functioning, with levels of achievement identifiable within each of these modes. The two modes
relevant to the present research are the ikonic mode (making use of imaging and imagination) and the
concrete symbolic mode (operating with second order symbol systems such as written language).
Although these modes are similar to Piagetian stages, an important difference is that with the SOLO
Taxonomy earlier modes are not seen as replaced by subsequent modes and in fact are often being
used to support growth in the later modes.

A series of levels of increasing cognitive development has been identified within each of these
modes. The three levels relevant to this study are: unistructural responses - with focus on one
element, multistructural responses - with focus on several unrelated elements, and relational
responses - with focus on several elements in which inter-relationships are identified. These three
levels form a cycle of cognitive growth, from unistructural, through multistructural, to relational
responses, that occurs within a mode. For example, when describing a geometric figure, students may
focus on an element such as a ‘property of the figure’. Unistructural responses would describe one
property of the figure, perhaps focusing on the lengths of the sides. Multistructural responses would
address more than one property, perhaps the lengths of the sides and sizes of the angles. Relational
responses would identify links and deal with a relationship between the properties, perhaps stating
that adjacent angles being right angles would imply pairs of parallel sides. The relational level
response in one cycle is similar to, but not as concise as, the unistructural response in the next cycle.
Early applications of SOLO only described one cycle of levels within each mode, but more recently
researchers have identified more than one cycle of levels within a mode (Pegg, 2003, pp. 244-245).
This taxonomy is particularly useful because of the depth of analysis that can be achieved when
interpreting students’ responses.

2.2. DEVELOPMENTAL HIERARCHIES FOCUSING ON VARIATION

Neo-Piagetians have provided a foundation of cognitive frameworks on which to base
developmental hierarchies in probability (e.g., Jones, Langrall, Thornton & Mogill, 1997) and in
statistics (e.g., Mooney, 2002). SOLO has already been employed to explain statistical thinking
frameworks (e.g., Jones et al., 2000; and refined by Mooney, 2002) and is more recently being used as
the basis for development hierarchies related to variation (e.g., Watson, Kelly, Callingham &
Shaughnessy, 2003). Mooney (2002) developed four SOLO based ‘levels’ in each of four processes.
Variation is only mentioned in one of the four processes, ‘organizing and reducing data’, and the
relevant descriptors for that process (Mooney, 2002, pp. 36-37) are reproduced in Table 1. A series of
studies reported by Jones, Mooney, Langrall and Thornton (2002) was used to validate the SOLO-
based levels.
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Table 1. Partially reproduced Statistical Thinking Framework (Mooney, 2002)

Organising and Reducing Data

Levels Focus of Responses

1 - Idiosyncratic Is not able to describe the spread of the data in terms representative of
the spread.

2 - Transitional Describes the spread of the data using invented measures that are
partially valid.

3 - Quantitative Describes the spread of the data using a measure from a flawed
procedure or a valid and correct invented measure.

4 - Analytical Describes the spread of data using a valid and correct measure.

Watson et al. (2003) used the Torok and Watson (2000) hierarchy levels, in conjunction with
SOLO, as a starting point for the analysis of responses to a bank of assessment items, culminating in
the description of four levels for the understanding of statistical variation (Watson et al., 2003, p. 11)
described in Table 2. Although these four levels were developed to measure understanding of
variation they do not explain how students actually describe the variation.

Table 2. Developing Concepts of Variation (Watson et al., 2003)

Levels Focus of Responses

1 - Prerequisites for
variation

Working out the environment, table/simple graph reading, intuitive
reasoning for chance.

2 - Partial recognition of
variation

Putting ideas in context, tendency to focus on single aspects and neglect
others.

3 - Application of
variation

Consolidating and using ideas in context, inconsistent in picking most
salient features.

4 - Critical aspects of
variation

Employing complex justification or critical reasoning.

Reading and Shaughnessy (2000) interviewed 12 students regarding the sampling task used earlier
by Shaughnessy et al. (1999) and identified non-sophisticated discussion of variation in this context.
These interviews were further analyzed and two hierarchies for understanding of variation, one for
description and the other for causation, were developed (Reading & Shaughnessy, 2004) based on
students’ perceptions in the sampling situation. Only the Description Hierarchy is relevant to the
present study and the four levels of this hierarchy are summarized in Table 3.

Table 3. Description Hierarchy (Reading & Shaughnessy, 2004)

Levels Focus of Responses

D1 - Concern with
Either Middle Values or
Extreme Values

Describe variation in terms of what is happening with either extreme
values or middle values. Extreme Values are used to indicate data items
that are at the uppermost or lowest end of the data, while Middle Values
indicate those data items that are between the extremes.

D2 - Concern with Both
Middle Values and
Extreme Values

Describe variation using both the extreme values and what is happening
with the values between the extremes.

D3 - Discuss Deviations
from an Anchor

Describe variation in terms of deviations from some value but either the
anchor for such deviations is not central, or not specifically identified as
central.

D4 - Discuss Deviations
from a Central Anchor

Describe variation by considering both a centre and what is happening
about that centre.
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The Reading and Shaughnessy (2004) Description Hierarchy was based on student responses to a
sampling task but did not use SOLO as a conceptual framework. The present study was designed to
use, and modify or extend if necessary, this hierarchy to code responses given in a weather-related
inference task and to consider SOLO as a suitable conceptual framework to explain the hierarchy. A
weather-based task was chosen because weather is a phenomenon which involves variation that
everyone experiences, hence it can provide students with a meaningful context for data description
and inference.

The main research question was how students describe variation during an inference task. This
necessitated investigation of three related research questions: Is the hierarchy developed for analyzing
students’ descriptions of variation in a sampling situation (Reading & Shaughnessy, 2004) also
applicable for coding responses with data descriptions given when making inferences from weather-
related data, in which there is natural variation? If this hierarchy is suitable, does SOLO offer a broad
framework for explaining the hierarchy? If SOLO is a suitable framework, can cycles of levels be
identified within the SOLO modes? The findings would contribute to the refinement of conceptual
models developed in earlier research, and could assist researchers and teachers by providing a
developmentally-based hierarchy.

3. METHOD

This section describes an exploratory study that involved posing to students in Grades 7, 9 and 11 a
weather-related inference task with two separate segments. The following describes the task students
faced, procedure, participants, and analytic approach and associated issues.

3.1. WEATHER ACTIVITY – STUDENT TASK

The Weather Activity presented students with a Scenario, see Figure 1, based around choosing the
most suitable month for a proposed Youth Festival to be held in the students’ own town. It was
stressed to students that they did not have to worry about any other aspects of the celebration, only the
weather. The activity was implemented over a period of time and incorporated both data description
and inference components.

WEATHER ACTIVITY SCENARIO
XXXXXX is to introduce a new celebration into the calendar. Youth Alive will celebrate the youth of
the city and be held at an outdoor venue. Although not all details have been decided concerning the
activities to be held on the day, a decision needs to be made as to a date for the celebration so that it
can be slotted into the calendar. Organisers have expressed concern as to the effect that XXXXXX’s
often unpredictable weather could have on such a celebration. You have been commissioned to
submit a report to the committee describing XXXXXX’s weather and to suggest a suitable month for
the celebration. Other factors will be taken into consideration to decide exactly which day in the
month Youth Alive will be held.

Figure 1. Weather activity scenario

The activity was designed to have two separate segments, the first segment based around rainfall
data and the second segment based around temperature data. Before each segment began, each student
was randomly allocated one particular month of data to consider. The data used by the students in the
task consisted of rainfall figures (daily millimetres) for 36 months in the first segment, and
temperature figures (daily minimum and maximum temperatures in degrees celsius) for 36 months in
the second segment. The use of 36 different months ensured that each student in the class had
different data. The weather was chosen for the three years 1998 through to 2000 because the activity
was undertaken in 2001. Examples of the data as presented to the students appear in the Appendix. It
should be noted that the monthly data provided to each student exhibited different patterns and
different variability.
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Within each segment students had an individual task followed by a group task that were both open
ended. First, each student was asked to individually describe the weather in his or her month in a
written response. The students were told that these descriptions were to be used in the next step to
compare with the descriptions provided for other months by a small group (about four) of classmates
and decide on the most suitable month of the year for the festival from amongst those months within
the group. Later, the students worked together in these groups, comparing their data descriptions, and
developing a written group response that both described what they chose as the most suitable month
for the festival, out of those they compared, and explained their reasoning.

The use of open-ended tasks meant that students had the freedom to adopt criteria or attend to
issues they considered necessary. No specific instruction was given to discuss variation, despite the
fact that description of variation was the focus of the research. This approach was taken so that
students were free to discuss variation how and when they saw the need. This methodological
approach has been utilized by other researchers. Watson et al. (2003) designed items to allow students
to be free to demonstrate their understanding of variation and Ben-Zvi’s (2003) open learning activity
gave no specific direction to discuss variability despite the fact that analysis of the data was to include
how students reasoned about variation.

3.2. PROCEDURE

The weather activity task was implemented in classes, during normal teaching time by a research
assistant. Allocation of data sets to students was random but allocation of students to groups was not.
The random allocation of data meant that students did not necessarily receive the same month for the
temperature segment as they had used for the rainfall segment. The allocation of students into groups
for the group activity was made by the teacher, based on knowledge about good working relationships
from previous group work. If students were unsure about the task and needed a prompt, then it was
suggested that they should look for any pattern in the data or any key features that may be useful.

The weather activity was planned to spread over a number of weeks to suit the school schedule.
The individual and group work for each segment was planned to occur during one standard lesson
time-slot for the class. The temperature segment lesson, however, did not immediately follow the
rainfall segment lesson. Between the two segments of the activity there was a teaching episode,
presenting a statistics-related section of the curriculum. These teaching episodes were requested by
the teacher to align the weather activity with the students’ learning experience. The episodes were
implemented by the class teacher and involved demonstrating to the class statistical tools that might
be useful when describing the data. Grade 7 students were introduced to stem-and-leaf plots and the
summary statistics: maximum, minimum, average, and range. Grade 9 students were introduced to
box-and-whisker plots, from a development base of stem-and-leaf plots with which they were already
familiar. In Grade 11 an entire unit of work on statistics, including stem-and-leaf plots and box-and-
whisker plots, was implemented between the two segments of the activity.

The weather activity provided both individual and group written responses for analysis. However,
only the analysis of the individual responses will be reported here. For discussion of the group
responses see Reading and Lawrie (2004). A wrap-up activity planned as the last segment of the
weather activity, having individual students make a final decision about the most appropriate month
with all data discussions available to them from all groups, was not completed because there was
insufficient time due to the intervention of other events in the school. However, this did not detract
from the usefulness of the responses provided in each of the rainfall segment and temperature
segment as the students did not know at that point in time that the wrap-up activity would not be
completed.

It is acknowledged that students could have developed their understanding regarding variation
during the group discussion part of the rainfall segment and the teaching episode, in ways which
could affect the quality of their later responses to the first (individual) part of the temperature
segment. However, as the research was attempting to refine a hierarchy for coding responses and not
to assess a student’s performance at any particular instant or to compare performance before and after
instruction, the possible improvements in quality of response in fact would provide a richer array of
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data for refining the hierarchy. This sequence of activities enabled the researchers to capture the
reasoning of a heterogeneous set of students at different points during their exposure to data with
natural variation.

3.3. PARTICIPANTS

This research targeted students in Grades 7, 9 and 11 (aged 13 to 17) in a secondary school in a rural
city in northern New South Wales, Australia. Students from one class in each of the three grades were
included in the study. Classes were selected so as to include students with average mathematical
ability. Only two teachers from the school were involved, as one teacher had charge of two of the
classes. The actual number of students who completed each of the individual steps of the research
activity was not consistent, as attendance in each class varied over the particular days when activities
were presented. The breakdown of students participating in the weather activity is presented for the
rainfall segment in Table 4 and for the temperature segment in Table 5.

Table 4. Participants in the rainfall segment of the weather activity

Grade 7 Grade 9 Grade 11 Total
Male 15 17 7 39
Female 6 11 9 26
Total 21 28 16 65

Table 5. Participants in the temperature segment of the weather activity

Grade 7 Grade 9 Grade 11 Total
Male 16 15 9 40
Female 5 9 10 24
Total 21 24 19 64

3.4. ANALYTIC APPROACH AND ASSOCIATED ISSUES

The purpose of the analysis of the individual responses was to determine the applicability of the
Reading and Shaughnessy (2004) hierarchy, developed for a sampling situation, to coding responses
to an inference task and refine the hierarchy if needed. Coding of the written discussions in the
responses was undertaken in three stages. First, the responses were coded independently by the
researcher and the research assistant, based on the Reading and Shaughnessy (2002) hierarchy in
Table 3. Second, level descriptions were revised based on any newly identified descriptions of
features of variation and the hierarchy was expanded by developing new levels based on responses
not suitably accommodated. Such a revision process for coding hierarchies has been utilized by a
number of researchers (e.g. Mooney, 2002; Langrall & Mooney, 2002; Watson et al., 2003). Finally,
all responses were recoded independently by both the researcher and research assistant based on the
new hierarchy. The recoding produced an 85% agreement and then discussion was used to resolve
disputed codings. Such discussions also helped to refine the clarification of each level in the
hierarchy. Before describing the hierarchy in detail some relevant aspects of student performance on
the task are outlined.

Students were given access to graph paper but were not specifically required to produce a graph.
While a number of students in each grade (especially in Grade 7, as shown in Table 6) chose to draw
a graph as part of their response, only three responses (one Grade 9 and two Grade 11) actually
referred to the information in the graph as part of their written explanation. All three responses were
given during the temperature segment, after the teaching episode that involved graphing.
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Table 6. Student creation of graphs

Grade 7 Grade 9 Grade 11

Rainfall 67%  (14/21) 21%  (6/28) 26%  (5/16)

Temperature 78%  (13/21) 8%  (2/24) 0%   (0/19)

Almost all students included aspects of both a description and a prediction in their individual
responses, rather than just a description as requested in the individual task. This compulsion to predict
may reflect a need to give a purpose, predicting, to justify having to give a description. The discussion
includes aspects of the responses irrespective of whether the student gave a prediction as well as
description, or just gave a description as requested. Noticeable in the responses was whether the
explanations were based on the given data and how much of the data were used.

Although many students mentioned factors external to the data when justifying decisions, most of
them also referred to the data. Some external factors mentioned were of a personal and less relevant
nature, such as the occurrence of a birthday, while others were of a less personal and more relevant
nature, such as prior knowledge of local weather or similar events that have been held in the past.
Encouragingly 72% of responses from Grade 7 students, 96% from Grade 9 and 97% from Grade 11
made at least some reference to the supplied data indicating that most students in the higher grades
appreciated the need to use the data provided as a basis for the written explanations.

When describing the weather for the month some students used just some of the data by choosing
to focus on a particular part of the month while others incorporated all of the month. Those focusing
on part of the month generally chose specific day(s) or a consecutive sequence (block) of days. Many
students focused on such a block when discussing the rainfall. This focus appears to have been
influenced by the rain/no rain (dichotomous) nature often attributed to the rainfall variable. Focus on
the whole month was more typical for the responses dealing with the temperature data and
justifications for decisions often dealt with quoting one or more simple statistic(s), such as the
maximum, minimum or average, for both sets of data as if they were one.

The references to features of variation in the data varied considerably in length and quality and
were both qualitative and quantitative in nature. The following details the results of the analysis of the
responses.

4. RESULTS

This study aimed to develop a way of assessing students’ descriptions of variation, by extending
the Reading and Shaughnessy (2004) Description Hierarchy presented earlier in Table 3. In the first
step of the analysis, attempts were made to code the responses using the four levels D1, D2, D3 and
D4 of this original hierarchy. Most responses were found to fall within the D1 and D2 levels,
describing variation using Extreme Values or Middle Values or both. It soon became apparent,
however, that while the written discussions were clearly falling into these levels, some were
expressing the features in words only while others were expressing the features numerically. Those
using words only, with no numeric descriptions of features of the variation, were labeled qualitative
responses while those that did include numeric features were labeled quantitative. Thus the revision
and expansion of the Reading and Shaughnessy (2004) hierarchy focused on developing two distinct
groupings of responses based mainly on the previous D1 and D2 levels, one grouping based on
qualitative descriptions of variation and the other based on quantitative descriptions. These two types
of responses are analyzed separately in sections 4.1 and 4.2 below. Further discussion of the
comparison of the Reading and Shaughnessy (2004) hierarchy and the proposed groupings of coded
responses can be found in the Discussion section later on.

For easy reference in the discussion, an identification tag has been assigned to reproduced
responses, based on consecutive appearance. The tags begin with R, followed by a grade number (7, 9
or 11) and then a specific student number. For example, R1102 is the second response from a Grade
11 student to appear in the discussion. Any response, or part thereof, that is reproduced directly is
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shown in italics. No grammatical corrections have been made to the responses. When interpreting any
reproduced responses it must be remembered that each student was dealing with data for a different
month.

4.1. QUALITATIVE RESPONSES

The responses in this first grouping use word-based expressions, rather than numerical
expressions, to describe the variation in the data. Some of these responses describe the variation by
the use of general terms or phrases to describe the nature of the changes identified while others are
more specific in their qualitative descriptions. Next is a discussion of the structure of responses at
each of the three levels, unistructural, multistructural, and relational.

Unistructura1 Responses
The unistructural responses give one qualitative description to summarize an impression of the

variation and can be grouped into two types, magnitude-related and arrangement-related. The
magnitude-related terms, typical examples given in Table 7, are used in an absolute sense to give an
indication of how the magnitude of the numbers is changing. Some terms suggest little change, while
others suggest more change. The arrangement-related terms, typical examples given in Table 8, are
used in a relative sense to give an impression of the position of the data elements relative to other data
elements. Some terms suggest an inability to decide on any basis for the arrangement while others
suggest a regular, describable arrangement. The use of the term distributed, see Table 8, is
noteworthy. The students involved would most likely not have met the term ‘distribution’ in a formal
statistical sense and these references may be in a more general sense of things being arranged.

Table 7. Magnitude-related phrases used in unistructural responses

Suggesting Little Change Suggesting More Change
slightly on and off least predictable
reasonably steady a bit unpredictable

most consistent seem to be more mixed around
pretty much consistent a bit erratic
no sudden variations very unpredictable

pretty regular

Table 8. Arrangement-related phrases used in unistructural responses

Undecided on Arrangement Decided on Arrangement
no pattern spread out

no particular pattern scattered through
no real pattern evenly spread

even balance
evenly distributed

distribution is limited

Multistructural Responses
The multistructural responses make use of more than one qualitative statement when describing

the variation and fall into two categories, Limiting and Sequential. The first category, Limiting,
comprises responses that deal with the data by setting a general limit on the values, often indicated by
too much or too little. Such responses were more common for description of the temperature and
typically summarize the data using the term ‘too’, such as too cold or too hot, for example R1101 and
R901.

(R1101) September wouldn’t be good because its too cold in the morning…

(R901) It could be a good month to have it because it doesn’t get too hot.
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Such responses were not as common for rainfall, but R701 and R702 are examples, with R702
qualifying the just about nothing description of the rain by giving the total.

(R701) I think they should have it in february because theres not much rainfalls …

(R702) I think my month is the best because it rains just about nothing at all. This months
complete rainfall is 8.6 mm.

The second category, Sequential, comprises responses that deal with the data item by item or by
grouping like data items in a qualitative way. Such responses were more common for description of
the rainfall and typically summarize the data into like blocks of days. These blocks tended to be wet
days (rain) and dry days (no rain), reflecting the dichotomous nature imposed on the rainfall variable
by students. Response R902 has generalized this blocking while R1102 is more specific about the
blocks. Another form of description of this rain/no rain dichotomy was by pairing, such as in R903.
The less common sequential temperature responses block off the days in the month based generally
on a higher versus lower temperature dichotomy, as typified by R904.

(R902) There are a lot of dry days then a couple of wet days then a lot of dry days again.

(R1102) In the first 10 days of the month would be good as there is no rainfall here and then it
continues as 4 days with rain, 5 days clear, 2 days with rain, 7 days clear, 2 days with
rain.

(R903) Usually the rain is in pairs. After a high column little or no rain is after it.

(R904) In the minimum temperatures there seems to be a pattern of a few higher temperatures
and then a few lower temperatures and so on.

Relational Responses
The relational responses give a qualitative description of the variation suggesting that both

limiting and sequential aspects have been considered and linked to give an overall description. An
example is R905, which gives a general limit but then goes on to discuss blocks in a sequential
manner. Such linked responses, however, were uncommon for those who gave qualitative
descriptions.

(R905) January ‘98 seems to be a pretty average month in terms of rainfall. Not too much and not
too little. The rain seems to fall pretty regularly, but the amounts are not much. I think
January would be a good month to hold “Youth Alive”. The main pattern seems to be a
short spell of dry days (3-5 days) and then 1 or 2 wet days but as the rain is pretty light
and not a large amount falls, I think this month would be pretty good.

4.2. QUANTITATIVE RESPONSES

The responses in this second grouping use numerical values, often simple statistics, to describe
the variation in the data. Next is a discussion of the structure of responses at each of the three levels,
unistructural, multistructural, and relational.

Unistructual Responses
The unistructural responses discuss one quantitative feature when describing the variation and fall

into two distinct categories, one based on a description of the Extreme Values of the data and the other
based on Interior Values. The Extreme Values responses describe the extreme values of the data
explicitly by referring to the minimum and/or maximum or implicitly by referring to the highest
and/or lowest. Responses mentioning the maximum and/or minimum explicitly are easily identifiable,
so the following examples particularly demonstrate some of the more implicit references. Few of
these more quantitative responses gave only one extreme for the data, thus it was rare to find the
minimum without the maximum and vice versa. Extreme Values responses were much more common
with the temperature data, typified by R906, than rainfall, typified by R907.

(R906) August 98 was a relatively cold month, the highest temp being only 17.9 degrees Celsius
and the lowest being a freezing -6.9 degrees Celsius.
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(R907) I can see that the highest rainfall was 45.2 ml and the lowest was 0.0ml.

Many responses, such as R906, gave the highest and lowest data values for the temperature by
quoting the highest figure for the Maximum Temperature and the lowest figure for the Minimum
Temperature, as if the two separate variables were being treated as one temperature variable. It is
possible, though, that students only considered the top of the maximums relevant to the task at hand
and the bottom of the maximums not so relevant. Similarly, the bottom of the minimum temperatures
could be considered more relevant than the top of the minimums. The response R703 gave, not just
the most but also, the second highest rainfall for the month, before reverting to describing the total
rainfall for blocks of days. Other ways of expressing the minimum or maximum implicitly included
doesn’t go below (see R704), decreasing past and exceeding (see R908).

(R703) The 4th had the most rain with 31 mils second was the 5th with 29.8 mils so…

(R704) March would be a pretty sweet month to have this thingy in because it doesn’t go below 5
degrees and usually about 30 degrees Celsius at peak temperature.

(R908) February doesn’t seem to have a pattern except that it seems to have a fairly warm to hot
climate with temperature either exceeding 30 degrees or decreasing past 4 degrees.

A natural progression for those giving both the maximum and minimum was to describe the
range. Some responses, such as R705, actually expressed the maximum and minimum in a from... to...
form, thus supplying a maximum and minimum and implying a range. Other responses explicitly
mentioned the range, either for just one of the variables, as in R1103, or for both, as in R1104.

(R705) In between the 3rd and 12th would be a good time to have the thing with it been warm but
not to hot. The max temps where 21 degrees Celsius to 29 degrees Celsius and the min
temps where 5 degrees Celsius to 15 degrees Celsius.

(R1103) The maximum temp in March was 28.7 degrees Celsius the minimum was 5.6 degrees
Celsius. The range in Max. temp was 12.3 degrees Celsius. I think this month would be
good to hold the youth fest in because it stays fairly warm throughout the month.

(R1104) The maximum temperature average is 16.6 degrees Celsius which is cool but not too
cold temperature. I don’t think this max temp would be ideal for the youth fest. The max
temps range from 14 - 19.8 degrees Celsius so the max highest is what I would be wanting.
The min deg C ranges a lot from 10.5 - -0.5, this is cold weather and wouldn’t suit a
festival…

The Interior Values responses describe the interior values of the data by referring to blocks of
rainfall or temperature. Those responses mentioning the blocks were generally descriptions for
rainfall. Sometimes the responses referred to blocks in general, as in R1105, while others were more
specific about the number of days or the exact dates when they occurred, as in R1106. Some other
ways of referring to the blocks included as patches (see R1107) and periods (see R706).

(R1105) It appears that after a larger rainfall of 36mm it rains slightly on and off for the
following week before another large rainfall. It also rains a few days before the heavy
rainfall sort of like a build up and dies down at the end of the 2nd heavy rainfall.

(R1106) There seems to be rain nearly every 5 days for 1 - 3 days either side of the 5th day. The
18th seems to be the best day because it is in the middle of 15 and 20 and it is the middle
day of a six day dry spell.

(R1107) In June 99 the temprature is cold. For winter there is a warm patch. The temprature then
drops for around four days in the middle. It increases towards the end. In the min column
below zero tempratures came in patches apart from one.

(R706) From the 18th to the 24th was the longest period with out rain. From the 8th to the 18 was
the longest period with rain almost non-stop, with 26.6 millimetres. So I think that the best
time to have an outdoor event in July would be from sometime between 18th and 24th. It
rained 15 days and didn’t rain 16 days for the month.
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Multistructural Responses
The multistructural responses discuss more than one feature of data when describing the variation

and usually combine elements identified for discussing extremes with elements identified for
discussing interior values. Only sixteen responses were coded at this level, all describing the
temperature data and just one from a Grade 7 student. While the quality of the description of the
extreme values does not vary much in these responses, the quality of the description of the interior
values does. Extreme values are usually discussed as maximum and/or minimum and in some cases an
actual range is given. When discussing the interior values some responses give an overview while
others discuss specific data values.

Typical of those responses giving an overview of the interior values, while also mentioning the
extreme values, are R909 and R910. The first gives the statistically unsophisticated rise and fall
overview of the interior values, along with the maximum and minimum. The second states what the
temperature will get down to (i.e., the minimum) but then describes each of the two temperature data
sets by giving seems to follow a bit of a pattern as an overview of the interior minimum temperatures
and stays pretty much constant as an overview of the interior maximum temperatures.

(R909) In my month I can see that the highest temp was 15 degrees Celsius. The lowest temp
record was -6.7 degrees Celsius. I believe this would be a bad month to hold the festivle
because it is too cold. The temp pattern seems to rise and fall throughout the month.

(R910) The minimum temperature seems to follow a bit of a pattern. The temp. gets down to -9
degrees Celsius. The maximum temperature stays pretty much constant, it isn’t affected
much by the really cold minimum temperatures.

Only five responses could be considered to have gone into more detail about the interior values
while also mentioning the extreme values. Two such responses are presented here. R1108 does this by
discussing, in a statistically unsophisticated way, the patches of warmer or colder weather in more
detail sequentially through the month. R1109 attempts to consider a relationship between the two
variables Minimum Temperature and Maximum Temperature.

(R1108) This month is in the middle of the summer, so most of the temperatures are in the late
20’s earlie 30’s. The lowest max temperature is 20.4 degrees at the start of the month. The
highest max temperature is the second last day of the month, temperature is 31.3 degrees.
There seems to be groups  of high min temperatures of 10 degrees plus, 4 or 5 high ones
and then 1 or 2 low min temperatures, Where as with the max temperatures the
temperature builds up for example, 22 degrees, 26 degrees, 26 degrees, 27 degrees, 29
degrees, 30 degrees, 24 degrees and then suddenly drops 5 degrees or 6 degrees.

(R1109) October - 00 would be a good month to hold the Youth Fest, because the max. deg of
temperature varies between 11.3 and 28.3, and the min deg of temperature lies between -
3.1 and 14.3.  The max. temperature is high at the beginning of the October month, it
slowly rises then gradually drops mid October, at this period the min degree temperature
is around it’s best, again the max. temp rises and drops towards the end of the month. At
the same time, the min-temp rises when the max temp is remaining constant (20/21).
Therefore, if the Youth fest is to be held in October, 00, it should be on a day that is
included in the constant temperature pattern.

Relational Responses
The relational responses attempt to tie together the extreme and interior values and suggest

immature notions of deviations in the data values. R911 considers the day to day deviation for one 24
hour period, while R1110 considers the day to day deviation on a couple of the days and R707
discusses what appear to be, but are not obviously, ‘averaged’ deviations from day to day.

(R911) The highest temperature is 20.3 degrees Celsius and the lowest temperature is -6.3
degrees Celsius. The maximum degrees Celsius ranges 13.2 degrees Celsius. The
minimum temp ranges 15.7 degrees Celsius. I don’t think this month would be good for the
youth event as it is to cold. The temperature jumps quite a bit in places. One day the min
temp was -0.9 and the next it was 7 degrees Celsius.
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(R1110) I don’t think that Jul 98 would be a very convenient time to hold the youth festival
because although the weather is reasonably steady it is often very unpredictable. For
example on the 4th of July the temperatures rose almost 6 degrees over night yet only a
few days later on the 7th it dropped another 5.8 degrees over night. There is no real
pattern here like I said the weather seems to be very unpredictable. The information shows
that it is a month with moderate cool weather. The average range of the temperatures
between the min and max degrees for a certain day is on the 20th when the range is 15.9
degrees Celsius and on the 28th when the range is a mere 1.1 degrees Celsius. The
minimum degrees for any day is on the 3rd with -5.9 degrees Celsius.

(R707) I think that my month would be unsuitable to hold “Youth Fest” because the high
temperatures are on average around 2 or 3 degrees different everyday. The same
happened with the Minimum temperatures. They were also very cold with -3, -5 degree.

5. DISCUSSION

This study focused on refining the Reading and Shaughnessy (2004) hierarchy based on responses
from weather-related inference tasks. SOLO was used as a framework to support the refined hierarchy
and two cycles of levels of cognitive growth were identified. While the Reading and Shaughnessy
hierarchy was useful as a starting point, it was not detailed enough to accommodate the range of
responses that were given by students. The students in the present study were engaged in a different
task, involving inference from data with real variation rather than a sampling task in a probability
context. Also, there was a richness in the contexts from which responses were collected, both before
and after the group work and the teaching episodes. This section first addresses the three research
questions proposed earlier, in the light of the results. Following that, the newly developed hierarchy is
compared to hierarchies developed by other researchers and finally some limitations of the study are
considered.

5.1. DESCRIPTION OF VARIATION HIERARCHY

 The three research questions are now addressed. First, the specific refinements used to produce
the refined hierarchy are outlined. Next, it will be argued that SOLO provides a suitable explanation
for this hierarchy. Finally, the notion of two cycles of levels identified within one SOLO mode, as has
been found by other researchers, is confirmed for these responses.

Refinement of the Reading and Shaughnessy (2004) hierarchy
The first research question asked whether the hierarchy developed for analyzing students’

descriptions of variation in a sampling situation (Reading & Shaughnessy, 2004) was also applicable
for coding responses with data descriptions given when making inferences from weather-related data,
in which there is natural variation. Although the Reading and Shaughnessy (2004) hierarchy proved
useful as a foundation for the coding, a more detailed structure was needed to account for the array of
responses given by students. Table 9 links each of the two groupings of the hierarchy proposed by the
analysis in this study to the original Reading and Shaughnessy levels on which they were based. The
three levels of the first grouping, based on qualitative feature were considered by the researchers to be
less statistically sophisticated versions of the D1 - Extreme or Middle Values, and D2 - Extreme and
Middle Values of the Reading and Shaughnessy hierarchy. The responses described in this qualitative
grouping help to give an insight into early considerations of features of variation that later develop to
become the more easily recognizable numeric descriptions of variation. The three levels in the second
grouping, based on quantitative features of variation, more closely align with the D1 and D2 levels of
the Reading and Shaughnessy hierarchy.



97

Table 9. Refined hierarchy linked to the Reading and Shaughnessy (2004) hierarchy

Refinement for Description of
Variation Hierarchy

Link to

Reading &Shaughnessy (2004) Hierarchy

Qualitative Responses Expressed in words only, with no descriptions of numeric
features of variation

unistructural - one qualitative
feature of variation

Like the D1 responses, Extreme Values or Middle Values

multistructural - more than one
qualitative feature of variation

Like the D2 responses, both Extreme Values and Middle
Values

relational - link qualitative
features of variation

Links the Extreme Values and Middle Values features of
variation

Quantitative Responses Expressed with numeric features of variation

unistructural - one quantitative
feature of variation

Equivalent to the D1 responses, Extreme Values or Middle
Values

multistructural - more than one
quantitative feature of variation

Equivalent to the D2 responses, both Extreme Values and
Middle Values

relational - link quantitative
features of variation

Links the Extreme Values and Middle Values features of
variation, may suggest notion of deviation and hence be
heading towards a D3 response.

The responses in the qualitative grouping are considered to be less statistically sophisticated than
the responses in the quantitative grouping. Although students’ qualitative descriptions show that they
have been able to notice and acknowledge variation, they have not been able to apply a measure to
their description. It should be noted that the use of the term Middle Values in the Reading and
Shaughnessy hierarchy, meant to refer to the values not occurring at the extremes, was being
misinterpreted by users of the hierarchy as referring to measures of central tendency. To avoid further
confusion the terminology was changed from Middle Values, as used by Reading and Shaughnessy, to
Interior Values in the refined hierarchy. The term Middle has still been used in Table 9, consistent
with the Reading and Shaughnessy hierarchy but the term Interior is used in later descriptions of the
refined hierarchy. The expression ‘Like’ is used in the explanations for the qualitative responses
because these responses were describing the same sort of features as described in the Reading and
Shaughnessy D1 and D2 levels but not in the same way, i.e., they did not contain the numerically
described features of variation that D1 and D2 contained. The expression ‘Equivalent’ is used for the
quantitative responses because these responses included features of variation described in the same
numeric fashion as those in the D1 and D2 levels.

No responses were found in the present study that specifically discussed deviations from an
anchor, central or non-central, and hence could be considered as equivalent to those identified by
Reading and Shaughnessy as D3 - Discuss Deviations from an Anchor or D4 - Discuss Deviations
from a Central Anchor. However, there were two responses in the present study, R1110 and R707 at
the relational level, which may be considered transitional to being coded as D3 because of the attempt
to describe the deviations.

Thus, in response to the first research question, it was possible to refine the Reading and
Shaughnessy (2004) hierarchy by identifying responses equivalent to those in the D1 and D2 levels
and by also identifying responses that were structurally similar to D1 and D2 responses but expressed
in the less statistically mature qualitative form. Additional research is needed with more statistically
sophisticated responses that those given in the present study to be able to refine the D3 and D4 levels,
where deviations become the focus of the discussion.

Other researchers, too, have reported finding similar approaches to dealing with variation as those
identified here. For example, delMas and Liu (2003) investigated students’ formation of ideas when
they were first learning about factors that affect standard deviation. Of interest are strategies they
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identified students using when attempting to move bars in a graph to produce maximum or minimum
standard deviation. One strategy, ‘equally spread out’, focusing on equal separation of the bars in the
graph, is similar to the descriptions in the Interior Values focused qualitative unistructural responses
identified in the present study, while the ‘far-away’ strategy, focusing on getting the bars as far away
from each other as possible, is similar to the variation descriptions focusing on Extreme Values.

SOLO as a theoretical framework for the refined hierarchy
Having established that this hierarchy is suitable, the second research question asked whether

SOLO could offer a broad framework for explaining the hierarchy. Discussion now focuses on
explaining how the taxonomy was used to explain this cognitive growth as a distinct cycle of
unistructural (U), multistructural (M) and relational (R) levels (see section 2.1 and Pegg, 2003, p.
243). Table 10 summarizes the application of the SOLO Framework to the six levels. In the
qualitative responses, the first three levels now labeled as the first cycle, identification of the element
of interest as ‘a feature of the variation of the data described qualitatively’ allows the three levels
within that category, to be explained as unistructural, multistructural and relational. The unistructural
(U1) responses contain one such element, the multistructural (M1) responses contain more than one
such element and the relational (R1) responses link these elements. This cycle has some qualitative
descriptions that are more Sequential in nature while others are more Limiting. One key to better
defining what is happening in this first cycle might be to look to other research that identifies intuitive
notions, such as that by Makar and Confrey (2003) who found that pre-service teachers were using
‘informal’ terms when comparing dotplots but in the process were discussing non-simplistic concepts.
Responses that suggested consideration of clustering, as opposed to modal clumping, and the terms
used by these prospective teachers may help to unravel the often-unclear terminology used by
younger students and add to the definition of levels in this cycle.

Table 10. Refined description of variation hierarchy

First Cycle

Qualitative Responses

element - qualitative feature of variation of data

U1 - unistructural - one
qualitative feature of
variation

magnitude related - in an absolute sense to give indication of size of
change, e.g., pretty much consistent

or arrangement related - in a relative sense to give position, e.g., spread
out pretty evenly

M1 - multistructural -
more than one qualitative
feature of variation

limiting related - set limits on the data values, e.g., doesn’t get too hot

and/or sequential related - deal with data item by item, e.g., lots of dry
days then a couple of wet days then a lot of dry days again

R1 - relational - link
qualitative features of
variation

link the general limit with the discussion of blocks sequentially, e.g.,
seems to fall pretty regularly but the amounts are not too much .. main
pattern seems to be a short spell of dry days (3-5days) and then 1 or 2
wet days but rain is pretty light and not a large amount falls…

Second Cycle

Quantitative Responses

element - quantitative feature of variation of data

U2 - unistructural - one
quantitative feature of
variation

based on extreme values - discuss maximum, minimum, range

or interior values - refer to blocks or patches of days

M2 - multistructural -
more than one
quantitative feature of
variation

based on extreme values and/or interior values, e.g., refer to range but
also to the rise and fall of temperatures throughout the month

R2 - relational - link
quantitative features of
variation

linking of extreme values and interior values may suggest immature
notions of deviations, e.g., discussions including day-to-day deviations
or ‘averaged’ deviations from day-to-day
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In the quantitative responses, the last three levels now labeled as the second cycle, identification
of the element of interest as ‘a feature of the variation of the data described quantitatively’ explains
the three levels, unistructural (U2), multistructural (M2) and relational (R2) of this cycle. This cycle
of levels includes responses that clearly deal with Extreme Values while others deal with Interior
Values. The importance of investigating these notions of evaluating dispersion were also borne out by
the research of Lann and Falk (2003), who evaluated strategies used by statistically naive tertiary
students, as they compared sequences of data for greater variability. Some criteria for making
decisions were common such as the Range and Interquartile Range, while others were more intuitive
and less easy to unravel. Responses using the Range would identify as having an Extreme Values
focus, in the refined hierarchy, while those using the Interquartile Range would be classified as
Interior Values. Lann and Falk (2003) also attempted to analyze the justifications given for selected
responses but found that the analysis of these explanations was not such an easy task. Results from
their, yet to be investigated, considerable number of ‘no definite diagnosis’ responses, may also add to
the story in the second cycle but is more likely to assist in unraveling the mystery of what students
really mean when they give responses such as those in the first cycle.

Two Cycles of SOLO Levels identified
Having established that SOLO proved useful as a suitable framework, the third research question

asked whether cycles of levels can be identified within the SOLO modes? Two distinct cycles of the
unistructural-multistructural-relational levels have been identified. Both these cycles are part of the
concrete symbolic mode (Pegg, 2003, p.242) where a person thinks through the use of the symbol
systems, both language and numeric, as used by the literate. Pegg (2003, p. 245) provides a useful
diagrammatic representation of the link between coexisting cycles of levels within the concrete
symbolic mode. As pointed out earlier the existence of more than one cycle of levels of cognitive
development within one SOLO mode of cognition has now been observed by other researchers and so
it is not unexpected that two cycles of levels would be observed in this study. Of particular interest
with the first cycle in the present study is the strong emphasis on visual elements in the descriptions of
variation. This would be expected because, as Pegg (2003, p. 244) points out, this first cycle in the
concrete symbolic mode provides an interface to the less cognitively developed ikonic mode of
operation, where actions are internalized as images. In fact, some responses demonstrated that
students revert to the ikonic mode, based on personal experience, such as their own knowledge of
festivals and the town’s weather, when trying to justify their evaluation of the suitability of the month
for the event.

The nature of the responses as described in the refined Description of Variation Hierarchy, within
each of the two cycles, demonstrates a developmental cognitive progression from the first to second
cycle. Those responses at the first multistructural level specifically coded as Limiting appear to be
precursors to the Extreme Values responses at the second unistructural level, while those coded as
Sequential appear to be precursors to the Interior Values. As the terminology used by students
progresses through the levels of the two cycles it appears as if the students are adjusting the focusing
lens on a microscope. The higher the level of response achieved the finer the detail provided about the
variation that exists. Even finer detail is expected to unfold in future research during analysis of
responses to other tasks and from more advanced students.

5.2. COMPARISON TO OTHER DEVELOPMENTAL HIERARCHIES

The Description of Variation Hierarchy as refined by this study, see Table 10, provides a greater
depth of explanation of the focus of student responses on variation than the previously developed
hierarchies, by Mooney (2002), see Table 1, and Watson et al. (2003), see Table 2. This has been
achieved by identifying cycles of levels, unistructural, multistructural and relational, within the SOLO
mode of cognitive growth for the less statistically sophisticated categories in both of these hierarchies.
Is the greater depth of explanation within the refined hierarchy consistent with references to spread in
the Mooney (2000) hierarchy? Though variation is only acknowledged through references to spread in
the Organising and Reducing Data process of Mooney’s (2002) framework, similarities in descriptors
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can be found with the refined hierarchy proposed in Table 10. Mooney’s Transitional responses, with
their ‘invented’ measures are similar to the proposed first cycle of qualitative responses. However, the
proposed second cycle of quantitative measures has not distinguished between invented and valid
measures as Mooney’s Qualitative and Analytical levels have done. There were not sufficient
responses at, or above, the relational level of the quantitative responses in the present study to develop
the hierarchy further at these higher levels of cognition.

Is the greater depth of explanation in the refined hierarchy consistent with the hierarchy
developed by Watson et al. (2003)? The ability to describe variation is essential to demonstrating the
achievement of levels of understanding developed by Watson et al (2003). The qualitative responses
identified in the first cycle of the refined hierarchy in Table 10 are typical of descriptions given in
responses at Level 1 - Prerequisites for Variation of the Watson et al. hierarchy. The quantitative
responses identified as second cycle of the refined hierarchy are typical of descriptions given in
responses at Level 2 - Partial Recognition of Variation. As previously mentioned responses at, or
above, the relational level of the quantitative responses were lacking and if such responses are
collected in the future they may provide cycles of levels of description of variation equating to the
upper two levels of the Watson et al. Hierarchy, Level 3 - Applications of Variation and Level 4 -
Critical Aspects of Variation. Thus the refined hierarchy proposed by the present study has provided a
greater depth of explanation to the lower cognitive levels of both the Mooney (2002) and Watson et
al. (2003) hierarchies.

5.3. INTERPRETATIONS AND LIMITATIONS

Any consideration of the findings reported above needs to take into account students’
interpretations of the task and two noticeable limitations of the study relating to student motivation
and the profile of the data supplied for the task. Student interpretation issues focus around the initial
intent of the activity, the different approaches to the two data variables and lack of recognition of the
benefit of using visual representations. The way most of the students interpreted the task, though not
contrary to, was not exactly what was initially intended. The natural urge to predict the most suitable
month, even before being asked to do so, suggests that for students to give more meaningful
descriptions of data they need a context and a sense of purpose. In this case, the students were given a
context, using rainfall and temperature data from their own town for the preceding three years, and a
purpose, to decide on the suitability of a particular month for the scheduling of a Youth Festival.

The students’ familiarity with weather and with their expectations of the need for suitable weather
for the festival may have contributed to the differing approaches that students took to describing the
variation in the data for rainfall and for temperature. Consideration of the data for just part of the
month was more common when describing the rainfall data, where blocking of ‘rain’ and ‘no rain’
days was often the focus. For temperature, use of the data for all of the month was more common and
extremes of temperature became the focus of the better responses. Rainfall almost took on a
dichotomous nature in that interest centred on whether it ‘rained or not’, while temperature
maintained a more continuous nature with the number of degrees being considered to be of enough
importance to be discussed.

The use of a realistic context, though considered more meaningful, appears to have precluded
students from recognizing an opportunity to make use of skills newly acquired in the classroom. Few
students beyond Grade 7 drew a graph to help describe the data and only three students referred
specifically to their graphs in their explanations. Even the inclusion of a teaching episode, to
introduce a new graphing technique to the students, did not result in any noticeable increase in the use
of graphs to aid the inferences. It is possible that if students had been encouraged, or actually
required, to draw a graph of the data then visual cues may have assisted them to give more detailed
descriptions of the variation.

Student motivation was clearly evident early on in the task, but waned as the activity progressed.
Well intentioned attempts to provide a realistic context for the inference task were obviously
successful to the point of creating another problem. Some students thought the Youth Alive festival
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was really going to take place and Grade 7 were particularly disappointed when they found out that
this was not so.

Apart from the differing student interpretations of the nature of the two variables, rainfall and
temperature, the profile of the data also differed in the amount of information supplied. One set of
data was given per month for rainfall (daily millimetres) and two sets of data per month (daily
maximum degrees centigrade and daily minimum degrees centigrade) for temperature. The two sets of
data for temperature proved more of a complication for students than had been anticipated. In many
cases students dealt with this issue by using only one set of data or the other, or by combining all the
data into one set with maximum temperatures and minimum temperatures together.

These various interpretation issues and limitations were not considered to detract, however, from
the wealth of information contained in the responses. This was especially so given that the coding of
the responses was not to be used as a quantification of the best of students’ capabilities but more as an
indication of what descriptions of variation are used by students as they respond to the particular
weather-related inference task.

6. IMPLICATIONS

6.1. IMPLICATIONS FOR RESEARCH

Several implications for research arise from this study. First, the refining of the hierarchy has
demonstrated that levels devised for description of variation in sampling task responses have proven
useful as a starting point for analyzing responses in an inference task and that SOLO can provide a
suitable framework for such a hierarchy. Descriptions of lower level responses in the original
hierarchy have been expanded and levels have been created for responses that are less statistically
sophisticated than those in the original hierarchy. The strength of this refinement of a previously
developed hierarchy now needs to be tested by applying the developed cycles of levels to the coding
of responses posed in statistical tasks based in other contexts. Another implication of this study is that
more statistically sophisticated responses need to be analyzed to identify the structure of possible
cycles of levels that may exist above the two cycles proposed. It is expected that research with more
advanced students will reveal some detail of more sophisticated development. The delMas and Liu
(2003) research is a clear indication of the reasonableness of this expectation. A strategy they found
being used by college students to describe variation, ‘far-away mean’, focused on trying to get the
bars of a computer display as far away as possible from the mean in order to affect the standard
deviation. This is similar in approach to the descriptions given by students at the Reading and
Shaughnessy (2004) D4 – Discuss Deviation from a Central Anchor level and indicates that
refinement of the D3 and D4 levels would be warranted.

A further implication is that when designing tasks researchers need to be aware of the influence of
the nature of the variable used in the task on the style of response and to try encouraging the use of
graphical representation to improve the quality of descriptions of variation. Related to this is the
implication that care should be taken to avoid unnecessary complication in tasks given. In this case,
future use of the weather activity should only include one set of data for a particular variable, e.g., the
more relevant Maximum Temperature for the temperature segment of the activity. This would remove
the complication, unnecessary to this particular investigation, of having to deal with two sets of data
for the one variable. A final implication is that consideration in future research should also be given to
the role played by measures of central tendency, such as the mean, when describing variation.

6.2. IMPLICATIONS FOR TEACHING AND ASSESSMENT

From a teaching perspective, student responses to the weather activity demonstrate that when
considering data ‘in context’ students may rely too much on their experience of the context itself and
not enough on information provided by the data. This then influences the way students describe the
variation of the data, and ultimately any predictions made. It is also evident that the nature of the data



102

in the variable influences the way that students react to data. Students focused on varying amounts of
the information depending on and treated them differently depending on whether the temperature or
rainfall variable was being discussed. In addition, teachers should consider encouraging more use of
graphical representation when students are engaged in activities that involve description of variation.
The terminology used by students is important and there is a need to encourage students to work from
their own terminology and descriptions to what is required in more statistically sophisticated
discussions. Such a necessity has also been flagged by Makar and Confrey (2003). Finally, the
description of responses at the various levels can be used to help teachers make sense of the
unsophisticated language and reasoning of students during classroom activities.

From an assessment perspective, the hierarchy developed in this study could provide a rubric to
assess the level of cognitive growth at which students are operating in terms of their description of
variation, a very basic statistical concept. Such descriptions are essential if students are to be able to
indicate their appreciation of existing variation and communicate such information in a statistically
sophisticated manner to a wider audience. As such a hierarchy is further developed teachers should be
encouraged to use it to code responses to a variety of statistical tasks, so that they will be better
informed as to how students are describing the variation as part of their reasoning about variability
and patterns in data.
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APPENDIX – SAMPLE WEATHER ACTIVITY DATA HANDOUTS

Jan-98

Millimetres

0.0

0.0

0.0

4.8

2.2

9.2

0.0

0.0

0.0

11.2

0.0

2.2

0.0

0.0

2.4

0.0

0.0

0.0

0.0

0.0

0.6

4.8

0.0

0.0

0.0

8.8

0.0

0.0

0.0

0.0

0.0

Jul-99

Millimetres

21.8

0.8

0.0

0.0

0.0

0.0

0.0

0.2

0.4

6.0

0.8

0.0

0.8

1.0

16.2

0.8

0.4

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.6

0.2

1.2

0.8

0.0

0.0

0.0

Jul-98 Jul-98

Max deg C Min deg C

8.8 3.5

12.9 0.4

14.1 -5.9

12.6 3.0

18.5 4.0

18.3 2.8

15.8 10.0

10.8 8.1

8.2 4.9

8.5 -1.2

12.9 -2.8

14.0 0.2

12.0 5.1

10.0 3.5

9.7 -1.4

12.5 -2.1

16.1 -0.2

12.6 7.1

16.7 6.4

19.0 3.1

12.4 9.9

11.4 4.1

11.6 -4.2

13.2 -0.7

12.0 5.7

13.0 6.8

16.7 9.0

11.1 10.0

6.6 0.8

5.4 0.6

4.9 0.4

Oct-00 Oct-00

Max deg C Min deg C

22.5 7.9

19.6 -1.9

22.0 -2.8

23.6 -3.1

24.4 3.1

25.4 3.0

26.5 3.0

27.5 4.6

28.3 9.4

21.7 14.3

19.4 2.3

20.1 8.0

20.0 4.2

11.3 10.1

17.5 2.4

19.1 1.5

19.2 4.6

18.4 9.4

15.9 10.7

20.6 6.9

21.9 7.7

22.3 10.8

22.0 10.4

21.5 11.4

20.4 11.0

21.1 4.1

20.7 4.1

19.6 1.9

21.1 5.7

15.5 10.1

15.2 9.9

Rainfall Data

(January 1998)

used to produce
response R905

Rainfall Data

(July 1999)

used to produce
response R706

Temperature Data

(July 1998)

used to produce
response R1110

Temperature Data

(October 2000)

used to produce response
R1109
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FORTHCOMING IASE CONFERENCES

1. THE 2005 SESSION OF THE INTERNATIONAL
STATISTICAL INSTITUTE, ISI-55
Sydney, Australia, April 5-12, 2005

Don’t miss the 2005 Session of the International Statistical Institute (ISI) in Sydney, Australia.
This meeting is open to all those interested in statistical matters, particularly members of the ISI and
its Sections. Those who want to stay in touch with the latest research and practice developments in the
field will find ISI-55 of great relevance and should register now.

The ISI 2005 registration brochure (Bulletin No 2) has been released with new details of the
scientific program, registration, social events and tours, and can be found at
www.tourhosts.com.au/isi2005. The scientific program is wide ranging and includes some world-class
speakers. The International Association for Statistical Education will sponsor over 10 sessions on
various aspects of statistics education research and practice. For a list of Invited Paper Meetings, or if
you are interested in preparing a Contributed paper for the Session, see the Session website listed
above for details and submission instructions.

The scientific program is supplemented with tutorials and short courses.  Satellite meetings,
before and after ISI 2005, will be held at interesting locations such as Cairns, Auckland and
Wellington in New Zealand, and Noumea in New Caledonia. As part of ISI-55 itself, there will also
be special theme days on topics of importance to the statistical community (finance and statistics,
environmental statistics and genomics).

The Social Program will be a highlight of the Session and has been designed to provide
participants with an opportunity to relax and maximise networking opportunities. Sydney itself is an
exciting and cosmopolitan city located on one of the largest and most beautiful harbours in the world.

For more details on the 2005 ISI Session see www.tourhosts.com.au/isi2005 or email the
conference managers on isi2005@tourhosts.com.au

1.1. IASE ACTIVITIES AT THE ISI-55

Chris Wild (c.wild@auckland.ac.nz) is the IASE representative at the ISI Programme Co-
ordinating Committee for ISI-55th Session. The sessions approved for ISI 55 in Sydney that were
sponsored or co-sponsored by IASE and their organizers are as follows:

IPM 45 Reasoning about Variation. Christine Reading, creading@metz.une.edu.au

IPM 46 The use of Simulation in Statistics Education. Andrej Blejec, andrej.blejec@nib.si

IPM 47 Teaching Statistics Online. Larry Weldon, weldon@sfu.ca

IPM 48 Statistics for Life: What are the Statistical Ideas or Skills that Matter most and why? Chris
Wild, c.wild@stat.auckland.ac.nz

IPM 49 Research in Statistical Education. Kay Lipson, klipson@swin.edu.au / Maria Ottaviani,
Mariagabriella.ottaviani@uniroma1.it

IPM 50 Quality Assurance in Statistics Education. Matthew Regan, m.regan@auckland.ac.nz

IPM 51 Promotion of Statistical Literacy among Students. Pilar Guzman, pilar.guzman@uam.es

IPM 52 Using History of Statistics to Enhance the Teaching of Statistics. Carol J. Blumberg,
cblumberg@winona.edu

IPM 63 Educating the Media on how best to Report Statistics. Jacob Ryten, rytenjacob@msn.com

IPM 81 Ethical Standards in Statistics Education. Mary A. Gray, mgray@american.edu

IPM 83 Challenges in the Teaching of Survey Sampling. Wilton de Oliveira Bussab, bussab@fgvsp.br
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2. IASE SATELLITE CONFERENCE - STATISTICS EDUCATION AND THE
COMMUNICATION OF STATISTICS

Sydney, Australia, April 4-5, 2005

This conference, focused on Statistics Education and the Communication of Statistics, is jointly
organised by the IASE and the Victorian Branch of the Statistical Society of Australia and will
immediately precede the International Statistical Institute Session in Sydney. The approach will be
non-technical, suitable for both a specialist and non-specialist audience who would like to learn how
to better communicate the statistical ideas which occur in their everyday and working lives. This
meeting is intended to be of interest to a wide cross section of society including teachers, educational
administrators, researchers in statistical education and in probabilistic reasoning and others who want
to gain a better grasp of how to communicate statistics in general and who would like to broaden their
knowledge of statistics applications. It should also be of interest to people concerned with interpreting
sociological, economical, political, scientific or educational reports, predicting sports results, by
policy makers, journalists, health professionals and others from the general population.

Over 25 abstracts were submitted by the Sept 30 deadline, showing there is a lot of interest in this
topic. If you are going to ISI and are interested in issues related to the communication of statistics or
statistics education, you should make a special effort to attend this meeting.

For details see the web site: www.stat.auckland.ac.nz/~iase/conferences.php?show=iase2005 or
contact the joint chairs, Brian Phillips, bphillips@swin.edu.au and Kay Lipson, klipson@swin.edu.au

3. SRTL-4 THE FOURTH INTERNATIONAL RESEARCH FORUM ON STATISTICAL
REASONING, THINKING AND LITERACY

Auckland, New Zealand, July 2-7, 2005

The Fourth International Research Forum on Statistical Reasoning, Thinking, and Literacy, is to
be hosted by the Department of Statistics, The University of Auckland, New Zealand, July 2–7, 2005.
This gathering offers an opportunity for a small, interdisciplinary group of researchers from around
the world to meet for a few days to share their work, discuss important issues, and initiate
collaborative projects. Having emerged from the three previous forums, the topic and focus of SRTL-
4 will be Reasoning about Distribution. The Forum is co-chaired by Dani Ben-Zvi (University of
Haifa, Israel) and Joan Garfield (University of Minnesota, USA), co-organized by Maxine Pfannkuch
and Chris Wild (The University of Auckland, New Zealand), and planned by a prestigious
international advisory committee.

Based on the SRTL tradition, we plan to keep the number of participants small to facilitate a
working research forum.  There are three possible roles for participants in this Forum.  The first role is
to present current research on reasoning about distribution, the second is to discuss and react to
research presentations, while the third is to be a small group moderator, which is ideal for doctoral
students who are not yet ready to present research but want to participate.  Participants will be
strongly encouraged to use videotape and written transcripts of students in classroom and interview
settings to provide illustrations of what the researchers are learning about how students reason about
distribution.  As with the previous SRTL Research Forums, we encourage the participation of young
promising scholars. One outcome of the Forum will be a publication summarizing the work presented,
discussions conducted, and issues emerging from this gathering.

The SRTL-4 Research Forum organizers invite anyone interested in participating in this forum to
contact them as soon as possible. The first deadline for submission of interest was June 1, 2004.
More Information from Maxine Pfannkuch, m.pfannkuch@auckland.ac.nz.
Web site: www.stat.auckland.ac.nz/srtl4/
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4. ICOTS-7: WORKING COOPERATIVELY IN
STATISTICS EDUCATION

Salvador (Bahia), Brazil, July 2-7, 2006

The International Association for Statistical Education
(IASE) and the International Statistical Institute (ISI) are
organizing the Seventh International Conference on Teaching
Statistics (ICOTS-7) which will be hosted by the Brazilian
Statistical Association (ABE) in Salvador (Bahia), Brazil, July
2-7, 2006.

The major aim of ICOTS-7 is to provide the opportunity
for people from around the world who are involved in

statistics education to exchange ideas and experiences, to discuss the latest developments in teaching
statistics and to expand their network of statistical educators. The conference theme emphasises the
idea of cooperation, which is natural and beneficial for those involved in the different aspects of
statistics education at all levels.

4.1. CALL FOR PAPERS

Statistics educators, statisticians, teachers and educators at large are invited to contribute to the
scientific programme. Types of contribution include invited papers, contributed papers and posters.
No person may author more than one Invited Paper at the conference, although the same person can
be co-author of more than one paper, provided each paper is presented by a different person.

Voluntary refereeing procedures will be implemented for ICOTS7. Details of how to prepare
manuscripts, the refereeing process and final submission arrangements will be announced later.

Invited Papers

Invited Paper Sessions are organized within 9 different Conference Topics 1 to 9. The list of
Topic and Sessions themes, with email contact for Session Organisers is available at the ICOTS-7
web site at www.maths.otago.ac.nz/icots7, under “Scientific Programme”. Those interested in
submitting an invited paper should contact the appropriate Session Organiser before December 1,
2004.

Contributed Papers

Contributed paper sessions will be arranged in a variety of areas. Those interested in submitting a
contributed paper should contact either Joachim Engel (Engel_Joachim@ph-ludwigsburg.de) or Alan
MacLean (alan.mclean@buseco.monash.edu.au) before September 1, 2005.

Posters

Those interested in submitting a poster should contact Celi Lopes (celilopes@uol.com.br) before
February, 1, 2006.

Special Interest Group Meetings
These are meetings of Special Interest Groups of people who are interested in exchanging and

discussing experiences and/or projects concerning a well-defined theme of common interest.
Proposals to hold a SIG Meeting specifically oriented to reinforce Latin American statistics education
cooperation in a particular theme are especially welcome. In this case the organisers may decide to
hold the meeting in Portuguese and Spanish language. Individuals or groups may submit proposals to
establish a Special Interest Group to Carmen Batanero at (batanero@ugr.es).

4.2. TOPICS AND TOPIC CONVENORS

Topic 1. Working cooperatively in statistics education. Lisbeth Cordani, lisbeth@maua.br and Mike
Shaughnessy, mike@mth.pdx.edu
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Topic 2. Statistics Education at the School Level. Dani Ben-Zvi, benzvi@univ.haifa.ac.il and Lionel
Pereira, lpereira@nie.edu.sg

Topic 3. Statistics Education at the Post Secondary Level. Martha Aliaga, martha@amstat.org and
Elisabeth Svensson, elisabeth.svensson@esi.oru.se

Topic 4. Statistics Education/Training and the Workplace. Pedro Silva, pedrosilva@ibge.gov.br and
Pilar Martín, pilar.guzman@uam.es

Topic 5. Statistics Education and the Wider Society. Brian Phillips, BPhillips@groupwise.swin.edu.au
and Phillips Boland, Philip.J.Boland@ucd.ie

Topic 6. Research in Statistics Education. Chris Reading, creading@metz.une.edu.au and Maxine
Pfannkuch, pfannkuc@scitec.auckland.ac.nz

Topic 7. Technology in Statistics Education. Andrej Blejec, andrej.blejec@nib.si and Cliff Konold,
konold@srri.umass.edu

Topic 8. Other Determinants and Developments in Statistics Education. Theodore Chadjipadelis,
chadji@polsci.auth.gr and Beverley Carlson, bcarlson@eclac.cl

Topic 9. An International Perspective on Statistics Education. Delia North, delian@icon.co.za and
Ana Silvia Haedo, haedo@qb.fcen.uba.ar

Topic 10. Contributed Papers. Joachim Engel, Engel_Joachim@ph-ludwigsburg.de and Alan
McLean, alan.mclean@buseco.monash.edu.au

Topic 11. Posters. Celi Espasandín López, celilopes@directnet.com.br

4.3. ORGANISERS

Local Organisers

Pedro Alberto Morettin, (Chair; pam@ime.usp.br), Lisbeth K. Cordani (lisbeth@maua.br), Clélia
Maria C. Toloi (clelia@ime.usp.br), Wilton de Oliveira Bussab (bussab@fgvsp.br), Pedro Silva
(pedrosilva@ibge.gov.br).

IPC Executive

Carmen Batanero (Chair; batanero@ugr.es), Susan Starkings (Programme Chair;
starkisa@lsbu.ac.uk), Allan Rossman and Beth Chance (Editors of Proceedings;
arossman@calpoly.edu; bchance@calpoly.edu), John Harraway (Scientific Secretary:
jharraway@maths.otago.ac.nz), Lisbeth Cordani (Local organisers representative; lisbeth@maua.br).

More information is available from the ICOTS-7 web site at www.maths.otago.ac.nz/icots7 or
from the ICOTS IPC Chair Carmen Batanero (batanero@ugr.es), the Programme Chair Susan
Starkings (starkisa@lsbu.ac.uk) and the Scientific Secretary John Harraway
(jharraway@maths.otago.ac.nz).
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OTHER FORTHCOMING CONFERENCES

1. ASIAN TECHNOLOGY CONFERENCE IN MATHEMATICS 2004
Singapore, December 13-17, 2004

There is little doubt that technology has made an impact on the teaching of Mathematics. The
Asian Technology Conference in Mathematics on the theme Technology in Mathematics: Engaging
Learners, Empowering Teachers and Enabling Research is hosted by the National Institute of
Education, Nanyang Technological University of Singapore (December, 13-17, 2004). In this
conference, we shall go beyond justifying the use of technology in Mathematics to discuss and
examine the best practices of applying technology in the teaching and learning of Mathematics and in
Mathematics research. In particular, the conference will focus on how technology can be exploited to
enrich and enhance Mathematics learning, teaching and research at all levels. The conference will
cover a broad range of topics on the application and use of technology in Mathematics research and
teaching. More information from Wei-Chi YANG, wyang@radford.edu, and Tilak de Alwis,
tdealwis@selu.edu.
Web site: www.atcminc.com/mConferences/ATCM04/

2. CONGRESS OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS
EDUCATION, CERME-4

Sant Feliu de Guíxols, Spain, February 17-21, 2005

The Fourth Congress of the European Society for Research in Mathematics Education (ERME)
will be held in Sant Feliu de Guíxols, Spain, from 17 to 21 February, 2005. The conference will focus
mainly on work in Thematic Groups in a style similar to that developed in previous conferences.
Details  of the groups from CERME3 can be found on the website
www.dm.unipi.it/~didattica/CERME3/second.html. Many of the previous groups will continue work,
and we expect a few new groups. Of special interest is Group 5 Stochastic Thinking (Research on
probabilistic and statistical thinking; Subjects include: stochastic thinking, including probability,
statistics and the interface between these domains), organized by Dave Pratt (e-mail:
dave.pratt@warwick.ac.uk). CERME4 will also include plenary activities and poster presentations.
More information from the Chair of the CERME4 Programme Committee: Barbara Jaworski,
barbara.jaworski@hia.no. Web site: cerme4.crm.es.

3. UNITED STATES CONFERENCE ON TEACHING STATISTICS, USCOTS

Columbus, OH, USA, May 19-21, 2005

The first United States Conference on Teaching Statistics (USCOTS) will be held on May 19-21,
2005 at the Ohio State University in Columbus, Ohio, hosted by CAUSE, the Consortium for the
Advancement of Undergraduate Statistics Education. USCOTS is an active, hands-on working
conference for teachers of Statistics at the undergraduate level, in any discipline or type of institution,
including high school teachers of AP Statistics. USCOTS will feature spotlight sessions, plenary
talks, and working breakout sessions in three major areas: curriculum, pedagogy, and research. Lots
of good resources for each of these areas will be provided in a fun and active atmosphere, where
everyone will be invited to be involved. The theme of the 2005 USCOTS is “Building Connections
for Undergraduate Statistics Teaching” and will focus on ways that we can share teaching ideas,
develop working relationships, and identify areas for future collaborations and projects at our own
institutions. USCOTS is partially funded by The Ohio State University Department of Statistics and
its College of Mathematical and Physical Sciences. For more information about USCOTS, please
contact Deborah Rumsey, USCOTS program chair at rumsey@stat.ohio-state.edu. Web site:
www.causeweb.org/uscots/
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4. INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING AND
APPLICATIONS, ICTMA 12

London, United Kingdom, July 10-14, 2005

Mathematical modelling and applications, the transition between real world problems and
mathematical representations of such problems, is an enduring and important feature of industry,
business and commerce. Teaching mathematical modelling, through tasks, projects investigations and
applications embedded in courses and of mathematics itself through applications helps learners to
understand relationships between real world problems and mathematical models. The 12th
International Conference on Mathematical Modelling and Applications (ICTMA12) will be hosted by
the School of Engineering and Mathematical Sciences City of London, Sir John Cass Business
School, London, UK. This conference brings together international experts in a variety of fields and
from different sectors to consider: modelling in business and industry, evaluating effectiveness,
pedagogic issues for learning, applicability at different levels, research: education and practice,
innovative practices and transitions to expert practice. More information from Chris Haines,
ictma12@city.ac.uk.
Web site: www.city.ac.uk/conted/reseach/ictma12/index.htm

5. PSYCHOLOGY OF MATHEMATICS EDUCATION, PME-29
Melbourne, Australia, July 10-15, 2005

The PME29 conference will be held on July 10-15, 2005 in Melbourne, Australia. More
information from Helen Chick, h.chick@unimelb.edu.au.
Web site: staff.edfac.unimelb.edu.au/~chick/PME29/

6. THE 25TH EUROPEAN MEETING OF STATISTICIANS, EMS 2005
Oslo, Norway, July 24-28, 2005

The meeting will cover all areas of methodological, applied and computational statistics,
probability theory and applied probability. There will be 8 special lecturers, 23 ordinary invited
sessions and one invited discussion session. The scientific programme is broad, with ample space for
applications; invited speakers and sessions have been chosen with the specific aim to appeal to a wide
audience and will bridge between theory and practice, inference and stochastic models. The meeting
is organised jointly by the University of Oslo and the Norwegian Computing Center. For further
informations contact email to ems2005@nr.no or visit the web site: www.ems2005.no

7. BEYOND THE FORMULA IX
Rochester, NY, USA, August 4-5, 2005

“Constantly Improving the Teaching of Introductory Statistics” is the motto of the conference
organized by Monroe Community College, Rochester, NY. Beyond The Formula is an annual two-
day, summer conference designed to promote excellence in teaching introductory statistics. Whether
participants come from the high school, two-year or four-year college setting, they can expect to hear
speakers who will provide them with new ideas and techniques that will make their classrooms more
effective statistics learning centers. In organizing BTF conferences four major areas of teaching
concern have been identified: the curriculum, the techniques and methodologies, the ever-changing
technology, and real world applications. Each year one of these topic areas is chosen to serve as a
common thread to draw together all the presentations - with 20 to 25 large-group, small-group and
workshop sessions, all of the four topic areas find their way into each conference. Come with us each
summer on a trip Beyond The Formula to see how exciting, thought provoking and inspiring the
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teaching of statistics can really be. For more information contact Robert Johnson
rr.bs.johnson@juno.com. Web site: www.monroecc.edu/go/beyondtheformula/

8. JOINT STATISTICAL MEETINGS, JSM 2005
Minneapolis, MN, USA, August 7-11, 2005

JSM (the Joint Statistical Meetings) is the largest gathering of statisticians held in North America.
It is held jointly with the American Statistical Association, the International Biometric Society
(ENAR and WNAR), the Institute of Mathematical Statistics, and the Statistical Society of Canada.
Attended by over 4000 people, activities of the meeting include oral presentations, panel sessions,
poster presentations, continuing education courses, exhibit hall (with state-of-the-art statistical
products and opportunities), placement service, society and section business meetings, committee
meetings, social activities, and networking opportunities. Minneapolis is the host city for JSM 2005
and offers a wide range of possibilities for sharing time with friends and colleagues. For information,
contact jsm@amstat.org or phone toll-free (800) 308-8943. For more info contact email
Elaine Powell, jsm@amstat.org.
Web site: www.amstat.org/meetings/jsm/2005/
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