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SUMMARY

Little is known about the way that teachers articulate notions of variation in their own words. The
study reported here was conducted with 17 prospective secondary math and science teachers
enrolled in a preservice teacher education course which engaged them in statistical inquiry of
testing data. This qualitative study examines how these preservice teachers articulated notions of
variation as they compared two distributions. Although the teachers made use of standard
statistical language, they also expressed rich views of variation through nonstandard
terminology. This paper details the statistical language used by the prospective teachers,
categorizing both standard and nonstandard expressions. Their nonstandard language revealed
strong relationships between expressions of variation and expressions of distribution.
Implications and the benefits of nonstandard language in statistics are outlined.
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Do not let calculations override common sense.

Moore & McCabe (1993, p. 121)

1. INTRODUCTION

Recently, researchers in statistics education have been calling for greater emphasis in schools on
developing students’ conceptions of variation (Moore, 1990; Shaughnessy, Watson, Moritz, &
Reading, 1999; Pfannkuch & Begg, 2004). In addition, they argue that too much instruction in
statistics has focused on performing statistical operations rather than developing students’ thinking
about what makes sense. One approach to sense-making is through encouraging learners to express
their ideas in their own words (Noss & Hoyles, 1996). Russell and Mokros (1990) documented
teachers’ statistical thinking by attending to their ways of describing data using nonstandard statistical
language. Other research has also revealed that learners often articulate concepts of variation using
nonstandard language (e.g., Bakker, 2004; Reading, 2004); however these studies have not
systematically looked at ways that learners express notions of variation. Even less is known about
how teachers express concepts of variation.

In other qualitative studies, we examined preservice secondary mathematics and science teachers’
experiences making sense of data as they conducted technology-based investigations (Confrey,
Makar, & Kazak, 2004; Makar, 2004; Makar & Confrey, submitted). This paper reports on an
exploratory study of preservice teachers’ use of standard and nonstandard statistical language when
discussing notions of variation. Below we first review the background for the present study, including
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the conceptualization of variation, prior research on teachers’ and students’ knowledge of variation,
and research needs regarding meaning construction and language use in statistics education.

2. REASONING ABOUT VARIATION

Although variation is a central component of understanding statistics, little is known about how
children (and even less about how teachers) reason with, conceptualize, learn about, and express
notions of variation. This section begins with a conceptual analysis of variation, then looks at recent
research on developing teachers’ conceptions of variation, and finally turns to recent work on middle
school students’ reasoning in this area.

2.1. VARIATION AS A CONCEPTUAL ENTITY

Most uses of the term “variation” in research studies are taken to have a self-evident, common
sense meaning, and leave it undefined. Variation is closely linked to the concepts of variable and
uncertainty. It is often regarded as a measurement of the amount that data deviate from a measure of
center, such as with the interquartile range or standard deviation. Variation encompasses more than a
measure, although measuring variation is an important component in data analysis. In considering
variation, one must consider not just what it is (its definition or formula), or how to use it as a tool
(related procedures), but also why it is useful within a context (purpose).

In simple terms, variation is the quality of an entity (a variable) to vary, including variation due to
uncertainty. “Uncertainty and variability are closely related: because there is variability, we live in
uncertainty, and because not everything is determined or certain, there is variability” (Bakker, 2004,
p. 14). While no one expects all five year-old children to be the same height, there is often difficulty
understanding the extent to which children’s height vary, and that the variability of their heights is a
mixture of explained factors (e.g., the parents’ heights, nutrition) and chance or unexplained factors.

In this paper, we will not distinguish between reasoning about variability and reasoning about
variation, although Reading and Shaughnessy’s (2004, p. 202) definition of variation distinguishes it
from variability:

The term variability will be taken to mean the [varying] characteristic of the entity that is
observable, and the term variation to mean the describing or measuring of that characteristic.
Consequently, the following discourse, relating to “reasoning about variation,” will deal with
the cognitive processes involved in describing the observed phenomenon in situations that
exhibit variability, or the propensity for change.

We would argue that developing the concept of variation, beyond just an acknowledgement of its
existence, requires some understanding of distribution. In examining a variable in a data set, one is
often interested in uncovering patterns in the variability of the data (Bakker, 2004), for example by
representing the ordered values of the variable in a graph. The distribution, then, becomes a visual
representation of the data’s variation and understanding learners’ concept of variation becomes
closely linked to understanding their concept of distribution. A key goal in developing students’
reasoning about distributions is assisting them in seeing a distribution as an aggregate with its own
characteristics (such as its shape or its mean) rather than thinking of a distribution as a collection of
individual points (Hancock, Kaput, & Goldsmith, 1992; Konold & Higgins, 2002; Marshall, Makar,
& Kazak, 2002; Bakker, 2004).

In thinking about what the notion of distribution entails, one might think of the associated
measures, properties, or characteristics of a distribution—for example, its mean, shape, outliers, or
standard deviation. These entities in isolation, however, do not capture the desired concept and can
aggravate the focus on individual points. In addition, they lack the idea that we want to capture a
distribution of something. Pfannkuch, Budgett, Parsonage, and Horring (2004) cautioned that students
often focus on characteristics of a distribution, but forget to focus on the meaning of the distribution
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within the context of the problem. In comparing distributions, for example, they suggested that
students should first look at the distributions and compare centers, spread, and anything noteworthy,
but then should be asked to draw an evidence-based conclusion, using probabilistic rather than
deterministic language, based on their observations.

2.2. TEACHERS’ REASONING ABOUT VARIATION

Teachers’ mind-set and conceptions about data have been of great concern in the research
community for over a decade (Hawkins, 1990; Shaughnessy, 1992). Despite this, Shaughnessy (2001)
reports, “[I am] not aware of any research studies that have dealt specifically with teachers’
conceptions of variability, although in our work teaching statistics courses for middle school and
secondary school mathematics teachers we have evidence that many teachers have a knowledge gap
about the role and importance of variability.”

Three very recent research projects have focused specifically on teachers’ notions of variation and
distribution. Hammerman and Rubin (2004) report on a study of a two-year professional development
project that gave secondary teachers an opportunity to analyze data with a new data visualization tool.
The software Tinkerplots™ (Konold & Miller, 2004) allows learners to create their own data
representations through sorting, ordering, and stacking data. They found that teachers did not choose
to use measures of center in comparing distributions even though those measures were readily
available in the software, but rather chose to compare groups by comparing slices and subsets of
distributions to support compelling arguments with data. In addition, Hammerman and Rubin noted
that teachers were dissatisfied with representations such as histograms and box plots that would hide
the detail of the underlying distribution. From their study, we can begin to see the potential that new
visualization tools have for helping teachers to construct their own meaning of statistical concepts.

In another study, Canada (2004) created a framework to investigate prospective elementary
teachers’ expectation, display, and interpretation of variation within three statistical contexts: repeated
sampling, data distributions, and probability outcomes. His study took place in a preservice
mathematics course developed to build the teachers’ content knowledge of probability and statistics
through activities that emphasized hands-on experiments involving chance and computer-generated
data simulations. Canada’s study found that initially, although the prospective teachers had a good
sense of center, they found it difficult to predict realistic spreads in distributions from collected data
or produced from random sampling and probability experiments. Their predictions for underlying
distributions included expectations of way too little variation, overly extreme variation, or
unrealistically symmetrical distributions. In addition, many of the teachers took an initial stance that
‘anything goes’ in random experiments and felt that they could therefore make no judgment about the
distribution of outcomes. After the course, the teachers demonstrated stronger intuitions about
variation - their predictions were much more realistic and their expectation of variation more
balanced. In addition, the teachers’ descriptions of distributions were more rich and robust in their
recognition of variation and distribution as an important concept, for example by referencing how the
distributions were clustered, spread, concentrated, or distributed. Canada’s study hints at a potential
link between the elements that teachers focus on when describing distributions and their intuition
about variation and uncertainty in data.

In previous research on statistical inquiry with practicing middle school teachers, we found that
teachers, like their students, often begin examining data distributions by focusing on individual points
(Confrey & Makar, 2002). Yet in a meaningful context (e.g., student test scores), the teachers in our
study constructed a need for examining variation in a distribution by initiating a discussion of how the
distribution of students’ abilities affected their choice of instructional strategies. We noticed,
however, that when the teachers did not adequately construct more complex concepts, like sampling
distributions, they would tend to use statistical tools mechanically, without carefully examining their
relationship to the data (Makar & Confrey, 2004).

In summary, although much concern has been expressed about the over-emphasis on procedures
in teaching statistics, the studies described above highlight some important ways to improve what
Shaughnessy (1992) calls teachers’ lack of intuition about stochastics. The main ideas these studies
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bring out is that teachers themselves need to learn statistical concepts in an environment much like the
one recommended for students – one that is active, technology-rich, involving authentic data, and
offering plenty of opportunities to build their conceptions through experiences with data. Particulars
about how teachers build these conceptions still needs further research.

2.3. STUDENTS’ REASONING ABOUT VARIATION

It is useful to briefly review research on students’ development of concepts of variation, as it may
provide insight into potential ways to build teachers’ conceptions of variation. First, teachers
frequently possess similar reasoning to their students (Hammerman & Rubin, 2004; McClain, 2002).
Second, understanding students’ conceptions of variation can help teachers to plan instruction.
Finally, the research in this area has uncovered new insights into students’ intuitions about variation
without formal procedures and terminology. These insights may provide ideas for new methods of
professional development for teachers.

A common thread in the research on teaching concepts of variation and distribution is a
recommendation to focus not only on the characteristics of distributions, but on their purpose. A well-
documented approach to this is through comparing groups (see for example, Cobb, 1999; Watson &
Moritz, 1999; Biehler, 1997; Makar & Confrey, 2004; Hammerman & Rubin, 2004). Pfannkuch et al.
(2004) found that the descriptions of distributions given by secondary students sometimes included
characteristics of the distribution that were disconnected from the context or meaning of the problem.
For example, when taking note of the variability of the data, half of the students compared the ranges,
which was not relevant to their question, and most of the students focused on comparing measures of
center or extremes. Pfannkuch and her colleagues hypothesized that the instruction the students
received focused not on drawing meaningful conclusions, but rather on comparing features of the box
plot. They recommended that instruction concentrate not on how to compare centers, but why one
should do so. Reading and Shaughnessy (2004) also found that tasks which asked students not just for
descriptive information but also for explanations offered greater possibilities for insight into students'
reasoning about variation.

In developing students’ conception of statistics, Konold and Pollatsek (2002) argue that “the
central idea should be that of searching for a signal and that the idea of distribution comes into better
focus when it is viewed as the ‘distribution around’ a signal” (p. 262). Bakker and Gravemeijer (2004)
on the other hand hold that “reasoning with shapes forms the basis for reasoning about distributions”
(p. 149). By developing a lens of seeing the distribution as an entity, one can then look at statistical
measures as characteristics of the distribution rather than as calculations from individual points
(Bakker, 2004).

Bakker (2004; Bakker & Gravemeijer, 2004) also found that with Cobb’s Minitool software and
an innovative learning trajectory he was able to encourage his middle school students to think about
variation and towards a distribution-view of data. Initial discussions with students focused on the
middle “bump” of the distribution, but later the “bump” came to represent the whole distribution.
Konold and his colleagues (2002), who studied middle school students, emphasized that in problem
solving with data, the middle bump was a frequently identified portion of a mound-shaped
distribution, and termed this central bump a modal clump. Bakker (2004) also found that rather than
just focusing on the central region of a distribution, students also tend to divide distributions into three
categories: low, middle, and high. Hammerman and Rubin (2004) saw the teachers in their study take
a similar tactic in comparing distributions. These findings may indicate that dividing distributions into
three pieces may be a more natural way for students to examine a distribution than by dividing it into
four sections, as in the box plot.

The studies reported above suggest that if learners are provided with relevant contexts, concrete
experiences, complex tasks, adequate time and support, and appropriate tools to build statistical
concepts, then their understanding appears to be much more robust. One notable common feature of
these studies is that they developed learners’ notions of variation through constructing a purpose for
variation, often building on the learners’ own language for describing and interpreting what they were
seeing.
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3. CONCEPT DEVELOPMENT

Below we briefly discuss some aspects of how learners construct meaning of data as well as
issues surrounding the use of learners’ everyday or nontechnical terminology. These issues affected
the design of the present study and the lens we used to interpret prospective teachers’ articulation of
variation. The need to refer both to standard statistical terminology and to nonstandard or
nontechnical statistical terminology arises because one cannot assume that if a respondent can repeat
the definition of a concept, she has necessarily assimilated this concept. For example, although a
student may be taught the concept and formula for standard variation and can even use this term as
part of class discourse, this does not imply that they are “seeing” variation in what is being measured.

3.1. CONSTRUCTING MEANING

Because students are frequently taught definitions and procedures without first developing their
own intuition and meaning about the concepts underlying them, premature instruction of formal
terminology and rules can inhibit students’ own sense-making (Flyvbjerg, 2001; Schoenfeld, 1991;
Boaler, 1997). Formal mathematical procedures, terminology, and symbolism are critical for
developing advanced levels of mathematical understanding in that they can provide efficient paths to
problem-solving, focus attention on particular aspects of a problem, and open new levels of
understanding of the concepts represented by the terms or symbols. However, the emphasis must be
on building meaning, not simply assuming that standard procedures or terms can themselves carry the
meanings of underlying concepts.

Shaughnessy (1992) notes that students’ and teachers’ lack of intuition about stochastics is a
critical barrier to improved teaching and learning in statistics. Fischbein’s (1987) description of
intuition matches well with the kind of thinking that we believed should be developed in teachers.

Intuitions are always the product of personal experience, of the personal involvement of the
individual in a certain practical or theoretical activity. Only when striving to cope actively
with certain situations does one need such global, anticipatory, apparently self-consistent
representations. The development of … intuitions implies, then, didactical situations in which
the student is asked to evaluate, to conjecture, to predict, to devise, and check solutions. In
order to develop new, correct probabilistic intuitions, for instance, it is necessary to create
situations in which the student has to cope, practically, with uncertain events (p. 213, italics in
original).

For building intuition, Fischbein further argues that the role of visualization “is so important that very
often intuitive knowledge is identified with visual representations” (p. 103). Insight can also be gained
into learners’ sense-making by focusing on how they use their own words to explain relationships,
constructs, and processes (Noss & Hoyles, 1996). One might infer from these last three quotes that
intuition in statistics is built through the development of visualization, articulation, and representation
of data distributions within personally compelling contexts. Intuition about variation, then, may be
fostered through a lens of “seeing variation” (Watkins, Scheaffer, & Cobb, 2003, p. 10), or Moore’s
(1990) acknowledgement of the omnipresence of variation. These insights may be gained through
attending to students’ own words for describing what they are seeing. These words are often less
technical and contain elements of nonstandard language.

3.2. NONSTANDARD LANGUAGE USE

Noss and Hoyles (1996) state that focusing on mathematical meaning moves us to consider how
learners express mathematics rather than how they learn it. The difference is in the locus of the
concept. If we focus on how students learn statistics, it implies that statistical concepts are
ontologically fixed and that the goal of learning is to impart a priori knowledge from teacher to
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student. However, by turning that around to foster learners’ dynamic conceptions of statistical
concepts, we acknowledge that these concepts are not passively received, but rather are actively and
socially constructed by the individual.

Developing understanding oftentimes requires the use of nonstandard terminology. Unfortunately,
when students do use their own language to make meaning, teachers often do not recognize
nonstandard ways of talking (Lemke, 1990). Biehler (1997) attributes some of the difficulty in
communicating and understanding relationships in data to the lack of formal language we have in
describing distributions beyond the level of statistical summaries:

The description and interpretation of statistical graphs and other results is also a difficult
problem for interviewers and teachers. We must be more careful in developing a language for
this purpose and becoming aware of the difficulties inherent in relating different systems of
representation. Often, diagrams involve expressing relations of relations between numbers. An
adequate verbalization is difficult to achieve and the precise wording of it is often critical.
There are profound problems to overcome in interpreting and verbally describing statistical
graphs and tables that are related to the limited expressability of complex quantitative relations
by means of common language (p. 176).

Biehler’s work implies that the current focus on statistical summaries in describing distributions is
inadequate and that research needs to be improved in the area of developing statistical language for
interpreting more robust relationships in data.

4. DESIGN AND METHODOLOGY

4.1. APPROACH

This exploratory study was designed to gain insight into the ways that prospective secondary
mathematics and science teachers express or discuss notions of variation when engaged in a
purposeful statistical task. Based on the literature reviewed, it was anticipated that respondents will
use standard or conventional descriptions and terms, as well as nonstandard descriptions and informal
language, and the goal of the study was to document the different types of language used.
Respondents were interviewed twice using an identical task, in the first and last week of a fifteen-
week preservice course on assessment, which included an embedded component of exploratory data
analysis. The task given during the interview asked teachers to compare two distributions of data
relevant to the context of teaching, in terms of the relative improvement in test scores of two groups
of students.

Although interviews were conducted at the beginning and end of the course, the purpose of the
study was not to evaluate the effectiveness of the course or to compare performance before and after
instruction. Some comparisons will be made of language use before and after the course, but given the
small number of respondents, these comparisons should be interpreted with caution. The primary
interest was in categorizing and describing the language respondents use to describe variation in the
data. Any change that may have occurred in respondents’ language use simply enriched and extended
the range of responses available for analysis.

4.2. SUBJECTS

The respondents for the study were secondary mathematics and science preservice teachers at a
large university in the southern United States enrolled in an innovative one-semester undergraduate
course on assessment designed and taught by the authors (Confrey et al., 2004). Twenty-two students
began the course, but four withdrew from the course before the end of the semester. In addition, some
data from one subject was lost due to technical malfunction, leaving seventeen subjects with a
complete set of data. The seventeen subjects ranged in age from 19 to 42, with ten students of
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traditional college age (19-22), five aged 23-29, and two students over 30 years of age. Of these, three
were male and fourteen female, nine were mathematics majors and eight were science majors
(predominantly biology). About 60% of the class was Anglo, with the remaining students being of
Hispanic and African-American ancestry. The students had varying backgrounds in statistics: eight
had not previously studied statistics, while five had previously taken a traditional university-based
statistics course either in the mathematics department or in a social science department. The
remaining four had not taken a formal course, but had previous experience in statistics as a topic in
one of their mathematics or science courses.

4.3. SETTING

The study took place at the beginning and end of a one-semester course that integrated ideas of
assessment, data analysis, equity, and inquiry—themes identified as critical but missing from
preservice education (National Research Council, 1999; 2000; 2001). The purpose of the course was
to give the preservice teachers some background in classroom and high-stakes assessment, develop
their statistical reasoning, gain experience using technological tools to interpret student assessment
results, and to introduce them to issues of equity through examining data. In the final month of the
course, the prospective teachers conducted their own data-based inquiry into an issue of equity in
assessment.

The prospective teachers were guided through several investigations that built an atmosphere of
interpretation of data rather than the development of formal theoretical foundations. The inclusion of
the dynamic statistical software Fathom™ (Finzer, 2001) was critical as a learning tool rather than a
traditional statistical package aimed at statisticians and statistics students. The statistical content of the
course was comprised of an overview of data graphing (histograms, box plots, dot plots), descriptive
statistics (mean, median, standard deviation, interquartile range, distribution shapes), linear regression
(association, correlation, least-squares, residuals), and a brief introduction to sampling distributions
and inference (through building of simulations). The statistical content was developed as a set of tools
to gain insight into data rather than as isolated topics.

4.4. INTERVIEW TASK AND PROCEDURE

Respondents were interviewed by the first author during the first and last week of the course,
using the same task in both interviews. Most interviews lasted between ten and twenty minutes. The
task was set in the context of an urban middle school trying to determine the effectiveness of a
semester-long mathematics remediation program (called ‘Enrichment’) for eighth-grade (13-14 years
old) students considered in need of extra help preparing for the state exam given each spring. To
decide if the Enrichment program was working, the school compared student scores from their
seventh grade state exam score in mathematics to their scores on a practice test given near the end of
eighth grade. Respondents were shown a pair of dot plots (Figure 1) of authentic data taken from
students in an Enrichment class (upper distribution) and a regular eighth grade class (lower
distribution). Respondents were asked initially to compare the relative improvement of students in the
two groups, and then were probed if their responses needed clarification. It is important to note that
the data in Figure 1 represent the change (difference) in scores between the two assessments, i.e.
numbers on the x-axis are positive when scores improved, and negative when scores declined. (Data
points in red (shaded dots) highlighted those students classified as economically disadvantaged; this
was used for another question in the interview related to equity but not pertinent for this study.)
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Figure 1. Graph shown to subjects during the interview task.

The preservice teachers were walked through particular elements of the graphs both in the pre-
interview (January) and post-interview (May). It was explained that the data on the horizontal axis
represented the improvement of each student from the seventh grade state exam to their eighth grade
practice test. The mean improvement of each group, marked by a vertical line segment in each
distribution, was pointed out. The overall mean (displayed as -5.26271 at the bottom of the graph)
was interpreted to respondents as the average improvement of the entire eighth grade (that is, both
groups combined) and it was also noted that the overall mean improvement lay in the negative region,
meaning that generally the students had performed less well on their eighth grade practice test than
they did on the seventh grade state exam.

In our choice of task we considered it important to make the context and task as authentic as
possible in order to examine the prospective teachers’ responses in a situation close to what they
would encounter in their professional life. Therefore, rather than use hypothetical data constructed to
emphasize a particular aspect of the distributions, actual data from a local school was used. These
somewhat “messy” data made the task, and hence our analysis, more difficult. Yet, because authentic
school data is rarely “clean” this setup provided the benefit of examining how the prospective
teachers would interpret actual (and messy) school data. We recognize that unintended elements of
this particular representation may have influenced the subjects’ thinking about the task (Kosslyn,
1994). We had the teachers consider the “improvement” of students since improvement is a natural
construct in teaching, and means were marked because this is a common method for comparing
distributions, giving the subjects a potential starting point for their discussion. In addition, it allowed
for insight into whether the prospective teachers would interpret a small difference in means
deterministically, or if they would expect some variability between the means (Makar & Confrey,
2004).

4.5. ANALYSIS

The videotaped interviews from all twenty-two subjects were transcribed and then the content
analyzed and coded to find the categories of concepts that emerged from the data. General categories
were initially sought through open coding to isolate concepts that might highlight thinking about
variation and distribution, and those passages identified by these codes underwent finer coding
resulting in eighteen preliminary categories. Since codes were not predetermined, but rather allowed
to emerge from the data, this portion of the analysis was not linear and underwent several iterations of
coding, requiring a back-and-forth analysis as codes were added, deleted or combined. Commonalities
and differences were examined in passages coded under each node to better describe and isolate the
category, determine dimensions and distinctions among participants’ descriptions, and locate
exemplars. Although the data from all twenty-two original subjects were coded to determine
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categories, dimensions, and exemplars, only the seventeen subjects with complete data sets (both pre-
and post-interviews) were used in quantitative descriptions.

5. RESULTS

In this section we first overview key categories of standard terms and concepts that the
respondents, prospective teachers, used when comparing distributions. Next, categories of
nonstandard language and terms are described, referring to two separate but overlapping areas:
variation (e.g., spread) and distribution (e.g., low-middle-high, modal clumps). We later refer to these
two types of non-standard categories as “variation-talk”. Finally, relationships found within and
between the categories of standard and nonstandard language categories will be summarized. As
explained, the primary goal of the study is to provide a rich description of prospective teachers’
language when discussing variation; hence, the information from the January and May interviews is
usually combined. Changes in respondents’ articulations from the first interview to the interview
conducted after the course are noted as well but should be interpreted with caution in light of the
small number of respondents and other factors noted later.

5.1. STANDARD STATISTICAL LANGUAGE

This subsection describes the conventional statistical language used by the respondents. Table 1
summarizes the percentage of respondents articulating each category of standard statistical terms and
descriptions in their responses. As can be seen in the table, multiple types of standard expressions
were used by respondents (i.e., percentages sum to more than 100%) and overall, nearly every subject
included at least one type of standard statistical description in their response (94% in January and all
respondents in May). Most respondents included the proportion (or number) improved or the mean in
their descriptions and the inclusion of standard statistical terms in their responses increased in all
categories by the end of the course.

Table 1. Percentage of respondents using standard statistical language (N=17)

Category January May

Proportion or number improved 59% 65%

Mean 53% 88%

Maximum/Minimum 29% 41%

Sample size 18% 47%

Outliers 18% 41%

Range 12% 47%

Shape (e.g., skewed, bell-shaped) 12% 35%

Standard deviation 0% 12%

Overall 94% 100%

Proportion or number improved
The most common comparison the respondents made in January was through reporting on the

students in each group whose scores improved or dropped, with three respondents describing
improvement as the sole element in their comparison. The prevalence of discussing improvement is
not surprising given that the data in the task measured the improvement of students’ scores.

In most cases, respondents split the groups into two—improved or not improved—as exemplified
by Hope (all names are pseudonyms):

Hope: Some people have improved. A lot of people. (Jan)
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In May, mention of the proportion of students improving persisted in the respondents’
comparisons of distributions. The respondents were more likely to quantify their descriptions and
none of them relied on proportions as their sole piece of statistical evidence.

Charmagne: There seem to be, like a split between, um, those who improved and those dropped,
like, sort of, off the 50-50 split. (May)

One could argue that a focus on the proportion of students who improved does not necessarily imply
that respondents are visualizing the variation in the data, nor seeing the distribution as an aggregate.

Means
Only about half of the respondents interviewed used the average in their descriptions in January,

despite the fact that the means for each group were marked on the figure and also pointed out by the
interviewer when describing the task. Use of the mean in comparing the distributions ranged from a
brief mention to a major focus of their discussion. For example, two of those who mentioned the
mean did not use any other statistical descriptions to compare the distributions:

Mark: Well, it looks to me like, uh, the group that did the Enrichment program overall has a
better, uh, improvement even though it’s not really even- [an improvement].

I: Okay. … And what are you basing that on?

Mark: Uh, cause you. I think you said that this line was the mean? … So, uh, I was looking
at that. (Jan)

José: It seems about even. I mean, they didn’t decrease by that much, compared to the other
[group]. … I don’t even know what that would be, a point between their mean and
their mean? (Jan)

In previous work (Makar & Confrey, 2004), the authors noticed that while some respondents had
a deterministic view of measures, others indicated some tolerance for variability in means, as did two
respondents in this study who recognized the effect a small sample could have on the variability of the
mean. The first excerpt below comes from Angela, a teacher with no formal training in statistics,
whereas the second teacher, Janet, was a post-graduate student with a strong background in statistics.

Angela: Um, well, it’s, I guess, obvious, I guess that. As this group [Enrichment], they did
improve more, just I mean, because their average is better. But it’s not a huge
dramatic difference. … I mean, there’s not as many in the Enrichment program [as the
non-Enrichment] and they did improve more, but yet, I mean, I mean out of a smaller
group of number. So their mean, I mean, comes from a smaller group. … I mean, if
there were more kids, their average might have been different. (Jan)

Janet: So the Enrichment class did have a higher mean improvement, higher average
improvement, uh, but they had a smaller class. Um, I don’t know what else you want
me to tell you about it.

I: You said they had a smaller class, is that going to have any-

Janet: A smaller sample size can throw things off.

I: How’s that?
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Janet: (laughs) Um. The, with a, a larger population the outliers have less of an effect on the,
on the means than in a smaller sample. So it doesn’t, um, I don’t remember how to
say it, it doesn’t, uh, even things out as much. (Jan)

Janet’s initial statement “I don’t know what else you want me to tell you about it” may imply that
she saw a difference in the means, but little else worth discussing. Kathleen, who had also used some
statistics before in science, recalled comparing means there:

Kathleen: The mean [Enrichment] was a little bit higher than the, the group who didn’t, who
didn’t take the Enrichment class. And I don’t know if that would be statistically
higher, but-

I: What do you mean, ‘statistically higher’?

Kathleen: Like if you, if you ran statistics on it. Like a t-test or something.

When pressed further, Kathleen went on to explain in more detail:

Kathleen: If you, um, if you normalize the data, and um, brought them in together. In fact, once
you normalize it for the number of students in this case [Enrichment group] versus the
number of students in this case [non-Enrichment group] and brought them, like, closer
together for the, for the number of students, and normalized it, then I think the
difference [in the means] wouldn’t be as great. (Jan)

Although through further probing she was unable to articulate what she meant by “normalize the
data”, it seems likely that Kathleen was referring to the dependence of sample size on key outcomes
of the Central Limit Theorem to compare means with sampling distributions. In the May interviews at
the end of the course, nearly all of the respondents mentioned the means, often with more specificity:

Anne: Well, it looks like the students in the Enrichment class, on average, um, improved, or
didn’t decline as much as the ones in the regular class. Um.

I: And what are you basing that on?

Anne: The means. Uh, the regular class is down by negative, uh, seven, six, minus six. And
the Enrichment on average is at minus, um, is that three? (May)

While mean and percentage improvement are important considerations when determining the
effectiveness of a class targeted to help students improve their test scores, our hope was that the
respondents would do more than just reduce the data and compare means or percentage improvement
as their sole method in determining how well the Enrichment program may have worked. Instead, we
sought a more robust understanding of the context and an examination of the whole distribution in
describing their comparisons.

Outliers and Extreme Values
Another common notion in comparing the relative improvement of each group described by the

respondents at the beginning of the course arose through examination of outliers and extreme values.
For example,

Andre: Well, it seems like with a few outliers here and a few outliers here, they’re pretty
similar, um, in terms of how much they changed. (Jan)
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Andre had previously studied statistics. The descriptions by other students in the course with no
statistics background were less precise:

Gabriela: There’s only, like these two out here that have actually, like, greatly intensely
improved. (Jan)

Gabriela focused on not just the criterion of whether students improved, but qualified it with by
how much, suggesting that she was seeing the upper values of the distribution and not just whether or
not students improved. Note that Andre and Gabriela are not focusing on individual points, but on a
set of values at the high or low portion of the graph (e.g., those who “greatly intensely improved”).

Shape
The interview task likely did not illicit a need to formally describe the shape of the distributions

(e.g., skewed, normal), so their summary here is brief. Traditional shape descriptions were unlikely in
January and only somewhat more common in May:

Christine: The non-Enrichment group seems to be skewed to the left. Uh, which means that any
outliers that they do have are in the way negative region. Um. The Enrichment group
seems to be more normal. It’s slightly skewed to the right, but not quite. (May)

Standard Deviation
No one in January and only two of the subjects in May made any mention of standard deviation, a

traditional measure of variation, despite the fact that it was discussed in class and included in a
homework assignment. In one of these cases, a teacher mentioned standard deviation, but not for any
particular argument except to state its relative size in each distribution:

José: Probably the standard deviation is going to be, like, really large on this [Enrichment],
compared to that [non-Enrichment], because this is pretty spread out pretty far. (May)

Another prospective teacher indicated that she knew the term, but implied that she did not see it as
useful in comparing the relative improvement of the students in the Enrichment program with those
who were not, stating a few minutes into her interview:

Charmagne: Um. Yeah. There is more variation in the Enrichment class. This seems to be kind of
mound-shaped also. So. I mean. Probably like 65% is in one standard deviation,
[laughs] I’m just babbling now. Did I answer the question yet? (May)

From these, the only two examples of the subjects mentioning standard deviation, it would appear
that the notion of standard deviation as a measure of variation did not hold much meaning for the
respondents. Both of these excerpts pair the use of standard deviation with other less standard
expressions that described the variation (“pretty spread out”) or shape (“more variation” vs. “kind of
mound-shaped”). This may imply that these less conventional descriptions of variation aided them in
making meaning of standard deviation.

Range
It was often difficult to tease out notions of variability from descriptions of measures of variation,

particularly when the respondents used terms like “range”. Ten respondents used the word “range”
during the interviews (2 in January and 8 in May, with no respondents in common). In almost every
case, their use of it was linked to notions of either measure or location (an interval).
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Carmen: The Enrichment class definitely had a better performance since most people are
concentrated in this area, whereas you have a wider range and even a very good
amount of points that they improved on. … I think it is working, yeah. Because you
have a just wider range, whereas everyone was kind of close in on their improvement
here. Uh. With the wider range, um, I would say it’s working at least for some of the
students. Because in the non-Enrichment, no one seemed to improve that much. …
Because there’s not a range here [the upper portion of the scale]. (Jan)

Carmen’s use of the word “range” four times in this passage communicates range as an interval of
values in the distribution rather than as a measure. First, she contrasted “wider range” with
“concentrated in this area” and “close in … here” giving the impression that she was expressing that
the data were spanning a greater part of the scale at a particular location. Next, her suggestion that the
wider range implied it was “working at least for some of the students” indicates that it was located in
the upper part of the scale, unlike the data for the non-Enrichment group where she said “there’s not a
range here [the upper portion of the scale].” Brian also used the term “range” to indicate the scale:

Brian: It seems pretty evenly distributed across the whole scoring range. (Jan)

In the May interviews, the use of “range” was more common than in January, even though it
wasn’t a term we made use of formally in the class. In almost every case, the term “range” either
meant an interval, as in the case of Carmen and Brian above, or a measure, like April:

April: The distribution, um, like the lowest the scores in the distri-, the length of the
distribution, see this one starts, it’s. [pause] … This one is about negative, almost
negative forty, I’d say. And this one goes up to ten. So, that’s about 50. And this
one’s about negative 25 and this one’s right about 25, a little more, so that’s about 50.
So, I guess the range is about the same. (May)

Gabriela: There’s a lot less of them improving in the Enrichment program, but it’s still better
that they go off by about five or ten points … then for them to have gone off by forty
or twenty. Still kind of in this range. (May)

April’s use of the term range is more numeric whereas Gabriela’s use appears to indicate a
segment of the scale. One difficulty may be that in school mathematics, the term “range” is usually
related to a function and defined as a set, almost always an interval on the real number line. In
statistics, however, the term “range” is a measure—the absolute difference between the minimum
value of a distribution and the maximum value. By using the same term to indicate a set and a
measure, we begin to see where the distinction between objects and measures become murky in
statistics. In school, the distinction between a geometric object (like a polygon), a measure of it (its
area or perimeter), and a non-numerical attribute or categorization of it (closed or convex) is made
clear. In teaching statistics, we have not emphasized a clear distinction between an object (e.g. a
distribution), a measure of it (its mean or interquartile range), and an attribute (e.g. its shape). This
may cause some problems for students trying to make sense of statistical concepts.

5.2. NONSTANDARD STATISTICAL LANGUAGE

This subsection documents the phrases used by the respondents to articulate statistical concepts
which could not be categorized as standard statistical terminology. Two dimensions of nonstandard
statistical language emerged from the observations made by the respondents (Table 2): spread and
distribution chunks. Nonstandard statistical phrases were categorized into one of these two categories
(i.e., they were mutually exclusive), however the dimensions of spread and distribution, as we will
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show in subsection 5.3, were related. Similar to the results of the use of standard statistical language
in the previous subsection, many respondents included both types of nonstandard statistical
descriptions (i.e. percentages sum to more than 100%). As can be seen in Table 2, most respondents
(53%) included some mention of distribution chunks in their interviews in January and this percentage
increased somewhat in May. Although few respondents (35%) discussed the spread of the data in the
January interviews, this percentage increased markedly in May. Overall, in both the January and May
interviews, the majority of respondents included some kind of nonstandard statistical language in their
responses and this percentage increased from the beginning to the end of the course.

Table 2. Percentage of subjects making observations in
two dimensions of nonstandard language (N=17)

Dimensions January May

Spread 35% 59%

Distribution chunks 53% 65%

Overall 59% 76%

Expressions of variation: Clustered and spread out
Here we will document the nonstandard statistical language used by respondents in the interviews

that capture their articulation of variation. Their words encompassed a diverse range of language, but
the concepts they articulated were fairly similar.

Some respondents used the word clustered to describe the relative improvement of each group,
like Andre and Margaret, both older college students with previous statistical experience:

Andre: I don’t know what to make of this, actually, because as far as, like, it seems to me to
support little difference between the Enrichment group and the other group. Because.
Um. Both groups are kind of clustered around the same area. (Jan)

Margaret: [The non-Enrichment data] are more clustered. So where there’s little improvement,
at least it’s consistent. This [Enrichment] doesn’t feel consistent. First impression.

I: And you’re basing this on?

Margaret: The clustering versus, it’s like some students reacted really well to this, and some
didn’t. But it’s more spread out than this grouping. (Jan)

Andre’s use of the term “clustered” highlights his observation that the location of the modal
clump in the two distributions overlapped. On the other hand, Margaret’s initial description of
“clustered” is paired with a notion of consistency, a concept closely related to variability (Cobb,
1999). She goes on to include it in contrast to being “more spread out”, a phrase commonly associated
with variation (Canada, 2004; Bakker, 2004; Reading, 2004). Five other respondents made use of the
phrase “spread out” during the interviews. A few excerpts are given below.

Brian: It seems to be pretty evenly distributed across the whole scoring range. Like from
about 30 to [negative] 25, it appears pretty evenly spread out. (Jan)

Janet: They seem pretty evenly distributed, … fairly evenly spread out. (Jan)

April: This distribution is more skewed to the left and this one is more evenly spread out …
more of an even distribution. (May)
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The respondents who used the phrase “spread out” also accompanied it with the word evenly.
They may be expressing that the data were dispersed fairly equally throughout the scale of the
distribution, particularly given its common pairing with the phrase evenly distributed or even
distribution in all three cases above. This context gives spread out a meaning related to the shape of
the distribution, particularly given the contrast April made between skewed left and evenly spread out.
Carmen’s description below gives the phrase a similar meaning:

Carmen: It’s more spread out, the distribution in the Enrichment program, and they’re really
kind of clumped, um, in the non-Enrichment program. (May)

Given this interpretation, we turn back to and expand Margaret’s excerpt to re-examine her use of
the phrase spread out contrasted with clustered, which is similar to Carmen’s clumped above:

Margaret: It’s interesting that this is not, that this is not, um, this is much more spread out than
this group, so. I mean, first impressions. … These are more clustered. So where
there’s little to no improvement, at least it’s consistent. This doesn’t feel consistent.
First impression.

I: And you’re basing that on?

Margaret: The clustering versus, it’s like some students reacted really well to this, and some
didn’t. But it’s more spread out than this grouping. Is, am I saying that okay? (Jan)

The term spread out in all these cases appeared to point to an attribute of the distribution akin to
shape; we would argue that clustered and clumped, phrases that accompanied spread out, could also
be attributes that describe the shape of the distribution, similar to Konold and his colleagues’ (2002)
notion of modal clump.

How is the spread related to spread out? Given their similarity, how does its use as a noun
compare with its use as an adjective?

Carmen: If you were just to, you know, break the distribution in half. Kind of based on the, the
scale, or the spread of it, it just seems that, you know, the same amount of students
did not improve in both. (May)

Here, Carmen indicates that she is using the noun the spread as an indication of length by her
pairing of the spread with the scale. Rachel, in her interview in May, first compared the means of the
Enrichment and non-Enrichment groups, then turned to the range, and finally, below, finishes the
interview by discussing the way the distribution looked:

Rachel: It’s more clumped, down there in the non-Enrichment. And kind of more evenly
distributed. [Points to Enrichment] … Let’s see. Range and spread. That’s what I
always first look at. And then average. (May)

Margaret: [The Enrichment distribution] has a much wider spread or distribution than this group
[non-Enrichment]. (May)

In all three of these cases—the only ones where spread is used as a noun—Carmen, Rachel, and
Margaret convey a meaning of spread as a visual (rather than numerical) attribute of a distribution.
Rachel uses the word spread to categorize her description of two contrasting terms more clumped and
more evenly distributed. Note that she also distinguishes her notion of spread as different than range
(as a measure), which she discussed earlier in the interview. Margaret directly pairs the word spread
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with its apparent synonym distribution, although she likely was using the word distribution in a more
colloquial sense.

Another phrase that conveyed similar meaning to spread was scattered, as used by three
respondents:

I: The first thing I want you to do is just to look at those two and compare the two in
terms of their relative improvement or non-improvement. We’re trying to determine if
the program is working.

Hope: Well, it’s doing something.

I: What do you mean?

Hope: I mean, they’re more scattered across, these guys. … It’s helping a little.

I: Okay. And you’re basing that on?

Hope: On. Well, there’s more grouped right here. … But you have guys spanning all the
way out to here, so it’s helping. … It’s helping, it’s scattering them more, it seems.
Instead of them all having, so grouped together. (Jan)

Hope’s descriptions are akin to those we heard above with phrases like spread out and clustered and
clumped. Janet’s and Anne’s uses were similar:

Janet: There’s Economically Disadvantaged kids pretty much scattered throughout both
graphs. (May)

Anne: I mean these are all kind of scattered out almost evenly. Whereas these are more
bunched up together. (May)

If we substitute scattered with spread out above, notice how the meaning doesn’t appear to
change. Also note Anne’s contrast of scattered out with bunched up. One more pairing may also be
included here:

June: It seems that the people that weren’t in the Enrichment seems to be all gathered from
the zero and the negative side compared to the people that were in the Enrichment
program because this is kind of dispersed off and this is like, gathered in the center.
(Jan)

From these excerpts, we can collect a set of terms under the umbrella spread that indicate similar
notions: spread out, scattered, evenly distributed, dispersed. Antonyms include clumped, grouped,
bunched up, clustered, gathered. Three other terms, concentrated, tight, and close in, appeared too
infrequently to compare, but conjectured to be similar. Note that many of the respondents’ articulation
of variation accompanied or integrated distribution shape, argued by Bakker (2004) to be a key entry
point for understanding variation. The next section will look at language the respondents used to
describe distribution – what we call distribution chunks, or context-relevant distribution subsets.

Expressions of distribution: Meaningful chunks
This subsection will tackle the second dimension of nonstandard statistical language used by the

prospective teachers in the study: observations regarding the distribution. Although our goal in the
study was to investigate the way the prospective teachers articulated notions of variation, we found
that many of their observations relating to the distribution were also rich with notions of variation. In
this subsection, we will discuss three particular kinds of observations of the distribution emerged from
the data: triads, modal clumps, and distribution chunks.
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Triads. Although describing the data by the number or percentage who improved was very
common, not all of the respondents used this criterion to split the distribution into two categories:
improvement and non-improvement. Other respondents partitioned each distribution into
triads—improving, not improving, and “about the same”—as Maria and Chloe did in January:

Maria: Well the people who weren’t in the Enrichment program they did score lower, and the
one in the Enrichment program, their scores are kind of varied—some of them did
improve, others stayed about the same, and some decreased. … The ones who didn’t
take [Enrichment] basically stayed the same. There was no real improvement. There’s
maybe, maybe a few that did, but not so many. While in the Enrichment, there was a
lot that did improve. (Jan)

Chloe: Well, uh, it seems like the people that aren’t in the Enrichment program, they’re
staying the same or even getting worse off at, with the next test. But the people in the
Enrichment program it looks like, it looks like it’s evened out. Like you have some
doing better, some doing worse, and some on the same level. There’s a little bit more
doing worse, but you still got those few that are still doing better. (Jan)

Here, Maria and Chloe partitioned the distribution into three categories: those who improved,
those who “stayed about the same” and those whose scores decreased. This seems to indicate that they
saw more than just the students who scored above and below an absolute cut point of zero (as
described in section 5.1) and that the demarcation between improving and not was more blurred.
Their decision to split the distribution into triads (“some doing better, some doing worse, and some on
the same level”) is consistent with Bakker’s (2004) finding that students often naturally divide the
distribution into three pieces – low, middle, and high. Viewing the distribution in three pieces is one
way that the respondents may have simplified the complexity of the data. This supports work by
Kosslyn (1994) who argues that the mind is able to hold no more than about four perceptual units in
mind at one time.

Modal clumps. Beyond recognition of the distribution into three chunks–low, middle, and
high–several of the respondents focused specifically on the middle portion of the distribution, seeing
what Konold et al. (2002) refer to as the modal clump:

To summarize their data, students tended to use a ‘modal clump,’ a range of data in the heart of
a distribution of values. These clumps appear to allow students to express simultaneously what
is average and how variable the data are. (p. 1).

A diverse set of expressions indicating awareness of a modal clump emerged from several of the
respondents’ responses:

Chloe: It seems like the most, the bulk of them are right at zero. (Jan)

Janet: [The Economically Disadvantaged students] seem pretty evenly distributed. I mean,
from this bottom group here, they, the two kids with the highest scores are not
Economically Disadvantaged, but that’s just a, they don’t have that much
improvement above the others, above the main group. (Jan)

Hope: It’s kind of flip-flopped the big chunk of this one is on this side, the big chunk of this
one is on this side. (Jan)

Gabriela: The majority of the ones that took Enrichment anyways are still more in the middle.
[pause] Or they stayed the same, or they got worse, so I would say that just it’s not an
effective program. (Jan)
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The use of terms like the bulk of them, the main group, the big chunk, and the majority, by these
respondents all indicate an awareness of a modal clump. In addition, Gabriela’s observation that the
distributions overlapped factored into her decision about whether she thought the Enrichment program
was effective. This suggests that she may have been expecting a more distinct division between the
two groups if, in fact, the Enrichment program was working. Gabriela seemed to be basing much of
her tendency to split the distribution into three groups by focusing on the scale (position relative to
zero) rather than on the notion of Bakker’s (2004) low-middle-high. This perspective changed in her
May interview as she added an additional caveat to her description:

Gabriela: If the, if the mean will tell you, that give or, give or take five points [of a drop], that
that’s ‘normal’ or ‘usual’ for them, that then that’s not cause to think that ‘well,
they’re not improving’ or the program’s not working – if they stay around those
[negative] five points. (May)

Gabriela’s decision about whether the Enrichment program was working changed from her
January to May interview based on her interpretation of the middle clump. In January, she indicated
that the program wasn’t working because the middle clump overlapped with the non-Enrichment
group, and its location being below zero meant most of the students hadn’t improved. In May,
however, she argued that because a five-point drop was typical for the eighth graders as a whole, you
could not use the fact that it was negative to argue against the success of the Enrichment program.
Notice that she is using the middle clump here as a description of the average of the group. The notion
of this clump persisted for others as well in May and its frequency increased, as evidenced by April:

April: The majority of their sample size is on the right side of the mean. Um. And I’d say
this is about even, maybe a little more on the opposi-, on the left side of the mean.
(May)

Mention of proportion or number improved was very common in the respondents’ reports in
comparing the improvement of each group (more common than reports of average), and many of the
respondents who compared the two groups based on proportion of improvement also saw a majority
or main group clump; this may indicate that modal clumps are strong primitive notions of variation
and distribution. The fact that almost all of the respondents used some sort of criterion to separate
each distribution (into either two or three groups) also implies that modal clumps may be a useful
starting point to motivate a more distributional view.

Distribution chunks. Not all of the respondents who described distribution chunks did so with the
modal clump or as a way to split the group into low-middle-high. Several of the respondents
examined a different meaningful subset of the distribution, most typically a handful of students who
improved the most:

Anne: It looks like a few students responded really well to the Enrichment class and
improved their scores a lot. … [And] for this, these, this student in particular, but all
of these [pointing to a group of high improvers], the Enrichment program worked. I
would say that. (Jan)

Carmen: It just seems like the majority of them didn’t improve very much. … You still have
these way up here—not just the fact that they, that these two improved so much [two
highest in Enrichment]—but you have several that went way beyond the average, you
know, they went beyond the majority that, of the improvement here. (Jan)
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Carmen’s descriptions in this early interview indicate she was not only paying attention to
whether or not the improvement was above zero, but also made note of the outliers “these two [that]
improved so much” and those that “went way beyond the average”. In examining the majority, and
two different groups of high values, she indicates that she is changing her field of view from a fixed
partitioning to a more dynamic or fluid perspective. At her May interview, she continued this facility
with moving between distribution subsets, but was more specific in her description. A few of the
subsets she mentions in this longer exchange are noted (Figure 2):

Figure 2. Carmen’s description with several meaningful subsets of the distribution circled.

I: Compare the improvement of the students who were in the Enrichment program with
the students that weren’t.

Carmen: Um, well, … the student with the highest improvement in the Enrichment program
was about 16 points above the student with the highest improvement in the regular
program. Um. And then, uh, this clump [upper Enrichment], there are others that are
higher than the highest improvement, too. I mean there’s about four that, um,
improved more than the student in the regular program with the highest score [Figure
2, circled portion 1]. Um. It looks like, well there are more people, more students in
the non-Enrichment program, and, um, and the non-Enrichment program, um, they
also scored considerably lower. I guess the improvement was considerably lower than
the students in the Enrichment program. So. I don’t know. …

I: Okay. Um. So in your opinion, would you say the program is working? Should they
continue it?

Carmen: Um. Well. It seems that it, it is working, that, um. I mean, all of these students
improved a lot more than, uh, this big clump of students here [circled portion 2] in the
non-Enrichment program, um, but on the same token, it looks like there was about the
same that didn’t improve in both programs.

I: Do you mean the same number or the same percentage?

Carmen: The same number. Around. Um. … I think, I think it is working and they should
probably continue it because of the ones that improved, you know, well there’s four
that improved much greater than the, than the one that improved ten, by ten in the
non-Enrichment group, um, but then there were, there were about eight that improved,
uh, more than majority of the non-Enrichment group [circled portion 3]. So even
though it wasn’t, well, probably one-third, um, showed a considerable improvement
[circled portion 4] and I, I would think that that’s worth it. (May)
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Here, Carmen’s ability to interpret and make meaning of the distributions goes beyond
recognition of the distribution as the frequency of values of a variable (improvement scores). Besides
a quantification of her view of outliers (16 points above the maximum of the non-Enrichment group),
one could argue that Carmen is seeing the set of high values in the distribution as more than just
individual points, but as a contiguous subset of the distribution. As demonstrated above by the circled
areas on the distribution, Carmen was also demonstrating her ability to see several distribution
chunks, with dynamic borders. This perspective of chunks (as a subset rather than individual points) is
more distribution-oriented and indicates that examining chunks, beyond just the minimum and
maximum, may be a useful way to encourage teachers to adopt a more distribution-oriented view of
the data. Tentatively, the notion of distribution chunks seems to fit somewhere between a focus on
individual points and a view of the distribution as a single entity or aggregate (see Konold, Higgins,
Russell, & Khalil, under review). As well as having a perspective of distribution as both whole
(aggregate) and part (subset), Carmen was also clear in her ability to articulate meanings of both
whole and part in terms of the context. For example, she recognized the cut point for “improvement”
as values above zero and used the clumps in the distribution to identify the majority of students’
improvement scores.

5.3. RELATIONSHIPS BETWEEN CATEGORIES

In this subsection, we briefly examine two perspectives of relationships between and among
standard and nonstandard language use, and provide data about the use of language by respondents in
January and May. First, we compared the number of standard and nonstandard terms given by each
respondent. Recall that the percentage of respondents using standard or nonstandard language
changed little during the course (Table 1 and Table 2). However, the mean number of distinct terms
used by the respondents showed a slightly different pattern from January to May, as shown in Table 3.
There was a significant difference between the mean number of standard terms used in May and in
January (t16 = 2.84, p = 0.01) and Table 3 shows that the mean number of different standard statistical
terms used by respondents increased between January and May. One explanation for this is that the
respondents learned (or reviewed) conventional statistical terms during the course. There was no
significant difference between January and May in the case of non-standard terms (t16 = 0.77, p =
0.46). In addition, looking at the total numbers of standard and non-standard terms used by
respondents in January and May combined, the difference between the mean numbers of terms used
was not significant (t16 = 1.73, p = 0.10). That is, in general, respondents likely used no more standard
statistical terms than nonstandard statistical observations. Note, however, that there is greater within-
group variation for nonstandard terms, suggesting nonstandard statistical language was used less
consistently across subjects than standard statistical language.

Table 3. Mean (standard deviation) number of standard and nonstandard terms
used by respondents (N=17)

Standard Observations Nonstandard Observations

January 2.12 (1.76) 1.94 (2.19)

May 3.88 (1.36) 2.47 (2.07)

Change (from January to May) 1.76 (2.56) 0.53 (2.85)

Total (January and May) 6.00 (1.84) 4.41 (3.16)

Next, we looked at nonstandard language use and whether the dimensions of nonstandard
statistical language (variation and distribution) are overlapping or independent. The two dimensions
of nonstandard language were suspected to be related. For example, describing a distribution’s
variation using the term “clumped” also described the distribution as mound-shaped. Because the
nonstandard descriptions of variation often contained distribution characteristics, we wondered to
what extent articulation of these concepts overlapped. Most of the subjects did not describe the
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distributions in the same way across interviews. For example, if they mentioned notions of spread in
January, it was no more or less likely that they would mention spread in May. We thought it safe,
therefore, to combine the types of responses from January and May in order to investigate, as a whole,
whether notions of spread and distribution could be considered independent or correlated. Table 4
displays the number of respondents articulating nonstandard expressions of variation and distribution
in their interviews. Much of the data in the table falls along the diagonal which implies that most
respondents tended to describe either both the variation and distribution in the data or neither. A
Fisher’s Exact Test (Cramer, 1997) was used to investigate the relationship between these two
dimensions and was found to suggest an association between nonstandard expressions of variation
and distribution (p = 0.02). An interpretation of this could be that the respondents tended to “see”
variation and distribution in the data graphs (or not) together. Another possibility is that nonstandard
statistical language naturally integrates these concepts.

Table 4. Number of respondents incorporating nonstandard expressions
of variation and distribution (N=34)

Nonstandard Expressions of Variation

Nonstandard Expressions of Distribution Yes No TOTAL

Yes 13 7 20

No 3 11 14

TOTAL 16 18 34

6. DISCUSSION

The goal of the study was to gain insight into the ways in which the respondents, prospective
teachers, expressed notions of variation in comparing data distributions in a relevant context. The task
given to the teachers asked them to compare the relative improvement of test scores between two
groups of students. Two categories of statistical language emerged from the teachers’ descriptions:
standard statistical language and nonstandard statistical language. The diversity and richness of their
descriptions of variation and distribution demonstrated that the prospective teachers found many ways
to discuss these concepts, and that through their nonstandard language, they were able to articulate
keen awareness of variation in the data. Two dimensions of nonstandard language were
found—observations of spread (variation) and observations of meaningful chunks (distribution).
These dimensions overlapped, indicating that either the respondents saw these two notions (or not)
together, or that the nonstandard language naturally integrated notions of variation and distribution. In
addition, no overall quantitative differences were found between the prospective teachers’ use of
standard and nonstandard statistical language.

This section will discuss two outcomes of the study: characteristics of nonstandard statistical
language or “variation-talk”, and elements of the structure of standard and nonstandard statistical
language. We will close with a reflection on limitations of the study.

6.1. CHARACTERISTICS OF “VARIATION-TALK”

The subjects in the study expressed concepts of variation using nonstandard language in a variety
of ways; we call these ways of articulating variation variation-talk. The variation-talk used by these
prospective mathematics and science teachers was not so different than the language that emerged in
other recent studies of learners’ concepts of variation and distribution (Bakker, 2004; Canada, 2004;
Hammerman & Rubin, 2004; Reading, 2004), however these studies did not look at nonstandard
language systematically and employed other comparison tasks.

The results in this study classified the prospective teachers’ variation-talk into four types: spread,
low-middle-high, modal clump, and distribution chunks. The nonstandard language used by the
teachers to express spread—clustered, clumped, grouped, bunched, gathered, spread out, evenly
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distributed, scattered, dispersed—all past participles, highlighted their attention to more spatial
aspects of the distribution. These terms took on a meaning that implied attention to variation as a
characteristic of shape rather than as a measure. This is consistent with Bakker’s (2004) description of
shape as a pattern of variability. In contrast, concepts of variation in conventional statistical language
are articulated by terms like range or standard deviation, both of which are measures.

The other three types of “variation-talk”, all nouns, focused on aspects of the variability of the
data which required the prospective teachers to partition the distribution and examine a subset, or
chunk of the distribution. Similar to Hammerman and Rubin’s (2004) teachers, the prospective
teachers in this study simplified the complexity of the data’s variability by partitioning them into bins
and comparing slices of data, in this case three slices: low-middle-high. Although simple, this is a
more variation-oriented perspective than responses that took into account only the proportion or
number of students who improved on the test. This approach is consistent with the findings of Bakker
(2004), who argued that partitioning distributions into triads may be more intuitive than the more
conventional partitioning into four, as in the box plot. The awareness of learners’ tendency to simplify
the complexity of the data into low-middle-high bins motivated the creators of Tinkerplots (Konold &
Miller, 2004) to include the “hat plot” (Konold, 2002) in the software, a representation where users
can partition the data into thirds based on the range, the average or standard deviation, the percentage
of points, or a visual perspective of the data.

In some excerpts, teachers argued that the overlap of the middle slices was evidence that the
Enrichment class was not effective. The focus on the modal clump (Konold et al., 2002) in data has
been a consistent finding across several studies of both students and teachers, reinforcing both the
intuitive nature of seeing variability through slices-in-thirds, and recognizing the potential of using the
notion of a modal clump to encourage learners to move from a focus of individual points towards a
focus on the aggregate of a distribution. Having a lens of a distribution as an aggregate, as opposed to
a set of individual points, allows for concepts such as center to be thought of as a characteristic of the
distribution rather than as a calculation derived from individual points (Bakker, 2004). In addition,
locating a modal clump allows the learner to simultaneously express their visualization of the center
and spread of the data (Konold et al., 2002), again highlighting its relational nature.

Finally, the use of other meaningful chunks by several of the prospective teachers demonstrated
their ability to focus on the variability of the data by examining particular subsets of the distribution.
This category contained responses as simple as comparing the outliers of one distribution to the
“majority” of the other. A more complex visualization of distribution subsets was articulated by
Carmen who used several different distribution subsets, with dynamic borders, as evidence for the
effectiveness of the Enrichment program. Her facility to fluidly manipulate borders of these subsets
highlighted her ability to visualize variation in the data. In addition, each of her meaningful chunks
was tied back to the context of the problem, indicating that she was able to use them to make meaning
of the situation. Although Konold and Bakker have encouraged the conceptualization of a distribution
as an aggregate, the articulation of distribution chunks by these teachers suggests that they are
thinking of distribution chunks as mini-aggregates of the data. Kosslyn (1994) argues that our minds
and eyes work together to actively group input into perceptual units that ascribe meaning. We would
argue that in articulating subsets of the distribution, the prospective teachers are communicating the
perceptual units they are seeing in the data.

The three perspectives of seeing partial distributions—triads, modal clump, and distribution
chunks—indicate that there are more than just the two perspectives of distribution that are usually
discussed in the literature: single points and aggregate. This third perspective—partial distributions or
“mini-aggregates”—deserves further research to investigate the strength of its link to statistical
thinking about distributions. This study has highlighted that prospective teachers may use descriptions
of partial distributions not only to articulate rich views of variation, but also to use these distribution
chunks in meaningful ways that could not be captured using conventional statistical terminology.
Even though we classified expressions of variation separately from notions of distribution, this
separation was somewhat artificial in that all four types of “variation-talk” expressed a relationship
between variation and distribution.
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6.2. THE STRUCTURE OF STANDARD AND NONSTANDARD STATISTICAL
LANGUAGE

The nonstandard language used by the prospective teachers by its very nature integrates the
important statistical ideas of variation and distribution, capturing and implying cognitive relationships
between notions of center, dispersion, and shape. In contrast, the standard statistical language used by
the prospective teachers was by its very nature less relational, with a tendency to express important
ideas in statistics as conceptually separate. Terms such as mean, standard deviation, and skewed
distribution describe the center, dispersion, and shape of a distribution but they do so in isolation. The
overuse of this standard terminology, at least early in learning statistical concepts, may encourage
learners to maintain a perspective that statistical concepts are isolated “bits” of knowledge rather than
information that can provide insight into relationships in the data. Several difficulties of learning
statistics that are documented in research are consistent with a perspective of statistics as isolated
facts. For example, seeing data as a set of isolated points rather than developing a “propensity
perspective” (Konold, Pollatsek, Well, & Gagnon, 1997), lack of intuition in stochastics
(Shaughnessy, 1992), or focusing instruction on calculations, isolated procedures, and graph
characteristics in statistics instead of on drawing meaningful conclusions from data (Pfannkuch et al.,
2004) may all be reinforced by the overuse (too much, too soon) of conventional statistical language.

The process of integrating rather than separating concepts in statistics has been shown to be a
productive avenue for developing statistical thinking and reasoning (Konold et al., 2002; Konold &
Pollatsek, 2002; Bakker, 2004). This does not imply that one should “teach” nonstandard statistical
language as a means to encourage the development of students’ intuition about statistics, but rather to
encourage their sense-making by acknowledging and encouraging learners’ own language. Had we
acknowledged only conventional terms in our search for their articulation of variation, we would have
lost many opportunities to gain insight into their thinking. For example, only two preservice teachers
used the term “standard deviation” in their comparisons, and it can be argued that neither one used
this concept to articulate meaning about variation.

An important lesson we learned in trying to categorize the preservice teachers’ descriptions was
how difficult it was to separate their observations of variation and distribution. For example, when
April described the shape of one distribution (“skewed to the left”), she compared its shape with the
spread of the other distribution (“evenly spread out”). Using the teachers’ words, we could see that
describing data as clumped or spread out said as much about the distribution of the data as it did
about its variation. It was not surprising, therefore, when the responses in the two dimensions of
nonstandard language (variation and distribution) were found to be correlated.

6.3. LIMITATIONS OF THE STUDY

Although we believe that the results of this study communicate a powerful message about the
opportunities of listening to learners’ nonstandard statistical language, several limitations of the study
must be acknowledged.

• Population. The subjects in the study were prospective secondary mathematics and science
teachers and the study is not directly generalizable beyond that population. While many of the
results may seem to transfer to other groups (for example, practicing teachers), more research
would need to be conducted in order to corroborate these results with other populations.

• Particulars of the task. The setting may have had strong influences on the responses that the
prospective teachers gave during their interviews. Although the data were authentic, the task
was not as it did not emerge from the teachers’ own desire to know. Therefore, it is possible
that the responses given by the prospective teachers may have mirrored an expectation of what
they thought the researchers wanted them to say, particularly since the researchers were also
their course instructors and the interviews were conducted as part of the course assessment.

• Particulars of the graphic. Elements of the graph could elicit responses that may differ with
slight modifications. Recall, for example, that the means were marked on the figure and
explicitly pointed out to the subjects at the beginning of the task. By drawing specific attention
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to the means, we may have been tacitly communicating that the means should have been
attended to in addition to or even instead of the prospective teachers’ own way of comparing
the two groups. The results of the Hammerman and Rubin (2004) study, for example, noted that
the teachers in their study were not interested in using means to compare distributions but
invented their own ways of making meaning of comparisons in the problems they were
discussing.

• Irregularities in questioning. In a few of the interviews, the interviewer did not explicitly ask
for a decision to be made regarding the effectiveness of the Enrichment program. This meant
that comparisons could not be made systematically regarding the prospective teachers’ use of
evidence towards a decision, which could have elicited richer responses.

• Generalizations about the course. Given the unique nature of the course which the prospective
teachers undertook, the study was not designed to make generalizations about the effectiveness
of such a course in developing learners’ statistical reasoning. Many of the compelling elements
used in the course and the task were developed from local problems in the implementation of
standardized testing. Instead, the study was designed to focus on variation-related language that
preservice teachers use at different stages or levels of learning about statistics. Other reports of
the larger research study communicate elements of the course that may have had an impact on
the prospective teachers’ thinking and learning (Confrey et al., 2004; Makar & Confrey,
submitted; Makar, 2004).

7. CONCLUSION AND IMPLICATIONS

This study was built on pioneering work by researchers at TERC who first studied teachers’
nonstandard statistical language (e.g., Russell & Mokros, 1990), and shows the breadth and depth of
nonstandard language used by prospective teachers to describe variation. It follows that teachers need
to learn to recognize and value “variation-talk” as a vehicle for students to express meaningful
concepts of variation and distribution. This study has contributed to our understanding that preservice
teachers majoring in math and science often articulate meaning in statistics through the use of less
conventional terminology. Other research studies have shown that school children do so as well (e.g.,
Bakker, 2004; Reading, 2004; Konold et al., 2002). These studies have begun to articulate rich and
productive learning trajectories to move students towards a more distribution-oriented view of data.

Although the preservice teachers in this study were using nonstandard statistical language, the
concepts they are discussing are far from simplistic and need to be acknowledged as statistical
concepts. Not recognizing nonstandard statistical language can have two pernicious effects. For one,
we miss opportunities to gain insight students’ statistical thinking. Noss and Hoyles (1996) explain
the benefits of attending to students’ articulation for creating mathematical meaning: “It is this
articulation which offers some purchase on what the learner is thinking, and it is in the process of
articulation that a learner can create mathematics and simultaneously reveal this act of creation to an
observer” (p. 54, italics in original). Gaining insight into student thinking, therefore, is not the only
benefit from attending to nonstandard statistical language. Noss and Hoyles also argue that through
the process of articulation, students have opportunities to create meaning. Sense-making in statistics
is an ultimate goal that is often neglected by more traditional learning environments. Valuing the
diversity of students’ “variation-talk” and listening to student voice (Confrey, 1998) may encourage
teachers to shift from the typically procedure-focused statistics courses towards a focus on sense-
making. This is an issue of equity if we are to acknowledge the diversity of students’ ideas rather than
just cover the content and label those who don’t talk statistically as being unable to do so.

The other problematic effect of neglecting students’ nonstandard statistical language is the tacit
message that is communicated that statistics can only be understood by those who can use proper
statistical talk. Lemke (1990) argues that the formal dialogue of science communicates a mystique of
science as being much more complex and difficult than other subjects, requiring that we defer our
own ideas to those of ‘experts’. By doing so, Lemke argues
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The language of classroom science sets up a pervasive and false opposition between a world of
objective, authoritative, impersonal, humorless scientific fact and the ordinary, personal world of
human uncertainties, judgments, values, and interests … many of the unwritten rules about how
we are supposed to talk science make it seem that way (p. 129).

Although Lemke here is talking about science, the situation in statistics is isomorphic. Countless
students complain that statistics (which they call “sadistics”) is not understandable to ordinary
humans and lacks a connection to sense-making. By communicating statistics as accessible only to
experts and geniuses, we are reinforcing a notion of statistics as a gatekeeper to powerful insights
about the world, alienating students and denying opportunity to those who do lack the confidence in
their ability to make sense of statistics.

Three major benefits come out of teachers’ use of their own, nonstandard statistical terminology
in describing, interpreting, and comparing distributions. First, they are using words that hold meaning
for them and that convey their own conceptions of variation. In the constructivist perspective,
knowledge is not conveyed through language but must be abstracted through experience. Nonstandard
language carries a subjective flavor that reminds us of this. Through interaction with others, this
subjectivity becomes intersubjective—one’s meaning is not identical to another’s, but through further
explanation, our meanings become more compatible with the language of our peers (von Glasersfeld,
1991). Second, everyday uses of language are more accessible to a wide variety of students, allowing
multiple points of entry to statistical concepts while encouraging teachers to be more sensitive to
hearing rich conceptions of variation in students’ voice (Confrey, 1998), words that may allow
students easier access to class discussions. This is a more equitable, more inclusive stance; one that is
contrary to the conception of mathematics (or statistics) as a gatekeeper. Third, if the goal is to
provide students with experiences that will provide them with a more distribution-oriented view of
data, then nonstandard statistical language that emerges from making meaning of statistical concepts
may help to orient students (and their teachers!) towards this perspective. Describing a distribution as
“more clumped in the center” conveys a more distribution-oriented perspective in language than
stating, say, standard deviation or range to compare its dispersion.

The results of this study are not meant to downplay the importance of using conventional terms
and measures in comparing groups. On the contrary, these are very important tools. Our hope is that
teachers do not emphasize simply summarizing or reducing the data with conventional measures to
make overly simplistic comparisons as we have seen schools do in examining test data (Confrey &
Makar, 2005), but rather seek insights into the context the data represent through richer views that
include notions of distribution and variation. Further research is needed to gain insight into how
teachers understand concepts of variation and distribution, as well as to document how teachers
support their students’ emerging statistical understanding.
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