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Editor’s note: This article is a discussion of and reaction to five papers which appeared in the SERJ
special issue 3(2) published in November 2004, on Research on Reasoning about Variation and
Variability. These include four refereed papers reporting original research, by Hammerman and
Rubin, Ben-Zvi, Bakker, and Reading, and Gould’s invited paper providing a statistician’s view of
variation and its analysis. For brevity, these papers will be referenced here only by author names,
without the year of publication.

SUMMARY

This article discusses five papers focused on “Research on Reasoning about Variation and
Variability”, by Hammerman and Rubin, Ben-Zvi, Bakker, Reading, and Gould, which appeared
in a special issue of the Statistics Education Research Journal (No. 3(2) November 2004). Three
issues emerged from these papers. First, there is a link between the types of tools that students use
and the type of reasoning about variation that is observed. Second, students’ reasoning about
variation is interconnected to all parts of the statistical investigation cycle. Third, learning to
reason about variation with tools and to understand phenomena are two elements that should be
reflected in teaching. The discussion points to the need to expand instruction to include both
exploratory data analysis and classical inference approaches and points to directions for future
research.

Keywords: Statistics education; Variation; Reasoning; Thinking tools; Statistical investigation;
Exploratory data analysis

1. INTRODUCTION

The five papers in the SERJ November 2004 special issue on reasoning about variation and
variability not only open a window into an exciting new research area but also give an excellent
insight into current research on developing cognitive and pedagogical theories. The opportunity to
read how statisticians, teachers, and students reason about variation proved to be interesting and
thought—provoking. Each of the papers gives its own unique perspective into and interpretation of
reasoning about variation, whereas when considering the five papers as a whole the research on
variation reasoning becomes more than the sum of all these findings. It then becomes a challenge to
explicate and to extract some themes and issues about variation from all the papers.

Variation lies at the heart of statistical enquiry and is one of the “big ideas” that should underpin
statistical teaching (Moore, 1990; Gal & Garfield, 1997). Consideration of the effects of variation
influences all thinking and reasoning through every stage of the empirical enquiry cycle — problem,
plan, data, analysis, and conclusion (Pfannkuch & Wild, 2004). Thinking about variation starts from
noticing variation in a real situation, the problem. It influences the strategies that are adopted in the
planning and data collection stages, for example by introducing planned variation into data production
through the use of randomization or reducing known sources of variability. In the analysis and
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conclusion stages the presence of variation determines how perceived patterns might be characterized
and acted upon.

Research on how students might develop skills to reason about variation and variability
throughout the empirical enquiry cycle has been limited (Shaughnessy, 1997). Further, although
variation is a core concept in statistics, teaching has not focused on enculturating students into
variation-type thinking and reasoning approaches. Much needs to be learnt about how to cultivate and
develop this type of reasoning in students. The November 2004 of SERJ will be seen as a landmark
special issue in establishing some beginning foundations for such a knowledge base, and is followed
by additional papers on the same topic in the current issue.

With the juxtaposition of a statistician’s (Gould’s) view of how he deals with and reasons about
variation, and the views of statistics education researchers of how students and teachers reason about
variation (Bakker; Ben-Zvi; Hammerman & Rubin; Reading), many interesting avenues for enquiry
are suggested. One noticeable feature of the five papers is the different thinking tools used by the
statistician and students and teachers for the analysis of the data, such as graphs, tables of data, or
diagrams. I view these as “thinking tools” because they are more than mere external representations;
for example, in the analysis stage they allow the statistician and students to interrogate the data, to
extract information contained in the data, and to think and reason with the data. Another noticeable
feature is that the focus is on the variation in the analysis stage of the empirical enquiry cycle. Ideally
teaching and learning data analysis should always be situated within the full empirical enquiry cycle.
While specific grade levels may focus on developing particular statistical concepts, the overall cycle
of enquiry should always be part of the teaching approach, otherwise students’ thinking and reasoning
can become disconnected (Pfannkuch & Wild, 2003). These two noticeable features raise two main
issues. First, about the relationship between tools and the types of reasoning that they encourage or
permit and second, about how reasoning about variation is interconnected to all parts of the enquiry
cycle.

What strikes me most, however, from the juxtaposition of the statistician paper and education
research papers, is the contrast in the purposes of investigating data. The nature of the analyses that
the students are doing seems to me to be leading towards the future enculturation of students into
classical inference. In comparison, the statistician’s focus, in the statistical case studies described, is
more about modeling variation to arrive at insights about underlying data-generated mechanisms. The
thinking is less structured, more wide-ranging, and draws on many knowledge sources. Gould’s focus
is on modeling variation for the purposes of explanation (Lead-Level case study) and prediction
(UCLA Rain, Drinking Trends and Chipmunk case studies). This Exploratory Data Analysis (EDA)
approach (cf., Tukey, 1977; Shaughnessy, Garfield, & Greer, 1996), whose main aim is modeling and
understanding phenomena, is in stark contrast to the simple estimation of parameters of populations
from samples, which underscores most of current statistics education.

In light of the above, three main issues are addressed in this paper: the thinking tools used for
displaying variation for analysis and the type of reasoning observed; the need to consider how
reasoning about variation involves the whole empirical enquiry cycle; and the need to extend the
statistics curriculum to include analytic or non-confirmatory situations. Questions will be raised in
response to the papers and possible directions for future research will be explored.

2. THINKING TOOLS IN THE ANALYSIS STAGE

The five papers use a range of thinking tools in the analysis stage of the empirical enquiry cycle,
such as tabular graphs, graphs, tables of data, and diagrammatic representations, to aid students’
reasoning about variation. This section will examine what each paper presents in this regard, reflect
on the findings about students’ reasoning, and raise questions about the first main issue — possible
interconnections between the tools used and the reasoning observed.

Hammerman and Rubin describe how teachers used a new dynamic data visualization tool
(Tinkerplots™) to divide distributions into slices and consequently compared frequencies and
percentages within these slices to make inferences. This tool, which I will call the tabular graph
approach, is an integration of table and graph features. The type of thinking observed was slice-wise
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comparison across groups, which tended to ignore the distribution as a whole (see also Cobb,
McClain, & Gravemeijer, 2003). According to Hammerman and Rubin, teachers were viewing the
data from a classifier perspective, through their focus on comparing frequencies of particular attribute
values within and between data sets, rather than seeing the data sets as a whole, a pre-cursor stage for
aggregate-based reasoning. They argue that this new tool engendered and made visible thinking that
had previously lain dormant or invisible, since the teachers’ slice-wise comparison reasoning seemed
to be an extension of pair-wise comparison reasoning that other researchers have documented (e.g.,
Moritz, 2000), whereby students compare two individual cases. The tool provided the means to divide
the data up, but reasoning about variability also requires detecting patterns in the whole distribution.
Is this new integrated tabular graph tool helping or hindering understanding? If the visible frequency
count bars or unorganized dots in the bins were concealed by a bar graph in this tool, would the
teachers’ thinking change? Did this tool produce cognitive overload in the teachers with one of the
consequences being subgroup or bin reasoning? Or has this tool opened up completely new ways of
reasoning about variation?

Ben-Zvi gives a thorough insight into how two students grappled with variability within and
between two distributions. The students built up their inferential reasoning by being introduced to a
sequence of tools throughout the learning process, namely frequency table, percentage table,
statistical measures, graph. This is a tables plus graph approach. Ben-Zvi’s approach is to let the
students focus and think with one tool at a time. First, with the table, the students were scaffolded to
notice the variation and then formulate a hypothesis. To justify their hypothesis they argued with a
table of percentages where slice-wise comparisons were made, as well as range comparisons
involving variation within and between two sets of data in table format. The introduction of statistical
measures seemed to produce few new steps in their thinking. The production of a series comparison
graph by the students induced pairwise comparison of the bars, which led to seeing the pattern in the
variation and to articulating a trend. Ben-Zvi gets his students to think with the table but other
research (e.g., Pfannkuch & Rubick, 2002) shows students do not necessarily do this since the table is
perceived as a means to organize data for graphing, not as a tool to think with. Did using the table aid
the students’ thinking? Was the percentage table a necessary precursor to their thinking with graphs?
Did these students integrate the percentage table and graph into their thinking or did the thinking
remain separated? How should the teacher integrate statistical measures into their graphical
reasoning? Should thinking tools be introduced in a sequential way?

Bakker, who deals with sample distributions and “grows” them to population distributions, has a
purely graphical or diagrammatic reasoning approach. The students described the variability in
predicted sample data distributions, comparing their predictions to real sample data sets. The focus is
on transitioning students’ informal language and notions to statistical language and notions and on
transitioning the students from seeing variability in data plots to seeing variability in continuous
distributions. The aim is to stay away from the data and foster the notion and concept of distribution
by discussing averages and spread in relation to shape. An important part of using these graphical
tools for reasoning is the role of reflection and the role of the teacher in facilitating students’
conceptions. However, Bakker is not sure whether students recognized that there was more variability
in small samples. What patterns were students conceiving within the variability of small samples?
How did they integrate into their reasoning the sample distributions with the population distribution?
If the students were given a population distribution and asked to take a sample of size 10 from it what
would their predicted sample distribution look like?

Reading reports that her students did not use graphic tools for reasoning but rather used tables of
data. The students noticed the variation, and looked for and detected patterns in the data. This is a
natural human response, since all humans tend to see patterns even if none exist (Wild & Pfannkuch,
1999) and to find causal connections (e.g., Watson, Collis, Callingham, & Moritz, 1995). Reading
distinguishes a hierarchy of reasoning from qualitative to quantitative. In the qualitative responses the
students noticed and acknowledged the variation, whereas at the quantitative level there were
emergent ideas of measuring and quantifying the variation such as reasoning with the minima,
maxima, ranges, and notions of deviation. Yet, the teacher did not scaffold Reading’s students’
reasoning and few students chose to use graphs (with which they were familiar). What were the
characteristics of the data table that induced students not to change the data to another representation?
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In contrast, Gould, the statistician, uses multiple graphs and models as his thinking tools and
keeps re-organizing the data to draw out the information contained in the variation. This is the
transnumerative type of thinking promoted by Wild and Pfannkuch (1999). He chips away at the
unexplained variation to gain more information about patterns in the data and about underlying factors
that may be sources of variation in the realistic situations examined. He has a data detective approach
— searching for patterns and trends, causes, and explanations for the variation.

These studies suggest that there is a link between the thinking tools used and the reasoning
observed in the students or teachers studied. This raises the question as to what tools or sequence of
tools will aid students or teachers to conceive both statistical patterns and deviations from those
patterns. Prompting students to use multiple models or graphs, multiple ways of seeing and
articulating patterns, would seem to be one solution suggested by this research. We do not know,
however, how students or teachers link and interconnect their reasoning across tools or how the tools
affect, limit, or empower their thinking.

With the above in mind, it is useful to look more broadly at the notion of a thinking tool. In
mathematics education research, there is wide recognition that thinking tools or representations do
affect students’ thinking. Mesquita (1998) observes how the role and nature of the external
representation in geometry affects students’ thinking. She identifies external representations as having
two roles, descriptive and heuristical. The descriptive representation “illustrates multiple relationships
and properties involved in the problem without suggesting solution procedures” (p. 191) whereas the
heuristical representation “acts as a support for intuition, suggesting transformations that lead to a
solution” (p. 191). In another study, Hegedus and Kaput (2004) argue that their dynamic connective
representations for algebra activities accounted for significant gains in student performance, which
provides further evidence of a link between students’ thinking and the thinking tool employed.
Mesquita believes that external representations are relevant elements in cognitive theory. In fact,
Thomas (2004) reports that there is no coherent cognitive theory on the role and nature of external
representations.

Fischbein (1987, p. 125) states that thinking tools or models are useful for the learner to gain
access to an understanding of a concept. For productive reasoning the tool must “constitute an
intervening device between the intellectually inaccessible and the intellectually acceptable and
manipulable.” He warns, however, that the properties inherent in the tool may lead to an imperfect
mediator and hence can cause incomplete or incorrect interpretations. In the light of what Fischbein is
saying the results from the empirical investigations reviewed here suggest that some statistical
thinking tools developed by statisticians may be considered as imperfect thinking mediums and may
lead to misinterpretation. One avenue to overcome such misinterpretations is for the teacher and
learner to become aware of these intuitive obstacles. Another avenue to pursue is that advocated by
Fischbein (1987, p. 191): “to create fundamentally new representations.” Therefore statistics
educators and statisticians may need to reassess the existing thinking tools in the discipline and
perhaps create new thinking tools that are more closely aligned to human reasoning, an approach
taken by the Tinkerplots'" software creators Konold and Miller (2004).

3. VARIATION AND THE EMPIRICAL ENQUIRY CYCLE

Statistical investigations are conducted to expand contextual knowledge and to improve
understanding of situations, as well as to solve data-based problems. In reporting on statistical
investigations, usually the problem and the measures taken are defined, the method of data collection
is explained, and the main results are communicated. It is important, however, to ask how much
information is provided to learners about the context from which data emerged, and what role does
contextual information have. Gould, the statistician, briefly gives details of where his four sets of data
have come from, how data were collected and how measurements were taken. For the reader this
allows extra thinking tools for understanding his data and findings. This raises the issue as to whether
lack of such information might inhibit or prevent students’ thinking from reaching an optimal level.
This type of information feeds into the analysis and conclusions parts of the cycle. In order to
demonstrate how seeking explanations for the variation is grounded in the empirical enquiry cycle,
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questions will be raised below about the sources of the data for each of the statistics education papers.
These remarks do not assume that these aspects were neglected in the four classroom studies; rather,
they aim to raise the second main issue about considering how students’ reasoning about variation is
interconnected with the whole enquiry cycle.

Ben-Zvi analysed reactions to a task which asked students to compare the lengths of Israeli and
American last names. Information that might help an analysis would be: Where did these names come
from? What parts of the respective countries? What grades were the two classes selected? What year
were they collected? Bakker states that the teacher used real data sets about the weights of groups of
children. Were they eighth graders from another Dutch school? Did the school have the same socio-
economic level, same ethnicity as the students’ school? Were the weights of one gender or both
genders? How accurate were the data collected—self-report or actual weighting with a scale?

Hammerman and Rubin ask their teachers to compare homework hours studied by students at two
schools. Before comparing the data it would be helpful to know the following: Were the students the
same age? How were the data collected — recall of number of hours for one particular week, diary
over one week, or was it students’ perception of how much homework they usually did each week?
Were the two schools similar in ethnicity, socio-economic level? Were both genders included? Was a
random sample taken from each school or were particular classes selected? Reading has students
analyse real weather data from the students’ town. She has a three-year census of data but each
student is given a sample of one month’s rainfall and later on — in another teaching segment — one
month’s temperature data to comment on. Questions that need to be considered are: How were these
data measured? Were they averages from a number of weather stations or from one weather station?
In what parts of the town were these measurements taken? How is a wet day defined in that area?
What is the difference between a “wet” day and a “showery” day and how is this information captured
in the rainfall measurement? What range of temperatures is considered best for outdoor activities?

The variation that is considered and dealt with in the first two stages of the empirical cycle,
problem and plan, should be part of the information or story that is presented to students. One could
argue that there would be too much information for students to grasp, hence there should be a balance
between providing enough background information to inform the analysis and enable students to
engage with their data, versus providing no information, which may leave teachers wondering why
students did not consider certain questions. Hammerman and Rubin notice that the analyses appeared
to be context dependent. Their teachers seemed to reach an aggregate perspective with the AIDS data
and one wonders whether the teachers were given or had more background information about the
data.

All the above issues about the problem and plan stages may well have been discussed with the
classes but the statistician included his story in his paper while the researchers left their stories out
and the question is why? Is it just that their focus was different when writing their papers? Or is
teaching different from the practitioner way of doing data analysis? Or should teaching incorporate
more of the statisticians’ practice into their teaching? Whatever the answer, research that explores
students’ reasoning about variation with and without the investigative cycle information may provide
insights into pedagogical practice and students’ cognition.

A secondary but related issue to the above discussion is that the thinking tools used by
statisticians and hence statistics educators tend to be tools for the analysis stage of the empirical
enquiry cycle. Wild and Pfannkuch (1999), however, argue that new thinking tools need to be created
and used for the other stages of the cycle. The quality management field has created thinking tools for
the enquiry cycle such as Joiner’s (1994) seven-step process for projects, which gives lists of critical
questions and diagrams to prompt, stimulate, and trigger thinking. Quality management defines
statistics in terms of variation, and hence variation underpins all its thinking tools. Such tools are
successfully used in the quality management field and there seems to be no reason why the statistics
discipline and statistics education researchers should not adapt and expand these tools for the general
field (see Section 4 of Wild & Pfannkuch, 1999).
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4. PURPOSE OF THE STATISTICS CURRICULUM

The third main issue raised upon reading the five papers is that the nature of the analyses seems to
be leading students towards a classical inference perspective. This raises the question about the
purposes of the thinking tools that were used by the students. EDA and classical inference should be
two major strands of statistical investigation in a modern curriculum. It was W. E. Deming in 1953
who first raised the distinction between what he termed enumerative and analytic studies.
Enumerative studies are concerned with describing the current situation and inference is limited to the
population or process sampled. Current statistics education curricula seem to me to be geared towards
formal statistical inference and the carrying out of tests to determine information about the population
from the sample data. Causal thinking or seeking explanations or making predictions for phenomena
are inadvertently discouraged in such an approach, as probabilistic thinking is a key outcome.
Analytic studies involve using data from current processes or populations for understanding and
seeking explanations for observed phenomena in order to control or predict the future behavior of
processes or populations. It is the measuring and modeling of variation for these purposes as well as
explaining and dealing with it that Wild and Pfannkuch (1999) considered important. Gould, the
statistician, demonstrates such an approach in his case studies as he attempts to learn more about real
world situations through interacting and interrogating the data and to provide some possible solutions
(e.g., the identification of chipmunk families).

The differentiation between analytic and enumerative studies suggests a dual approach to
reasoning about variation. Consideration of variation should allow for the seeking of explanations,
looking for causes, making predictions, or improving processes. Yet at the same time awareness that
not all variation can be explained should be raised. That is, there is a need to determine whether the
observed differences in sample data reflect the underlying differences in populations, the explained
systematic variation, or are due to sampling variability—the unexplained variation statisticians choose
to model as random variation. An analytic approach involves learning more about observed
phenomena. Each statistics education paper is now considered to raise questions about what the
students might have learnt when they interacted with their data if they were afforded an EDA
perspective. Again, these remarks do not assume that the EDA perspective was not adopted. Rather,
the issue raised is the need to query how teaching could adopt both EDA and classical inference
approaches.

In Ben-Zvi’s students’ conceptions of variability in data, they used their contextual knowledge to
realize that a source of variation was in the structure of the two languages. This interaction between
data and context enabled them to continue to believe that there was a difference between the two sets
of data. What did his students learn about the real world situation? Perhaps they became aware that
English surnames are usually longer than Israeli surnames a fact that they had not considered before.
Ben-Zvi mentioned that the sources of variation were cultural, historical, and hereditary but he did not
seem to explore these ideas with his students.

Bakker’s students, when reasoning about the shape of a weight distribution, used their contextual
knowledge of weight to explain the type of variability they would expect. Bakker’s students were not
using actual data when discussing a graph shape for weight; rather, they used “everyday data” that are
collected as one operates in the daily environment. They were interrogating data that had not been
collected in a planned way. Tversky and Kahneman (1982), Snee (1999), and Pfannkuch and Wild
(2004) believed it was possible to have a statistical perspective and understand variation when not
being able to collect data. What these students were learning was how to reason about variation using
their contextual knowledge. Contextually they learned that weight has a positively skewed
distribution, that is, for the Dutch eighth graders population, weights which are much greater than
average are more common than weights which are much smaller than average.

Reading facilitates her students to make predictions about future behavior, by requiring students
to look at one month of weather data and to argue whether that particular month would or would not
be a good time to hold a youth festival. Her students were at the stage of noticing variability within
the data and arguing verbally with scant summarization and modeling of data. It seemed that the
students were relying on their experience of the context or their “everyday” data that they had
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collected on the weather and not the information in the data. This raises another question as to how do
students learn when to argue by referring to or using the given data, their “everyday” data, or both?
What did her students learn about the real world situation? Presumably they learnt about variability
present in the weather during one month. Sources of variation such as the season, year, and data
collection method could be considered for further exploration of the data as well as wondering if they
took the same month of data in different years whether they would detect similar patterns in the data.
From the classical inference perspective the students could consider that they had a sample from a
population. Hence, with these weather data both an EDA and classical inference approach could be
adopted.

Hammerman and Rubin describe teachers comparing slices when making decisions about whether
there was a difference between groups. The teachers reduced the variability in the data by continually
breaking up the data into categories. In particular, when comparing hours of homework studied
between two groups, the teachers argued with a subgroup of the data to state that Amherst students
studied more homework than the Holyoke students. If these hours of homework studied were
considered, then hypothetically the next step would be to seek an explanation for the variation
between the two schools. If there was a belief or research evidence that hours of homework were
linked to improved performance, a specific improvement in the Holyoke system, based on the
explanation of the variation, could be implemented in order to raise the level of homework hours per
week. Another question about homework hours was to consider whether the difference was real or
whether it was due to sampling variation. Herein lays the duality of classical inference and EDA.
Assuming that the number of homework hours was real data and that the teachers knew the schools
and students since they explained the upper end variation by commenting on “lifestyle”, what did
these teachers learn about the real situation? When they looked at the “typical student” and found
Ambherst students did more homework there seemed to be no explanation for this source of variation.
It was not clear whether this finding was a revelation to the teachers or a confirmation of what they
already knew.

5. CONCLUSIONS AND FURTHER RESEARCH

Variation is at the core of statistical thinking (Moore, 1990) and the research papers reviewed are
beginning to uncover how variation reasoning might be integrated into and revealed within the
statistics discipline. The task for the students and teachers who participated in the studies reviewed
was noticing and distinguishing variability within and between distributions in many forms, such as:

« tabular graphs which can be an integration of information represented as frequencies,
percentages, unorganized dots, or count bars;

« graphs which can be dot plots, continuous distributions, or series comparison graphs;
* tables which can contain raw data, frequencies, or percentages.

The question remains about how to enculturate students into reasoning about variation with a
variety of analysis thinking tools, as well as into focusing on learning more about observed
phenomena. Perhaps Gould provides an avenue for consideration when he states that confirmatory
analysis should be de-emphasized and more attention paid to the noise.

Overall, the five papers examined here will contribute greatly towards variation reasoning
becoming an integral part of statistics students’ experience and thought. The juxtaposition of these
papers raised three key issues which have been the focus of this discussion.

The first key issue is the link between the types of tools students were exposed to and the type of
reasoning about variation that was observed. Future research should explore how representations
affect, limit, or empower students’ thinking; particularly as statistics learning may require
representations that suggest multiple ways of transforming and reorganizing data in order to seek out
the information contained in the data. For example, the integrated tabular graph representation does
not exist as a conventional statistics tool. Therefore research could explore whether the tools actually



90

assist in enculturating students towards reasoning with conventional statistical thinking tools. A
comparison of students’ reasoning about variability between the Hammerman and Rubin integrated
approach and the Ben-Zvi sequential approach is another possible research avenue. Furthermore, the
integrated tabular graph representation that was explored by Hammerman and Rubin has not featured
in mathematics education research (Thomas, 2004) and therefore statistics education research should
be able to make a contribution to cognitive theories on external representations.

The second key issue is the grounding of students’ reasoning about variation within the whole
enquiry cycle. Research should not only explore students’ reasoning about variation and variability
within and between each stage but also consider how the reasoning is connected to the overall cycle.
Researchers could also develop thinking tools for all parts of the empirical enquiry cycle and then
explore how students reason about variation using these tools.

The third key issue is the need to extend teaching approaches and the curriculum towards an EDA
perspective. Herein a tension arises in two goals for learning: learning to use a tool to reason about
variation; and reasoning about variation to understand a phenomenon. Thinking of sources of
variability and then re-organizing the data to produce more distributions to reason with is part of the
process. Reasoning about variation involves the interrogation of the data and requires the interplay
between context and the variation in data. The context can be general knowledge about the subject
area, knowledge of how the data were collected, how the measures were defined, or the “everyday”
data that one collects. Reasoning about variation also involves detecting patterns through the interplay
between the centre or trend and the variation. All the data interrogated by these students could have
led to them understanding and learning more about an observed phenomenon. Unlocking the story in
the data requires both an analytic EDA and an enumerative classical inference approach. Future
research needs to consider how students can be enculturated into both ways of reasoning and in
particular examine how students reason about variation for the purposes of explanation and
prediction.
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