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EDITORIAL1 
 
This issue is special in two ways, both because it is a special issue focused on 

research on reasoning about distribution, and because it marks the end of SERJ’s fifth 
year of operation. This editorial elaborates both on the topic chosen for this special issue, 
as well as on SERJ’s status at this point in time and thinking ahead. 

We are pleased to offer this special issue, which is based on SERJ’s collaboration 
with SRTL – the biannual international research forum on Statistical Reasoning, 
Thinking, and Literacy. Two years ago, based on papers discussed at SRTL-3, we 
published a Special Issue on reasoning about variation and variability, with guest editors 
Joan Garfield and Dani Ben-Zvi, who have been organizing SRTL since 1998. The 
current issue includes several papers related to reasoning about distribution, the topic 
chosen for SRTL-4 which took place in 2005. We thank Maxine Pfannkuch and Chris 
Reading for serving as Guest Editors for this issue.  

 The papers in this issue highlight the centrality of distribution as a core construct 
and a set of interactive tools which learners of statistics, or adults having to make sense of 
statistical information in the world, have to cope with or relate to at various stages and 
levels of learning or working with statistics. Think of just three situations where notions 
of distribution come up: dealing with visual representations of counts of data in basic 
charts and graphs, making predictions about the results of using random generating 
devices such as dice based on results of prior events, and having to grasp second-order 
abstractions embodied in sampling distributions. In these and many other contexts, 
students at all levels of learning, and thus their teachers, find themselves continuously 
engaged in generating, interpreting, communicating about, and using distributions and 
thinking about variability in data. While seemingly simple, distributions present many 
challenges to teachers and researchers alike, because of the multiplicity of areas within 
the domains of statistics and probability where they appear, and their changing level of 
complexity in different contexts of learning or using statistics.  

 The research papers in this issue explore in depth some of the many issues 
associated with making sense of and reasoning about distribution, and in so doing also 
illustrate that a range of methodological approaches are needed to study learning and 
reasoning processes in this area, both qualitative and quantitative. We hope to see 
additional papers on reasoning both about distribution and variation in upcoming issues 
of SERJ, so as to add to the cumulative knowledge base on these foundational areas of 
statistical knowledge.  

Over the last five years, the journal has developed substantially and is attracting a 
growing number of both readers and authors. The editorial board includes experts from 
11 geographically dispersed countries. Papers being submitted represent work being 
carried out in many places around the world, and the flow of manuscripts is growing. In 
the 12-months period October, 2004 through October, 2005, we received 22 manuscripts. 
Of these, eight were found not suitable for SERJ and were not refereed; five had potential 
but needed revision even before refereeing; three were rejected after an external review, 
and six were rewritten and resubmitted for further review. Only five of these 22 
manuscripts have been published by now. In contrast, during the most recent calendar 
year the number of submitted papers has  almost doubled. This can be attributed both to 
the growing centrality and recognition of the journal, as well as to the fact that more 
research is being carried out on statistics education.  

                                                      
Statistics Education Research Journal, 5(2), 2-3, http://www.stat.auckland.ac.nz/serj 
© International Association for Statistical Education (IASE/ISI), November, 2006 



  

 

3 

 

 As the journal continues to grow, it faces many challenges. SERJ operates in an 
emerging area which is of interest to diverse scholars and practitioners, and to both new 
and established researchers. Our submitting authors and our external referees, come from 
diverse disciplines with somewhat different traditions, such as statistics, education, 
psychology, natural sciences, medicine, business, engineering, and others. Given the 
international nature of SERJ, we have to be aware of diversity and accommodate 
variations in aspects of scientific reporting and academic writing. As a research and 
practice community we will need to seek ways to maintain high standards and convey 
high expectations for quality both to authors, referees, and researchers alike.  

 Towards helping the maturation of the field of statistics education research, SERJ 
has initiated several activities in the last two years. At the 55th meeting of the 
International Statistics Institute in Sydney (2005), SERJ arranged a workshop for 
prospective authors designed to educate about writing high-quality research papers. At 
the 7th International Conference on Teaching Statistics held in summer 2006 in Salvador, 
Brazil, SERJ arranged two workshop, one for prospective authors similar to that held at 
ISI, and a new innovative one for referees on writing good reviews. The feedback from 
participants who attended these workshops suggests that they can help both new and 
continuing researchers interested in the emerging field of statistics education research, 
and we thus will aim to continue with such workshops in coming years. 

Looking forward into the next few years, we hope to see a growth in the range of 
topics addressed by research, and in the range of the methodologies employed. Many 
areas in statistics education require more research, such as learning and reasoning about 
inferential statistics, correlations and associations, probabilistic reasoning, or the 
understanding of statistics encountered in everyday contexts or in official statistical 
publications, to name just a few. Exploratory research on these and other core areas will 
surely require the continued use in years to come of diverse types of qualitative designs 
and descriptive quantitative designs. Yet, as time goes by we do hope to see a growing 
number of studies employing experimental and comparative designs which can provide 
evidence in line with the growing expectations that educational research provides solid 
information about the relative efficacy of different interventions or teaching methods. 

In closing, we want to thank our many referees, whose challenging role is to help the 
journal maintain high scholarly standards. SERJ serves a diverse and expanding 
community of practitioners and researchers interested in statistics education and learning 
in diverse fields and contexts. We encourage SERJ readers to send us reactions and ideas 
regarding the journal, its scope, papers it publishes, and possible future plans.  
 

IDDO GAL AND TOM SHORT 
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REASONING ABOUT DISTRIBUTION: 
A COMPLEX PROCESS2 

 
GUEST EDITORS: 

 
MAXINE PFANNKUCH 

The University of Auckland, New Zealand 
m.pfannkuch@auckland.ac.nz 

 
CHRIS READING 

SiMERR National Centre, University of New England, Australia 
creading@une.edu.au 

 
1. THE NATURE OF DISTRIBUTIONS 

 
We are very pleased to introduce this special issue of the Statistics Education 

Research Journal (SERJ) on Reasoning about Distribution, which presents research at the 
forefront of building conceptual foundations for statistics education. According to Moore 
(1990, p. 136) statistical thinking is an “independent and fundamental intellectual method 
that deserves attention in the school curriculum.” Equally he could have stated that 
statistical thinking deserves attention by research. He also hoped that “in the future pupils 
will bring away from their schooling a structure of thought that whispers, ‘Variation 
matters … Why not draw a graph?’” (Moore, 1991, p. 426). With considerable foresight 
Moore not only encapsulated the building blocks for statistical thinking but also two deep 
research questions with which statistics education researchers are currently grappling: 
How do students actually reason about variability and distribution? How do these two 
types of reasoning develop?  

Variation is at the heart of statistical thinking but the reasoning about variation is 
enabled through diagrams or displays that “represent intuitively the original reality via an 
intervening conceptual structure” (Fischbein, 1987, p. 165), such as graphs or frequency 
distributions of data. The conceptualization of variation “through a lens, which is 
‘distribution’” (Wild, 2005) was originally fostered by Quetelet in the 1840s (Porter, 
1986). Connecting variation in nature to distribution structures was a major conceptual 
obstacle in the history of statistics. It was not until the end of the 19th Century that the 
astronomers’ error curve was re-conceptualized as a distribution governing variation in 
social data. According to Bakker and Gravemeijer (2004) distribution is the conceptual 
entity for thinking about variability in data. Therefore a discussion about the nature of 
distributions involves both conceptual and operational aspects to be considered. A 
conceptual perspective focuses on clarifying what notions underpin distributions and why 
these notions are important whereas an operational perspective focuses on how a specific 
set of data is captured, displayed and manipulated by distributions. Reasoning about 
distributions involves interpreting a complex structure that not only includes reasoning 
about features such as centre, spread, density, skewness, and outliers but also involves 
other ideas such as sampling, population, causality and chance. These other ideas lead 
towards connecting empirical data with probabilistic notions, which in turn develop 
cognizance of empirical and theoretical distributions. In fact Bakker and Gravemeijer 
(2004), in the context of data analysis, believe that focusing on distribution might bring 
                                                      
Statistics Education Research Journal, 5(2), 4-9, http://www.stat.auckland.ac.nz/serj 
© International Association for Statistical Education (IASE/ISI), November, 2006 
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more coherence to the statistics curriculum. Similarly, Scheaffer, Watkins, and Landwehr 
(1998, p. 17) considered that “the unifying thread throughout the probability curriculum 
should be the idea of distribution.”  

It would seem that distribution provides a strong connection between statistics and 
probability, a connection that is currently lacking in curricula and teaching. Distribution 
is a key concept in statistics yet statisticians and educators may not be aware of how 
difficult it is for students to develop a deep conceptual and operational understanding of 
distributional structures. When students are given tasks involving comparing distributions 
or making inferences, they often fail to utilize relevant information contained in the 
underlying distributions. Curricular materials often focus on construction and 
identification of distributions, but not on the meaning and interpretation of these 
distributions or on how to manipulate them to derive further information from the data. 
Different distributions of the same data require students not only to understand how their 
structures are connected but also how these different distributions may unlock different 
parts of the story of the same dataset. 

Thus, distributions are conceptual organizing structures or mental devices that allow 
for a statistical intellectual method to develop. These structures are complex and subtle 
and require a long enculturation into understanding them. Many questions arise about 
conceptual, pedagogical, and research-related aspects of reasoning about distributions.  

Some questions that need to be addressed by research are:  
• What does distribution mean to students?  
• What are the simplest forms and representations of distributions that children 

can understand?  
• When and how do children begin to develop the idea of distribution?  
• How does reasoning about distribution develop from the simplest aspects or 

forms of distribution to the more complex ones?  
• What type of understanding of distribution is sufficient for a statistically 

literate person?  
• What instructional tasks and technological tools can promote the 

understanding of distribution?  
• What are the common misconceptions involved in reasoning about 

distribution?  
• What are the difficulties that students encounter when working with, 

analyzing and interpreting distributions?  
• How does an understanding of distribution connect and affect understanding 

of other statistical concepts and how does it relate to other kinds of statistical 
reasoning (e.g., reasoning about variation, covariation, inference)?  

• What methods can be used to assess understanding of distribution?  
• What are useful methodologies for studying (researching) the understanding 

of distribution?  
 

2. ABOUT THIS SPECIAL ISSUE 
 
Since reasoning about distribution is a complex and challenging research topic, this 

special issue presents a series of papers which address some of the questions posed 
above. This special issue arose from the fourth international research forum on Statistical 
Reasoning, Thinking and Literacy (SRTL-4) and from a subsequent call from SERJ for 
other researchers to submit papers on this topic. After considering “reasoning about 
variability” in the third forum (SRTL-3), the fourth forum (SRTL-4) held in July 2005 at 
The University of Auckland, New Zealand built on the core idea of variation by focusing 
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on “reasoning about distribution.” These SRTL forums bring together a small number of 
researchers whose work is focused on a particular area and presented in extended sessions 
that permit lengthy discussions among the participants. In addition, many researchers 
present primary data in the form of video clips and transcripts of students or teachers in 
the process of reasoning as well as discussing and explaining their actions; this allows for 
intensive review and discussion of findings and research methods by all participants. At 
SRTL-4 twenty researchers in statistics education, from six countries, discussed eight 
studies that examined different aspects of reasoning about distribution (Makar, 2005). 
After five days of presentations and discussion the participants believed that they were 
only in the initial stages of understanding reasoning about distribution but felt that as a 
community they were getting closer to important breakthroughs. The papers in this 
special issue represent some of the many efforts now underway to deepen our knowledge 
and respond to some of the challenging research questions listed earlier. 

The first paper in this Special Issue, by Wild, a well-known statistician, is based on 
his opening address at SRTL-4 and is designed to delve deeply into issues of 
distributional reasoning and its purpose from a statistician’s perspective. He presents 
distribution as a lens through which variation is viewed and then discusses the 
conundrums of connecting empirical distributions to theoretical distributions, the position 
of the sampling distribution, and why all distributions are conditional. The paper by 
Pfannkuch proposes a model for reasoning from the comparison of box plots based on 
one secondary teacher’s articulation of these comparisons whilst teaching. This model is 
intended as a guide for teacher reasoning and to inform the design of teaching sequences. 
The paper by Reading and Reid describes levels of reasoning about distribution based on 
the SOLO taxonomy that could be used to assess students’ development of such 
reasoning ability and to structure learning sequences. This hierarchy emerged from the re-
analysis of tertiary students’ responses that had shown various levels of reasoning about 
variation. The paper by Prodromou and Pratt reports on a virtual simulation designed to 
allow students to use causality to articulate features of distribution. This latest iteration of 
software under development acts as a “window on thinking-in-change” by allowing the 
students to explore the relationship between causality and variation. The paper by Leavy 
reports on the developing understanding of distribution as elementary pre-service teachers 
compared distributions of data that were created during practical investigations. The use 
of the experimental context in this study was found to support the construction of a 
distributional perspective. 

 
3. EMERGING KEY THEMES 

 
There are four themes common across these papers that have important implications 

for future statistics education research. These relate to research purpose, educational 
context, methodology and the importance of variation. First, education research is 
evolving to have a more cognitive focus. The purposes of the various research studies 
undertaken were to either describe the reasoning about distributions (Pfannkuch; Reading 
& Reid) or investigate ways to assist students to develop such reasoning (Prodromou & 
Pratt; Leavy). In unpacking the concept of distribution, Pfannkuch’s key elements of 
reasoning help to position “distribution” within the wider “inference” context, while 
Reading and Reid’s “understanding” and “using” cycles provide a cognitive 
developmental framework for assessing the concept. In assisting development of the 
concept, Prodromou and Pratt are improving a microworld to assist students in co-
ordinating different perspectives of distribution, while ways of building on existing 
notions, as identified by Leavy, provide a foundation for creating richer learning 
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environments. Future research must continue to address both the assessment of reasoning 
about distribution, and ways of supporting the development of this reasoning. 

Second, the educational context in which research is positioned is becoming 
increasingly important for generating meaningful qualitative data. In all four studies the 
concept of distribution was investigated by the researchers during learning activities and 
involved comparison of datasets. Increasingly research data are being collected during 
actual teaching/learning episodes, rather than with participants who have been withdrawn 
from their classes or given artificial tasks as part of a research project. This is reflected in 
all but one of the studies, and even then Prodromou and Pratt worked with students who 
were involved in a learning situation, although it was outside class time. The comparison 
of datasets was either explicit, as the actual task given, or implicit, as a necessary action 
to achieve a more general task. These studies have demonstrated that rich environments 
are available for collecting qualitative research data on reasoning about distribution, when 
learners are allowed to explore their own meanings for distribution and the necessary 
related reasoning process.  

Third, the analysis of qualitative data is proving to be a rich source of information for 
investigating reasoning about concepts. The methodologies employed in all four studies 
reflect this recent research trend. In each case the researcher(s) analysed qualitative data 
based on episodes or responses that were produced during learning activities, from either 
the teacher’s (Pfannkuch; Leavy) or the student’s (Reading & Reid; Prodromou & Pratt) 
perspective. This often necessitates smaller sample sizes to achieve the depth of analysis 
desired, with the implication that findings are more in-depth but sometimes more 
exploratory in nature. Frameworks provided by Pfannkuch and by Reading and Reid are 
valuable stepping-stones to more detailed assessment of students’ reasoning. The 
“thinking-in-change” investigated by Prodromou and Pratt provides a particularly 
interesting approach to the analysis of student thinking in action and could profitably be 
pursued by future researchers.  

Finally, variation is a recurring concept in each paper. The underlying importance of 
variation is demonstrated in its role in the various descriptions of models, frameworks 
and understandings of distribution, and in supporting key decisions when adjusting 
distributions. Variation was acknowledged as one of the key elements in being able to 
reason about distributions (Pfannkuch) and, as such, it was used as an initial variable for 
identifying better quality student responses before searching for what constituted weaker 
and stronger reasoning about distribution (Reading and Reid). Increase in awareness of 
variation (Leary) and co-ordination of two different perspectives of variation (Prodromou 
& Pratt) were both found to be important in supporting the development of the concept of 
distribution. Thus all four studies reinforce the now generally accepted linking of the 
concepts of variation and distribution. Future studies of either concept should not 
preclude the other. 

The juxtaposition of these four studies also raises a question about the connection 
between teaching methods and students’ reasoning about distribution. Starting with 
students’ tendency to think deterministically, Prodromou and Pratt develop a novel way 
of building up students’ concepts of distribution. Their teaching strategy raises questions 
about the other research. For example, if new teaching methods different from the current 
practice are used by teachers and researchers: Will Reading and Reid’s hierarchical 
model change? Will Leavy’s students’ reasoning show the same misconceptions? Will 
Pfannkuch’s teacher have the same problems with her reasoning? Conversely: Will 
Prodromou and Pratt’s method give rise to new student misconceptions? To improve 
teaching, future research needs to approach the problematic issue of reasoning about 
distribution from many different perspectives.  
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4. CLOSING THOUGHTS 
 
Together these studies have provided an insight into research methodology for 

investigating the reasoning process, as well as detailed knowledge and frameworks on 
which to base investigations into the concept of distribution. The focus thus far on 
qualitative studies to inform exploratory research in the area of reasoning about 
distribution has been enlightening, but given the limitations of qualitative research, 
researchers now need to develop quantitative studies to substantiate the wide range of 
findings being espoused. At the same time it is worth recognizing that there is a 
noticeable trend to investigate the cognition of teachers and those training to become 
teachers, as well as their students. These papers suggest that such research would be 
profitable for the development of statistics education. Wild’s paper on the concept of 
distribution also points to many research avenues that need to be explored and thought 
about by researchers. 

Importantly, researchers need to expand on this useful research work on reasoning 
about distribution. We hope to see further papers on reasoning about distribution and 
related issues such as variation appearing in future issues of SERJ. We challenge 
researchers to determine when the first notions of distribution begin to develop for 
students and how they extend into an understanding of more complex forms. Integral to 
this is the need to determine how the understanding of distribution connects to and affects 
understanding of other statistical concepts and related statistical reasoning. In particular, 
statistics educators are interested in knowing about common misconceptions held, and 
difficulties encountered, by students when reasoning about distribution and which 
instructional tasks and technological tools promote a better understanding of distribution. 
In particular, there is a lack of research with post-secondary and college level learners, 
who encounter distribution and variation in a more formal context of learning about 
statistics, that needs to be addressed. Underlying all this work, researchers should 
continually strive to identify useful methodologies for studying student understanding of 
distribution. By responding to these challenges the statistics education research 
community will enrich the available knowledge relating to reasoning about distribution 
and thus assist statistics educators to improve the quality of learning about fundamental 
statistical concepts. 

We appreciate the opportunity to collate and devote a set of research papers to 
reasoning about distribution. Especially, we value the contribution of the coeditor, Iddo 
Gal (University of Haifa, Israel), who co-ordinated this special issue and offered many 
suggestions to improve the quality of the papers. Special thanks also go to all SRTL-4 
participants who contributed to the research forum discussions of earlier versions of some 
of the papers and to those researchers who contributed as reviewers of all papers. Readers 
are now invited to comment or make suggestions by contacting the authors. Finally, all 
researchers are invited to consider contributing to the forthcoming SRTL-5 (see 
“Forthcoming Conferences” in this issue), to be held in 2007 in England, which will be 
devoted to Reasoning about Statistical Inference: Innovative Ways of Connecting Chance 
and Data. 
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ABSTRACT 
 
This paper is a personal exploration of where the ideas of “distribution” that we are 
trying to develop in students come from and are leading to, how they fit together, and 
where they are important and why. We need to have such considerations in the back 
of our minds when designing learning experiences. The notion of “distribution” as a 
lens through which statisticians look at the variation in data is developed. I explore 
the sources of variation in data, empirical versus theoretical distributions, the nature 
of statistical models, sampling distributions, the conditional nature of distributions 
used for modelling, and the underpinnings of inference. 
 
Keywords: Frequency distributions, Statistical models; Sampling distributions; 
Statistical inference; Types of distribution; Variation 
 

1. INTRODUCTION 
 

There are aspects of statistics that are so basic to the way we think in the subject that 
no one abstracts, enunciates and examines them. We encountered this phenomenon 
frequently in conducting the research for Wild and Pfannkuch (1999). It is not a problem 
for the statistical practice of professionals since they have long since been successfully 
encultured into these ways of thinking. It may well, however, be a root cause of some of 
the problems we face in statistics education. “Variation” was one of these unenunciated 
givens until quite recently and still is for many communities of statisticians. 
“Distribution” is another fundamental given of statistical reasoning. I can find a great deal 
written about specialized usages and definitions of “distribution” but almost nothing 
about “distribution” itself as an underlying conceptual structure. For example, Wiley’s 
massive 16 volume Encyclopedia of Statistical Sciences does not contain an entry for 
“distribution” as an entity although it contains over 300 different sections in which 
“distribution” appears in the title. 

The main aim of this paper is to try to explore for teachers and statistics education 
researchers where the ideas of “distribution” that we are trying to develop in students are 
leading to, and where they are important and why. We need to have such considerations 
in the back of our minds when designing learning experiences. They are a logical 
precursor for a planned educational development; a platform upon which the educational 
“when?,” “in what order?,” “by what means?” and so on, can be built. Our journey 
towards an understanding of “distribution,” and the need for concepts of distribution, 
begins with the pervasive nature of variation. 

Section 3 of Wild and Pfannkuch (1999) was entitled “Variation, randomness and 
statistical models.” The genesis of that story was, “In the beginning was variation.” 
Variation is an observed reality detectable in all systems and entities. It is, in a word, 
omnipresent. A statistical response is generated when the variation we have to deal with 

                                                      
Statistics Education Research Journal, 5(2), 10-26, http://www.stat.auckland.ac.nz/serj 
© International Association for Statistical Education (IASE/ISI), November, 2006 
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in pursuing a real-world goal is not completely predictable at levels of precision that are 
of practical importance and we have given up, at least temporarily, on the ability to 
understand differences between individuals at a level that might make them predictable. 
The statistical response is to investigate, disentangle and model patterns of variation in 
order to learn from them. We will see that the notion of “distribution” is, at its most basic, 
intuitive level, “the pattern of variation in a variable,” or set of variables in the 
multivariate case. Thus the notion of “distribution” underlies virtually all statistical ways 
of reasoning about variation. So it is particularly fitting that the first special section of the 
Statistics Education Research Journal (Garfield and Ben-Zvi, 2005) had the theme of 
“variation” and this, the second special issue, has the theme of “distribution.” 

Statisticians look at variation through a lens which is “distribution” (Figure 1). 
Provided “variation” is in the background of our thinking, we are looking through the 
“distribution” lens as soon as we look at our data in any way that sets aside case labels. 
Setting aside case labels is no small matter, however. There has been a good deal of work 
about how children at elementary and middle school levels relate to data. Bakker and 
Gravemeijer (2004, p. 147) write that such students “tend to conceive a dataset as a 
collection of individual values instead of an aggregate that has certain properties.” What 
is important and interesting to children is the particular. Case labels (e.g., the names of 
people) inform us that a particular data record describes a specific entity, often a person. 
It is a very big step indeed from this to thinking about data in aggregate terms. 
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Figure 1. “Distribution” as a lens 
 
In statistics we are seldom interested in a dataset as a collection of separate snapshots 

of particular individuals taken in a particular way at a particular instance in time. Rather 
we look at data to learn more widely applicable lessons. These lessons are not, we 
believe, to be found in the individual data points themselves but in patterns discernible in 
the dataset as a whole. So we put aside (temporarily ignore) the links between data points 
and individuals as distracting detail in order to better focus on patterns. When case labels 
are set aside individuals with identical values for the variables of interest become 
indistinguishable so that, without any loss of information, we can reduce the data to a set 
of distinct values and their corresponding frequencies, that is, to a frequency distribution. 
All of the information about patterns of variation is in the (typically multivariate) 
frequency distributions. All summary statistics and almost all the graphs we look at are 
summaries and graphs of frequency distributions. We use them to discover and describe 
aspects of the patterns in the variation contained in the frequency distributions. We 
convert frequency distributions into relative-frequency distributions to facilitate the 
comparison of batches of data (e.g., to compare data from different subgroups) containing 
different numbers of observations. 
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Where does the variation we see in data come from? There is typically real variation 
in the systems we are investigating and this is inevitably overlaid with additional 
variation induced by the observational process as in Figure 2. Why do we summarise and 
model patterns of variation? Primarily we do it for the purposes of prediction, explanation 
or control; that is, in order to be able to make better predictions, better understand the 
mechanisms generating the data, or to enable us to change the pattern of variation in the 
system in the future, at least to some partial but useful extent such as by reducing 
mortality rates. 
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Figure 2. Sources of variation in data 
 

Section 3 of Wild and Pfannkuch (1999) went on to discuss how statisticians look for 
sources of variability by looking for patterns and relationships between variables and in 
particular for those patterns that are likely to persist. It talked about explained and 
unexplained or residual variation. The majority of the section discussed “the quest for 
causes” and I don’t want to touch on that here (except to promulgate “variation causes 
statistics”!). It concluded with the following: (1) variation is an observable reality; (2) 
some variation can be explained; (3) other variation cannot be explained on current 
knowledge; (4) random variation is the way in which statisticians model unexplained 
variation; (5) this unexplained variation may in part or in whole be produced by the 
process of observation through random sampling; (6) randomness is a convenient human 
construct which is used to deal with variation in which patterns cannot be detected. 

We look for regularities or patterns in the observed variation and those that we 
believe, considering what we see in the data and what we understand about the 
mechanisms generating the data, are likely to be real and not ephemeral correspond to 
“explained variation.” Unexplained variation, or “noise,” is what is left over once we 
have “removed” all such patterns. It is thus, by definition, variation in which we can find 
no patterns. We model unexplained variation as being generated by a random process, 
implicitly if not explicitly. The simplest such models are regression models. We are 
papering over, at this point, a rather large crevasse which is the difficulty in deciding 
whether an apparent pattern in our data is likely to be a persistent characteristic of the 
process generating the data, and thus form a structural element in our model, or 
ephemeral and should be swept up in random elements of a model. 

There is an old saying that goes, “If it looks like a duck, walks like a duck and quacks 
like a duck, then it is a duck.” If it looks/walks/quacks like a duck, the statistician will use 
the inferential reasoning appropriate for ducks, despite having no real assurance that this 
bird actually has duck DNA. When modelling unexplained variation, because it looks 
random when viewed in any of the ways we have devised for inspecting it, we will draw 
the inferences that we know would be appropriate if it was in fact randomly generated. 
We do this because we do not know any better ways of proceeding (and don’t believe 
anyone else does either). For further discussion, see Section 3.4 of Wild and Pfannnkuch 
(1999). 
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Having established “distribution” as a lens through which we view variation in data 
and explored the nature of explained and unexplained variation we will now start looking 
at distinctions between types of distributions that draw on these ideas. 

 
2. EMPIRICAL VERSUS THEORETICAL DISTRIBTIONS 

 
2.1.  INTRODUCTION 

 
In an effort to understand better how statisticians use “distribution,” I pointed Google 

at a number of sites including the American Statistical Association (ASA) where it 
searched the pages of the Journal of the American Statistical Association, the Journal of 
Statistics Education, other ASA journals, and many other resources. The adjectives and 
other qualifiers that I found used with “distribution” are collected in Appendix 1. By far 
the most common usages fell into two classes, “named theoretical distributions” (e.g., 
normal, binomial, …) and “the distribution of …” referring to the empirical or frequency 
distribution of some particular measured quantity, so that will be our starting point. 

The distinction that underlies discussions of empirical versus theoretical distributions 
is between the variation we see in our data and a potential model for the process that 
gives rise to that variation (Figure 3). The empirical, frequency or observed distribution 
of our variable(s) contains the variation that we can see directly in our data. There is no 
inferential component, just a description of what exists in the data. When we move on to 
try to learn wider lessons from features seen in the current dataset, we conceive of 
unexplained variation present as having been generated by some unknown distribution. 
We often refer to this as the “true” or “underlying” distribution even though it is almost 
always a conceptual entity. When we use a full parametric model in our analysis we 
choose some named parametric distribution, such as the normal distribution, which we 
then assume to be what generates the data. This is the theoretical distribution, which 
describes or defines a probability model. 
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Figure 3. Empirical versus theoretical distributions 
 
 We have hundreds of humanly invented distributions for such purposes. In certain 

application areas, experience has shown that certain distributions are useful, but there is 
no way of ever knowing that our data are being generated from some particular 
distribution. So we never really believe our assumed theoretical distributions. The best we 
can hope for is that the act of sampling from the assumed theoretical distribution 
adequately mimics the most important features of the process which generated our data. 
Our lack of trust in the theoretical distribution leads to considerations of “robustness” and 
“goodness of fit.” That is, we would like to use inferential procedures that are 
comparatively insensitive to departures from distributional assumptions (robust) and we 
want to avoid using a theoretical distribution for inference that demonstrably does not 
“fit” the data – by which we mean that the distribution would be unlikely, in some sense, 
to produce the dataset we have in hand. To have any hope of making sense of this 
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modelling process, students need to experience the behaviour of data which are generated 
from truly random sources (or as close as we can get to that) and lay that alongside real 
data. This is the crux of “connecting chance and data.” I will expand on this point in the 
next subsection. 

Where do outliers fit? Outliers are observations we suspect are not being generated 
by the process which is generating the bulk of the data, but by a different (e.g., gross 
error) process. When we detect outliers we go back to the case labels hoping that there is 
some additional information we can uncover about that case that might help us 
understand why it appears so different. For example, we may be able somehow to 
determine whether the outlier is an error that can be corrected or removed. 

 
2.2.  “HEIGHTS ARE NORMALLY DISTRIBUTED” 

 
At risk of belabouring points, I will now approach the ideas in Section 2.1 from 

another direction. How can we understand a statement like “heights are normally 
distributed”? We should not understand it in an absolute, literal sense because the 
statement is far more precise than anything we could ever actually know. Usually we are 
using “heights are normally distributed” in a loose descriptive way. The shape of the 
empirical distribution of the heights that we have seen (in whatever context) looks as 
though it is reasonably well approximated by the probability density curve of some 
particular normal distribution. We may make a leap of faith by believing that the 
approximation would still be good if we could look at the empirical distribution of 
heights from everyone in the parent population from which the heights we have seen have 
been drawn. We could make an even greater leap by thinking that this is probably also the 
way it would turn out if we looked at heights of people drawn from some other 
population that we have not yet investigated. 

If we add the idea or reality of sampling at random from a population where the 
height distribution is well approximated by a normal distribution, then it follows that the 
behaviour of the data we get from sampling people and measuring their heights should be 
almost indistinguishable from the type of data we would get from taking random draws 
from a normal distribution. That latter behaviour can be investigated directly 
mathematically or via simulation. 

If we make the assumption that our data on heights have been sampled from a Normal 
probability model then inferential statements (e.g., a confidence interval for the mean of 
the heights population distribution) follow from statistical theory as a consequence of that 
assumption. This is analogous to mathematics where, if one takes a set of conditions as 
holding true (axioms), then many other statements deduced as a logical consequence of 
these initial axioms (the theorems), must also hold true. 

Some of the distributional leaps of faith in the first paragraph may be informed by a 
nonsignificant test of normality for our height data. But how much does this tell us? It 
tells us only that we cannot rule out the possibility that sampling variation alone may 
have produced the degree of “departure from normality” that we see with these data. 
Experience shows that, in virtually every situation, any theoretical distributional 
assumption we care to make will be shown to be implausible given enough data. What we 
are doing is never about the assumed theoretical distribution being right. It is only ever 
about the assumed theoretical distribution being a close enough approximation so that the 
methods of drawing inferences that follow from the assumptions we make are not 
misleading in any important way. This brings us back to robustness and goodness of fit as 
discussed in Section 2.1. We make distributional assumptions in order to come up with 
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methods of drawing inferences from data that still work when those distributional 
assumptions are not quite right. 

There is a very understandable desire to drive the teaching of probability models and 
distributions using real data because dice, coins, and so on are boring, even irrelevant. 
This runs into the problem discussed above. We can never know that any specific set of 
real data has been generated from any specific probability model. At best we can believe 
that the model is a good approximation. Probability models are abstract constructs that 
are used to model real-world behaviour. Their successful operation stands on two legs. 
The first leg consists of understanding the abstract construct that is the model, the sort of 
“data” the model generates, and how we reason inferentially in that idealised 
environment. The second leg consists of seeing the parallels that suggest to us that the 
model may provide a reasonable approximation to a given reality, of applying the model-
based reasoning, and then of interpreting the results in terms of the original context. For 
most of the mental connections that have to be built in order to understand the model and 
the nature of its random behaviour, real-world context is simply a distracting irrelevance. 
That is not the place of real-world context. Interaction with context occurs in the 
recognition of model applicability, the interpretation of model parameters and the 
interpretation of any inferential statements that follow from applying the model-based 
reasoning. 

As a non-traditional illustration, what students are experiencing in the fascinating 
basketball environment described by Prodroumou and Pratt (2006) is the stochastic 
behaviour of simulated “data” generated by a statistical model. While students do not 
directly learn anything new about basketball, by adjusting model parameters they can 
make the behaviour exhibited by the simulated environment (i.e., the statistical model) 
feel a lot like that of basketball. They can play with strategies that affect their 
performance in the simulated game and if they believe that the simulation gives an 
approximation that is close enough in key features to basketball they should then be 
willing to transfer some of the lessons learned in the simulation environment to the actual 
game. 

 
2.3.  MORE ABOUT DISTRIBUTIONS AND MODELS 

 
We now explore some complications neglected in the discussion in Section 2.1. When 

we choose “a” theoretical distribution as a model for some variable, typically we are 
actually referring to an assumption that the true distribution is an unknown member of a 
parametric family of distributions such as the Normal(μ,σ2) family. Here assigning 
different values to the parameters μ and σ2 gives rise to different distributions within the 
family and we make statistical inferences about the unknown “true” values of the 
parameters that “produced the data.” 

Beyond the simplest models, we do not just specify “a distribution.” We actually 
build a construct using structural and random elements where each random element has a 
distribution. The simplest models of this form are the one-way analysis of variance model 
depicted in Figure 4, which underlies traditional inferential methods for comparing 
groups, and the simple linear regression model depicted in Figure 5. In Figure 4 the 
shapes are little normal curves coming up out of the page. The normal distribution for the 
y-values in group i is centred at μi. Under this model, “observations” belonging to the ith 
group are generated by sampling from a normal distribution with mean μi and some 
variance σ2, which is the same for all of the groups. This is represented on the right hand 
plot, which also retains a “ghost” of the generating distribution. The model generates a 
type of pattern that we often observe in real data when we are trying to compare groups 
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and thus forms a model for the mechanism generating such data that we can often apply 
in practice. In reality, the values of μi and σ2 are unknown. Standard statistical inferences 
include testing for, or finding confidence intervals for, differences between the true group 
means. 

(a)  One-way Anova  model (b) Data sampled from the model

y y

2 31 42 31 4
Group Group

2

3

1

4

 
 

Figure 4. The one-way analysis of variance model 
 
The simple linear regression model in Figure 5 is essentially the same except that the 

true means μx when plotted against the x-value at which an observation is taken are 
constrained to lie on a line. The structural part of this model is the linear relationship 
between x and the mean value of y. The random part is the distribution of y-values taken 
at a given x around that the mean and that is what generates the observed scatter about the 
linear pattern. 

 
y y

x 2 3x1x 4xx 2 3x1x 4x

(a)  The simple linear model (b)  Data sampled from the model  
 

Figure 5. The simple linear model 
 
Variation seen in even very simple data structures stems from a variety of sources 

(e.g., person-to-person, measurement, or occasion-to-occasion). There is a need to be able 
to think in quite sophisticated distributional ways to tease these things out. Hierarchies of 
random components (multilevel modelling) can be very helpful here. Luckily, in many 
commonly encountered problems it is not necessary to do so. Naïve approaches that 
sweep the subtleties under the carpet are actually valid. Suppose, for example, we want to 
compare the blood pressures of a drug-treated group and a control group on placebo. 
People do not have “a blood pressure.” At the very least there is person-to-person 
variation in the levels of their average blood pressure, occasion-to-occasion variation in 
actual blood pressure of the same individual, and measurement error is a third source of 
variation adding to the other two. The variability of blood-pressure readings seen within 
each of the two treatment groups is the result of all of these sources. Nonetheless, with 
only a single observation per individual (and admittedly under certain idealised 
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assumptions) a 2-sample t-test, or confidence interval, for a difference in mean levels is 
still a valid analysis regardless of whether we have all of these sources of variation 
operating or if only person-to-person variation was operating. What differs is how we 
interpret the within-group variances. We would not raise the complications of multiple 
sources of variation for inferential beginners to avoid cognitive overload but suspicions 
about them might well cause unease in some. 

Many complex models for processes involving time and space are built up in terms of 
chains or hierarchies of conditional distributions. For building models for processes 
evolving in time, for example, we often build up probability models conditionally by 
thinking in terms of what might happen next given the history of the process up until that 
point. This is a way of conceptualizing that permits prediction and also enables us to cope 
with data features like censoring. 

With Bayesian inference we push the conceptual envelope out still further with the 
idea of describing the state of knowledge (prior to collecting the data) about parameters in 
a distributional model in terms of distributions called prior distributions. A Bayesian 
treatment of one-way analysis of variance, for example, would include prior distributions 
for all of the μi’s and the variance σ2. Inference proceeds by updating these prior 
distributions using information in the data to form corresponding posterior distributions 
intended to encapsulate the new data-informed state of knowledge. 

 
2.4.  ALL DISTRIBUTIONS ARE CONDITIONAL 

 
All distributions we work with are really “conditional distributions.” This is not to say 

that we need complicated conditional probability ideas to think about them, just that they 
apply to particular subpopulations or systems operating under particular conditions or 
“settings” or to a particular time. We want to plant the idea that as conditions (or the 
groups we look at) change, the pattern of variation in an outcome variable often changes 
too and that we can learn useful things when we can quantify or otherwise describe the 
nature of those changes. If we can do this there is useful predictive information in such 
things as group membership and an impetus is given to trying to understand why the 
patterns might change. The regression problem can be conceived of as an investigation 
into how the distribution (pattern of variation) of a response variable y changes as the 
setting (x) changes. Group comparisons (two-sample, analysis of variance, etc.) can be 
conceived as an investigation into how the distribution (pattern of variation) of a response 
variable changes as we move from subpopulation to subpopulation (group to group) as 
shown, in an idealised way, in Figures 4 and 5. In the models depicted in Figures 4 and 5, 
all that changes about the distribution of y–values as group membership changes (Figure 
4) or x changes (Figure 5) is confined to the mean level of the response. Spread, shape 
and everything else remains identical. Of course, even if this was true of the mechanism 
generating the data, in any observed dataset all of the features of the empirical 
distributions will still differ from group-to-group at least to some extent. 

Regression and analysis of variance problems are not usually presented at this level of 
generality. The emphasis in most textbooks is not on how the distribution changes but on 
how the mean changes. Why this emphasis just on means? There are many reasons. One 
is a desire to look at the simplest feature of the distribution first. Then there is the 
historical influence of having well-worked out theory for simple models in which the 
mean is the only thing that changes as x changes (or as we move from group to group). 
Additionally, the parsimony principle (or Keep-It-Simple-Stupid principle) leads us to 
model only changes in mean unless the data forces us to do something more complicated. 
Other characteristics are much harder to make inferences about. For example, normal 
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theory-based inferences for means are quite robust but those for spreads are extremely 
sensitive to departures from normality assumptions. As an indicative convention, the 
more “detailed” the feature being compared, the more data we require to usefully 
characterise or compare it. 

 
2.5.  SAMPLE DISTRIBUTION VERSUS POPULATION DISTRIBUTION 

 
For beginning students we usually introduce the distinction between empirical and 

theoretical distributions gently via the distinction between the sample distribution and the 
population distribution. More precisely this is the distinction between the distribution of 
values for a variable for individuals represented in our dataset versus what that 
distribution would be if we had data on everyone in the population. Beginning this way is 
consistent with our desire in teaching to move sufficiently slowly from the concrete to the 
conceptual so that students do not drown in subtlety. Distributional models for data from 
processes are necessarily conceptual and immediately raise all sorts of difficult questions, 
for example, about the stability of the process through time and space and about 
dependencies. With data from a population, however, we can think in much simpler 
terms, namely of sampling from a large set of individuals at one point in time, and 
measuring one or more characteristics on each individual selected. 

In practice, however, nothing is ever quite that simple, quite that “concrete.” The 
really concrete, (real finite population measured once with one device at one time by one 
person in one way) is not really of interest to anyone because the quantities of interest are 
confounded, at the very least, by measurement-process variation. What we see is not 
exactly what is there. As soon as we allow for a contribution of the measurement process 
to the variation present in the data we are immediately transported from a manageable 
easily understood world to a world where data are generated by sampling from a 
conceptual population (an imagined construct) or are generated by some sort of random 
process (see Konold & Pollatsek, 2004). Urban myth has it that mediaeval mapmakers 
alluded to dangers lurking beyond the borders of the known world with the phrase “Here 
There be Dragons.” Our maps of the statistical/inferential world made for beginning 
students need to be inscribed very carefully for teachers with “Here There be Dragons” 
underlined with “These Dragons be Real.” 

 
3. SAMPLING DISTRIBUTIONS 

 
Next in importance, after the empirical and theoretical distributions of observations, 

are sampling distributions (see Figure 6). The former two relate to the unit-to-unit 
variation that we can see within a study or dataset and to a model for the generation of 
that unit-to-unit variation. (I prefer to personalize this and speak in terms of individual-to-
individual variation.) Sampling distributions relate to study-to-study variation in 
estimates or statistics (e.g., sample means, proportions, regression slope estimates and t-
statistics) which cannot be demonstrated from any particular study because each research 
study provides only one study-level data point. It is most accessibly introduced to 
students, I believe, in terms of the sampling variation in a parameter estimate, for 
example, of a population mean or proportion. Statistics educators now have a very good 
array of complementary ways of enabling students to experience the sampling variation 
generated by the process of “conduct a study and calculate an estimate” (see Chance, 
delMas & Garfield, 2004, pp. 294-297). This sampling variation can be modelled using 
either a (theoretical) probability distribution deduced from the distribution used to model 
the unit-level data or an asymptotic (large-sample) approximation, or it may be simulated 
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using a resampling technique be it bootstrap, jackknife or permutation depending upon 
the situation and the analyst’s taste. 

The main priority with sampling distributions is to get across the idea that estimates 
and other statistics change every time we do a new study even if we perform each study 
according to exactly the same protocols. Properly appreciated, this becomes the prime 
motivator for the need for inferential methods which incorporate uncertainty, be they 
significance tests and confidence intervals or Bayesian. A second priority is the Central 
Limit Theorem for means which lays the groundwork for commonly used inferential 
techniques for a range of simple, but common, situations. 
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Figure 6. Incorporating the sampling distribution 
 
Although the expression “sampling variation” appears often in the statistics education 

literature it appears very rarely in the statistics literature. There is no article on sampling 
distributions in the Encyclopedia of Statistical Sciences and of the over 300 section 
headings that contain the word “distribution” the phrase “sampling distribution” appears 
in only three. It is a background concept that underpins much of what we do in statistical 
inference but once the idea has been established it is seldom explicitly referred to. The 
adjective “sampling” is either dropped, to be inferred from the context, or it may appear 
in other guises such as the null distribution (of a test statistic), which is the sampling 
distribution that the test statistic would have if the null hypothesis was true. 

 
4. COMPARISONS CURE UNIVARIATITIS 

 
Teaching about the features of distributions for beginners tends to be in the context of 

a single variable, that is, in a univariate setting. All too often this has led to students being 
fed, year after year, a constant diet of univariate data and contrived univariate situations. I 
plead with teachers to move on to multivariate notions such as comparisons between 
groups and relationships between variables as soon as the most basic foundations have 
been laid. This is necessary to avoid infecting students with the dread disease univariatitis 
which is notorious for causing its victims to experience sensations of drowning in 
irrelevance and, ultimately, death by boredom. We may have to keep revisiting the 
univariate world but should take extreme care not to end up living there. 

One important reason for using multivariate data early is that it gives a time-efficient 
environment in which students can themselves generate interesting questions to 
investigate using data, for example, by making interesting comparisons or investigating 
possible relationships. As pointed out in Wild (1994, p. 164), “not only is question 
generation arguably the most important part of the investigative process, the bubbling up 
of questions from an awakened curiosity provides much of the excitement of 
investigation.” 
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Single distributions and the features of single distributions are seldom of interest in 
and of themselves. Interest generally lies in changes in these features, between places or 
groups, or over time. So why do we spend so much time working with single univariate 
distributions? Our main purpose is to lay the conceptual ground work that facilitates 
thinking about comparisons and relationships but traditional statistics teaching spends far 
too much time on it. We start with data and talk about centre, spread, modes, gaps, 
clusters, skewness, quantiles (particularly medians and quartiles), outliers, and other 
words are also starting to be used out of concerns about language being child-friendly and 
descriptive (e.g., “spreadoutness,” “clumps,” and “bumps”). This all too easily turns into 
what my colleague Matt Regan pejoratively terms “name calling.” Let us put the simple 
data features to work in comparisons before we start naming and worrying about more 
detailed data features. Useful inferences about the latter are much less common in 
practice and much less reliable as well. So as soon as we introduce ideas like centre and 
spread we should put them straight to work in making some real and interesting 
comparisons – having visited the dull, grey, univariate world we need to bring the 
learning straight back into the vibrant real world. The same applies for notions like 
skewness. The fact that data for some variables are severely skewed is interesting mainly 
because data on other variables are not (another type of comparison) and because of 
practical implications of distributional shapes. 

One of the many things we want students to be able to do when looking at plots of 
their data is to react to and wonder about causes for “the unexpected,” particularly 
outliers – things that fall beyond “the expected pattern of variation.” In order to do this 
students need some ideas about what to expect. A good place to start is the patterns of 
variation produced by sampling from a normal distribution or a finite population in which 
the characteristic of interest is approximately normally distributed. Particularly with small 
to moderate samples, the extent of what we might think of as “non-normal behaviour” 
present in data generated from a normal distribution can be astounding. Meaning should 
only be sought in those features of the data that correspond to features of the parent 
population or other mechanisms generating the data. Because exploratory data analysis is 
seldom coupled with exploration of models and random behaviour, many of the features 
beginning students point to, name and ponder causes for (gaps, clumps, outliers, 
skewness, bimodal behaviour, etc) are within the threshold of random error. 

A recent innovation for the beginnings of inference introduced explicitly by Bakker 
and Gravemeijer (2004, pp. 158-165), but also used by others, for example, Konold and 
Pollatsek (2004, pp. 172, 180, 193), is the mind game for children of “growing the 
sample” which is basically concerned with conjecturing about what we might expect to 
happen to a display if “we added more people.” In our terms, a data feature is meaningful 
only if it would still be present if we grew the sample substantially. For example, a gap 
would not be filled in, or apparent clusters would not coalesce. We move beyond name 
calling to statistical thinking when we can relate the features that we can see and name in 
our dataset, and believe will persist, to what we know about the world in order to arrive at 
some level of real-world insight, however small. We may, as a simple example, identify 
two clusters in a distribution and through further detective work determine that they are 
composed of identifiably different classes of individuals. 

With categorical data, the most important reasons for working with relative 
frequencies (equivalently proportions or percentages), such as in relative frequency tables 
and resulting bar graphs, is to facilitate the comparison of datasets of different sizes, and 
to form a bridge to probability. With continuous measurement data, the real reason for 
teaching standardized histograms in which proportions are represented by areas is to lead 
in to the idea of probability density and density curves. This form of standardisation also 
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permits comparison of datasets which have been summarised using different class 
intervals and to display a single set of data that has, for some other reason, been 
summarised using class intervals of different width. In practice, however, the need to do 
either of these things is so rare that I would never give it class time. 

Some in the statistics education research community have found proportions of a 
sample below/above cut points (e.g., proportions of girls and boys with a height above 
120 cm) provide a child-friendly introduction to the making of comparisons between 
groups when the response variable is continuous. It appears that this is something that 
many children do almost spontaneously. The reason we seldom see it in more advanced 
treatments is because the choice of cut point tends to be arbitrary and because this method 
of making comparisons is statistically inefficient. For example, more data is required to 
demonstrate a significant difference between groups this way than by comparing means. 
Statistical inefficiency does not provide a convincing argument against beginning 
students engaging with data in a way that is natural to them, however. It is much more 
important that they are enculturated to engage. Moreover, there are important areas in 
which the cut-point method is used, at least for communication purposes. Medical 
reporting often employs 5-year survival rates, for example. 

 
5. DISCUSSION 

 
The ultimate goal of statistical investigation is learning about some external reality 

and this involves forming and updating models of this context reality. In applied statistics 
there are three main elements that are brought together: current understandings of the 
context reality, data, and the use of statistical models and knowledge to guide how we 
collect data and learn from our data (understandings). Figure 7 attempts to represent the 
interrelationships.  
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Figure 7. Learning via statistics 
 
The need for statistics flows from variation, particularly the presence of “unexplained 

variation,” in data. The statistical response to variation is to investigate, disentangle and 
model patterns of variation in order to learn from them. Virtually all of the ways 
statisticians do this involve looking at data through a lens which is distribution. While 
labels are interesting to children they have to learn to set aside labels and move beyond 
“who is this?” to start seeing and focussing on the patterns of variation and then to 
thinking about what aspects of these patterns might be expected to persist more generally. 
As Rubin et al. (2005) state, “aggregate views are preferable, as they are required to look 
beyond the data towards making inferences about the underlying populations or processes 
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represented by data samples.” When case labels are removed data records with identical 
values for the variables become entirely exchangeable and we are left with frequency 
distributions. The graphs and summaries we use are ways of looking at, summarising and 
conveying aspects of the information present in these distributions. Fundamentally, the 
notion of “distribution” is the pattern of variation in a variable (or set of variables). 

The operation of the thinking processes represented in Figure 7 rests heavily on the 
interplay between the behaviour of our data and understanding the stochastic behaviour of 
potentially useful statistical models. To do this well requires bringing together the two 
elements of experience with exploratory data analysis and experience with the stochastic 
behaviour generated by models. Empirical (frequency) distributions tell us about data 
behaviour, whereas theoretical distributions are critical conceptual building blocks for 
statistical models. Put another way, the distinction underlying empirical versus theoretical 
distributions is between the variation we see in our data and a model for the process that 
generates that variation. We conceive of unexplained variation present as having been 
generated by some “true” or “underlying” distribution. In a full parametric analysis we 
assume these distributions are unknown members of a known, named parametric family 
of distributions. The idea of “population distributions” may paper over some 
complications for beginners but the paper is usually very thin. 

Whereas empirical and theoretical distributions of observations relate to within study 
(or within dataset) variation that we can imperfectly see, sampling distributions relate to 
study-to-study variation in estimates or statistics which cannot be seen from any 
particular study because each study provides only one study-level data point. Sampling 
distributions motivate the need for and are a component of the development of statistical 
inference. 

All distributions are conditional in the sense that they apply to particular 
subpopulations or systems operating under particular conditions or “settings” or to a 
particular time. The regression problem can be conceived as an investigation of how the 
distribution of a response variable changes as the setting (x) changes and group 
comparisons can be conceived as an investigation of how the distribution of a response 
variable changes as we move from group to group. 

Because distributions are such a fundamental component of statistical reasoning our 
main goal should not be, “How do we reason about distributions?” but “How do we 
reason with distributions?,” moving from a world where individual atoms are what is 
interesting to reasoning using aggregates. As Watson (2005) writes, children are 
beginning to learn about distributions from an early age starting when they first create 
pictograms of favourite fruits or modes of transport. They are not told, and do not need to 
be told, that they are learning about “distribution.” Students typically first encounter 
summary features of distributions such as means, medians and even interquartile ranges 
long before they have any but the vaguest idea of “distribution.” We look at graphs of 
distributions long before we develop the notion of distribution. Indeed our more complex 
notions of distribution and the nature of various features of distributions draw heavily 
upon the behaviours that have already been seen exhibited in graphs of data. 

So do students need to be able to form and articulate a concept of distribution to be 
able to operate in a statistical way? Or, to steal from Nike, can students “Just do it” using 
graphs, summaries and an intuitive appreciation of variation? My feeling is that an 
explicit notion of distribution is not needed until we want to motivate, understand and 
then use probability models. Although distribution is the second foundation stone on 
which statistics is built (“variation” is the first), what is critical for early learners is much 
less, “What is ‘distribution’?” than, “How are my data distributed?” and beginning to 
answer that question using appropriate graphs and summaries. One of the usual English-
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language meanings of the word “distributed,” taken from the Oxford English Dictionary, 
“is spread or disperse(d) abroad through a whole space or over a whole surface.” The first 
step is that measured characteristics of individuals (e.g., heights) are not identical – their 
values are distributed across a range – and that we can learn useful things by looking at 
how they are distributed. “How are my data distributed?” points someone like me in the 
right direction but does it speak to the variety of students that might experience it? We 
can be very grateful we have committed researchers in statistics education who are 
prepared to pick up questions like the above, and the issues raised below, and move the 
discussion beyond conjecture and anecdote. 

It is my belief that we should be forming mental habits in which raw data (numbers) 
prompt students immediately to reach for pictures of that data, or as Moore (1991, p. 426) 
says, “a structure of thought that whispers, ‘Variation matters … Why not draw a 
graph?’” Summaries should be related conceptually to these pictures. Pictures of data, of 
distributions, do not need to be conventional pictures though they should converge to 
them over time as statistical knowledge develops; there are good reasons why 
conventional pictures have taken hold. Someone’s student somewhere at some time may 
very well come up with something startling and new which should inform the way 
everyone else does graphics but we must expect this to be rare. A trap for teachers is the 
presumption that conventional pictures are easy to read. Tools which are so transparent to 
the initiated (nothing to teach, it’s completely obvious, how could anyone not get it?!) can 
be quite opaque to beginners. Students need also to learn that there is not just one correct 
picture, that we can form a better overall view of reality by using an array of different 
pictures that better highlight different features of the data. Section 4 of Gould (2004) 
provides good examples of this and also how the insights so obtained feed into the 
development of statistical models for the data. 

The key drivers for successful statistical practice, and thus the most critical elements 
to be instilled by statistics education are three propensities: the propensity to collect data 
that usefully addresses the question of interest, the propensity to question the applicability 
of data to the problem in hand, and the propensity to seek meaning in data. Everything 
else is about how to act on these propensities.  

Most of the papers at STRL-4 and in this special issue deal with students’ 
engagement with empirical distributions, their features, and with comparisons of these 
features between groups. When features like location shifts between groups show up in a 
set of boxplots, for example, the following questions are never far off. “But does it 
actually mean anything?” “If we did it again would it come out much the same? Or could 
the order of the groups even be reversed?” Instantly we are transported to the realm of 
inference. 

The inferences beginning students are able to make are necessarily informal, but 
therein lies the rub. There are great difficulties with informal inferences as Pfannkuch 
(2006) discusses. Assessment of “significance” balances the three factors: effect size, 
variability and sample size, in a very complicated way. Sets of standard boxplots that 
look identical, except for being based on different sample sizes, must be interpreted 
differently (notched box plots, Garret & Nash, 2001, provide a workaround). It may well 
be that there are no easy answers. There were some very sound imperatives that drove the 
development of our formal schools of statistical inference! As statistics educators we 
need to encourage our students into the mental habit of continually seeking meaning in 
data, which includes trying to make inferences, even using inadequate tools. The focus 
for the next SRTL Research Forum (SRTL-5 in 2007) and, I hope, a future special issue 
of SERJ, is informal ideas of inference. I look forward to the results with extreme interest. 
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APPENDIX: USAGE OF DISTRIBUTION 
 

(Below “~” represents “distribution” to focus attention on accompanying adjectives and other modifiers) 
 

NAMED theoretical ~ (e.g., normal, binomial, 
…) 
~ OF SOMETHING OBSERVED 
ACTING UPON ~s (e.g., comparing ~s, …) 
Some sort of characteristic of ~ (mean, sd, 
quantiles, …) 
Descriptor of (~ is skewed , symmetric, bimodal, 
long-tailed, …) 
 
vertical ~, horizontal ~, length ~, Circular ~s, 
spherical ~s, Geographical ~ 
Of some sort of extreme (e.g., maximum flow ~) 
Efficacy ~ 
Spatial ~, temporal ~ 
Stationary ~ 
Spectral ~ 
Survival ~ 
Shape ~s 
Shot-noise ~s 
Latent root ~s 
Frequency ~ 
Empirical ~ 
Sample ~ 
Observed ~ 
 
Probability ~ 
Parametric ~ 
Dependence of ~al shape on parameters 
Multiparameter ~s 
Continuous versus discrete ~ 
Derived ~ 
Probability mass ~ 
Cumulative ~ 
Inverse cumulative ~ 
(cumulative) ~ function 
Univariate ~, bivariate ~, multivariate ~ 
Conditional ~, Marginal ~, Joint ~ 
Truncated ~ 
Tolerance ~ 
Inflated ~s 
Run length ~ 
 
Target ~ 
Theoretical ~ 
Unknown ~ 
Underlying ~, Population ~, True ~, 
Sampling ~ 
Confidence ~ 
Null and Alternative ~s (testing) 
Nonnull ~ theory 
~ of a test statistic 
Independence ~ 

Expected ~ 
Reference ~ 
~ free 
 
Permutation ~ 
bootstrap ~, bootstrap resampling ~ 
jackknife ~ 
Simulated ~ 
Imputation ~ 
Predictive ~s 
 
Error ~ 
Residual ~ 
Studentized ~ 
 
~ theory 
~al properties 
Spaces of ~s 
Families of ~s 
Asymptotic ~ 
Limiting ~ 
Convergence in ~ 
infinitely divisible ~s 
 
Mixture ~ 
Mixing ~ 
Contaminated ~ 
 
Initial ~ 
Equilibrium ~, steady-state ~ 
 
Random effect ~ 
Frailty ~ 
Latent ~ 
~ of one or more latent variables 
 
BAYESIAN 
Prior ~, hyperprior ~ 
Posterior ~ 
Reference prior ~ 
Improper prior ~ 
 (unmodified, or Bayesian or posterior) 
predictive ~ 
(Metropolis-Hasting) candidate ~ 
Target ~ (in MCMC sampling) 
weighted
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ABSTRACT 

 
Drawing conclusions from the comparison of datasets using informal statistical 
inference is a challenging task since the nature and type of reasoning expected is not 
fully understood. In this paper a secondary teacher’s reasoning from the comparison 
of box plot distributions during the teaching of a Year 11 (15-year-old) class is 
analyzed. From the analysis a model incorporating ten distinguishable elements is 
established to describe her reasoning. The model highlights that reasoning in the 
sampling and referent elements is ill formed. The methods of instruction, and the 
difficulties and richness of verbalizing from the comparison of box plot distributions 
are discussed. Implications for research and educational practice are drawn. 
 
Keywords: Statistics education research; Box plots; Distributional reasoning; 
Secondary statistics teaching; Informal statistical inference 
 

1. OVERVIEW 
 

Traditionally, statistics instruction focuses on the construction of graphs, which 
results in students not knowing why graphs are constructed in the first place (Friel, 
Curcio, & Bright, 2001). Graphs are frequently used as illustrations of data rather than as 
reasoning tools to learn something new in the context sphere, gain new information, or 
learn from the data (Wild & Pfannkuch, 1999; Konold & Pollatsek, 2002). A shifting of 
the instructional focus to reasoning from distributions for the purposes of making sense of 
data, for detecting and discovering patterns, and for unlocking the stories in the data, 
presents many challenges. In particular, a challenge is to understand the nature and type 
of reasoning involved when making informal inferences from sample distributions about 
population distributions. Without research that attends to the complexity of informal 
inference and its role in the building of concepts towards formal statistical inference, 
statistical inferential reasoning may continue to elude many teachers and students. There 
is a need to understand inferential reasoning about many different types of distributions 
but this paper will focus on the comparison of box plot distributions. Box plots condense, 
summarize, and obscure information, incorporate statistical notions such as median and 
quartiles, and are conceptually demanding for students (Bakker, 2004). Therefore the aim 
of this paper is to achieve a greater understanding of the informal inferential reasoning 
necessary for comparing box plot distributions through analyzing one teacher’s 
reasoning.  
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1.1.  REVIEW OF RELEVANT LITERATURE 
 

Exploratory data analysis (EDA) gave rise to a number of new graphical techniques. 
Tukey (1977) invented box plots as a powerful way of summarizing distributions of data 
to allow visual comparisons of centers and spread through the five-number summary 
(minimum, lower quartile, median, upper quartile, maximum), which divides the data into 
four equally sized sections. Further refinements can be made to basic box plots by 
visually representing extreme values or outliers, means, and significant differences. Basic 
box plots are introduced to students from as young as 12 in the USA to as old as 17 in 
France, whereas some countries, such as China and Israel, do not have them in the 
curriculum (Bakker, Biehler, & Konold, 2005). In New Zealand box plots have been in 
the curriculum for 14-year-olds for the last 20 years. 

When comparing two box plot distributions traditional instruction assumes that 
inferences will not be drawn and hence focuses on describing features of box plots. 
Recent changes, however, to Year 11 (15-year-old) assessment in New Zealand assume 
that conclusions will be drawn from visual comparisons (Pfannkuch & Horring, 2005). At 
this year level students have not been exposed to confidence intervals and significance 
testing to draw conclusions; rather their reasoning must involve informal inferential 
reasoning. That is, in the case of box plots, being able to infer that one group is generally 
greater than a second group, or that no distinction can be drawn, based mainly on looking 
at, comparing, and reasoning from box plot distributions. The question arises as to what 
elements of reasoning are necessary to draw informal inferences. 

Because formal inferential reasoning focuses on the centers of distributions the 
question arises as to how to scaffold students’ understanding towards viewing centers as 
being representative of a set of data. Konold and Pollatsek (2002) note that research has 
demonstrated that students know how to compute averages but few use averages to 
characterize a dataset or to make comparisons between datasets. Such a situation does not 
provide conceptual foundations for the development of students’ inferential reasoning. 
Furthermore, Konold and Pollatsek (2002) identify four views of average – signal 
amongst the noise, data reduction, fair share, and typical value – which are dependent 
upon the goal the person has in mind when using an average. They argue that all goals are 
valid but if students do not have the “signal amongst the noise” view of average then this 
can result in a reluctance to use averages to compare two groups, a fact noted by Biehler 
(2004) in his research on box plots. Therefore, adopting the position that the middle part 
of the data usefully characterizes the group and that the middle parts of the distributions 
should be compared is a necessary element of the reasoning process.  

Box plots illustrate the signal (the center) and noise (the spread of data from the 
center) in their representation yet according to Biehler (2004) the interpretation of spread 
can result in five different views, namely: location information, regional spreads and 
densities, global spread as a deviation from the median, median upward and downward 
spread, and classification information. Whatever view is taken, a spread element of 
reasoning must include notions of comparing variability within and between box plots. 
Biehler (2004) and Friel (1998) identified that the cut-off points represented in the box 
plot result in students using these for comparing distributions. That is, the nature of the 
representation leads students to argue intuitively with the data by comparing equivalent 
and non-equivalent five-number summary points. Thus another element of reasoning 
associated with comparing box plot distributions is of the summary type. Other elements 
of reasoning identified by Biehler (2004) as lacking in students are the “shift” 
interpretation and intuitions about sampling variability. He describes the “shift” element, 
where all the five-number summary values are higher for one box plot compared to the 
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other, as being an essential notion in comparison whereby students can determine the 
amount of the shift and the type of shift, uniform or non-uniform. If this shift type of 
reasoning does not work with the box plots under consideration then the comparison 
becomes complex (Bakker et al., 2005). Biehler’s (2004) reference to sampling 
variability accords with Bakker (2004), who states that a key concept in developing a 
notion of distribution is sampling, and with Pfannkuch (2005), who believes that 
sampling reasoning is essential for building concepts towards formal inference. 
Furthermore, Bakker and Gravemeijer (2004) argue that in instruction students should 
experience summarizing dot plot distributions by intuitively dividing the data into groups. 
Such instruction can gradually develop a student habit to overlay box plots on dot plots. 

Currently, studies are focused on how to introduce students to box plots and how 
students interpret them. There appears, however, to be no research on how teachers 
reason when comparing box plot distributions, nor any definitive account of how teachers 
or students should draw informal inferences. According to Bakker and Gravemeijer 
(2004) reasoning with shapes forms the basis of reasoning about distributions whereas 
Friel et al. (2001) refer to visual decoding, judgment, and context as three critical factors 
in students’ abilities to derive meaning from graphs. Furthermore, Friel et al. consider 
that research is needed on understanding what it is about the nature of the reasoning that 
makes comparing datasets such a challenging task. Whatever the nature of the reasoning 
is, it is complex and may depend on the ability to decode representations, to attend to a 
multiplicity of elements represented within and between the box plots, and to make 
judgments. 

 
1.2.  RELATED RESEARCH 

 
The research described in this paper is part of a larger project that is concerned with 

developing students’ statistical thinking based on the Wild and Pfannkuch (1999) 
framework. In 2003, the first year of the project, informal inferential reasoning was 
identified as a problematic area. Focusing on the comparison of box plots, the videotape 
data of the classroom teaching revealed that the teacher in only one instance out of a 
possible eight opportunities communicated and wrote down how she would draw a 
conclusion from such plots (Pfannkuch & Horring, 2005). Over half the students, in an 
open-ended questionnaire, identified that they did not know how to draw evidence-based 
conclusions. An analysis of student responses to an assessment task requiring the drawing 
and justifying of inferences from the comparison of box plots concluded that 90% 
compared equivalent and 50% non-equivalent five-number summary statistics, a 
“summary” element; 50% mentioned the difference in the ranges, a basic “spread” 
element; and 30% had a very basic “shift” element of reasoning.  

Realizing that drawing conclusions from the comparison of box plot distributions is 
not an easy task the researcher and five statisticians met in 2003 to discuss the type of 
reasoning that could be expected for informal inference. In teaching situations where 
there is no access to technology and no student experience of sampling variability, such 
informal inference was considered problematic not only for students but also for the 
statisticians (Pfannkuch, Budgett, Parsonage, & Horring, 2004). From the perspective of 
formal inference for the comparison of data plots the statisticians determined that there 
were four basic aspects to attend to in order to understand the concepts behind 
significance tests, confidence intervals, p-values and so forth before drawing a 
conclusion. These were comparisons of centers, comparing the differences in centers 
relative to the variability, checking the distribution of the data (normality assumptions, 
outliers, clusters), and the sample size effect. The discussions raised further questions as 
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to what types of learning experiences would develop students’ inferential reasoning 
towards a more formal level.  

Since articulating the messages contained in box plots and justifying inferences either 
verbally or in writing was considered difficult for both teachers and students, the idea of 
providing a framework to support the reasoning process was conceived. The framework 
would support learning in terms of what should be noticed and attended to when looking 
at the plots. Since Year 11 students had not been exposed to ideas of sample and 
population or of sampling variability and the effect of sample size, the group conjectured 
that perhaps students should work with clear-cut comparisons that had similar spread, no 
unusual patterns, and samples sizes of 30. For writing a conclusion they proposed that it 
should begin with the words: “These data suggest …” and that the justification should be 
focused on comparing the centers and on comparing the differences in centers relative to 
the variability. After that the students could comment on features such as variability 
within and between the box plots, the shapes of the distributions and compare the median 
of distribution X with the percentage of the distribution Y that was below it. Finally the 
students should check whether their conclusions made sense with what they knew from 
their own knowledge and consider possible alternative explanations for the findings – an 
explanatory element of reasoning. The statisticians and researcher also suggested dot 
plots should be kept with box plots (Bakker & Gravemeijer, 2004; Carr & Begg, 1994) 
and gave ideas on how students could experience variation (Pfannkuch, 2005).  

When these ideas were presented to the teacher who was being researched, she was 
adamant that she wanted to deal with the inherent messiness of data where clear-cut 
decisions are not obvious. She also felt that some suggestions for justifying inferences 
and comparing features were too hard for students. At this stage, the teacher was not 
ready to deal with sampling variation ideas or putting dot plots and box plots together, 
but she was ready to try and reason from box plots. Since there seemed to be no account 
in textbooks and in research of how to draw informal inferences from box plots in a 
school teaching situation and no consensus on the statisticians’ suggestions, the teacher 
and researcher were placed in the situation of learning in and from practice.  

 
1.3.  RESEARCH QUESTION 

 
As part of a larger project on developing Year 11 students’ statistical thinking, the 

following research question is addressed: 
What reasoning does a teacher articulate when learning to communicate 
statistical ideas and make informal inferences from the comparison of box plots? 
 

2. RESEARCH METHOD 
 

The research method is developmental in that an action-research cycle is set up 
whereby problematic areas are identified by a teacher and researcher through 
observations and critical reflections on the implementation of a teaching unit and by the 
researcher through analysis of student assessment responses (see Pfannkuch & Horring, 
2005, for a more complete account). The teacher and researcher then discuss how the 
current situation might be changed for the following year when the unit is taught again. 

According to Ball and Cohen (1999) actual teacher learning requires some 
disequilibrium since learning will only occur when existing practices are challenged. 
From the teacher’s perspective, her practice had been challenged and hence in the 2004 
implementation of the statistics-teaching unit, the teacher decided to make a conscious 
effort to communicate and articulate how she was looking at and what she was thinking 
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about when comparing two box plots. She was also aware of the need to write down the 
justifications for her conclusion. In this research the teacher is being put in the position of 
a learner in and from her practice, that is, actively learning while she is teaching. 
Therefore the action-research method is appropriate in such a situation. 

The teacher and researcher decided before the teaching of the unit that when 
reasoning with box plot distributions she would refrain from using the summary element 
of reasoning and instead focus on the following five elements: comparison of centers, 
spread, the degree of overlap of the two box plots, sampling, and explanatory. The 
teacher decided when to introduce each element, what language she would use and how 
she would reason within those broad elements. After each teaching episode, the 
researcher and teacher had brief conversations about the type of reasoning used and what 
possibly to emphasize in the next lesson. Each lesson was videotaped by the researcher.  

 
2.1.  PARTICIPANT 

 
The school in which the project is based is a multicultural, secondary girls’ school. 

The teacher is in her mid-thirties, and has taught secondary mathematics for twelve years. 
In Year 10, students are introduced to the graphing of box plots. The class is taught 
mathematics by the teacher for four hours per week. The teacher is in charge of Year 11 
mathematics and therefore, in consultation with the other Year 11 teachers, writes an 
outline of the content to be covered, together with suggested resources and ideas for 
teaching the unit. The researcher previously knew the teacher on a professional basis.  

 
2.2.  THE TEACHING EPISODES 

 
This paper focuses on two of the three teaching episodes in which box plots were 

introduced and discussed. The teacher chose the tasks she gave to the students. Before the 
first teaching episode on comparing box plot distributions the students compared data 
using back-to-back stem-and-leaf plots and calculated the five-number summary for data. 
For homework the students were given an example from a textbook (Figure 1(a)) for 
which they were required to draw a back-to-back stem-and-leaf plot (Figure 1(b)) and 
calculate the five-number summary. The first teaching episode on constructing a box plot 
started at this stage. The teacher discussed and interpreted the stem-and-leaf plot, then 
used the five-number summary to remind the students how to draw box plots. She drew 
the box plot of males’ pay with the class (Figure 1(c)). After the students had drawn the 
box plot of the females’ pay she discussed the plots with them and built up a written 
conclusion on the board (Figure 1(d)).  

In the second teaching episode the focus was on interpreting box plot distributions. 
The students were given a brief account of where the data had come from (Figure 2 (a)) 
and the dataset. They were asked to reflect on the background information and the given 
data and to think of questions they might pose. After the students suggested a number of 
questions the teacher said she had already drawn the plots for one of their questions 
(Figure 2(b)). The teacher articulated her reasoning from the comparison of the box plots 
with the class responding to and asking her questions about the data. Figure 2(c) is the 
conclusion she wrote on the board. 
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Figure 1(b) 

  
Figure 1(a) (Source unknown) Figure 1(c) 

Teacher’s written conclusion was: 
Each of the statistics (median, UQ, LQ) for females is lower than for the males. The 
female graph is clustered between the median and the UQ. The box & whisker graphs 
overlap but the female graph is generally lower than the males’ graph. Overall, it appears 
that the females earn less than the males. 

Figure 1(d) 
 

Figure 1. Teaching episode one – graphs are from a student’s book 
 

 
Figure 2(a) 

 

Teacher’s written conclusion was: 
Males’ graph – slightly higher. Males’ 
IQ is more spread than females. 
Interquartile range = UQ-LQ. Males 
IQR=39, females IQR=50. Graphs are 
overlapped – especially between LQ 
and UQ. Measure of central tendency – 
Female median (116) is slightly higher 
than males. Based on these data 
values, we’re not certain that males 
have higher IQ. There is some 
evidence to suggest that males have 
higher IQ for these Uni. students. 

Figure 2(b): Teaching episode two Figure 2(c)  
 

Figure 2. Teaching episode two – graph given to students by teacher 
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3. RESULTS 
 
A qualitative analysis by the researcher of the teacher’s discussion on the comparison 

of box plot distributions extracted ten elements of reasoning (Figure 3). Elements 4 to 7 
were based on the a priori agreement, as described earlier, between the teacher and 
researcher on the type of reasoning elements that should be emphasized in instruction, 
whereas elements 1, 2, and 3 arose during teaching and the analysis. The eighth element 
was considered after discussion with another researcher (Tim Burgess, personal 
communication, 7 July 2005). It was not determined before teaching how the teacher 
would reason within these broad classifications. The analysis of the data suggested that 
the eight elements of reasoning are non-hierarchical, interdependent but distinguishable. 
The two moderating elements of reasoning, 9 and 10, arose from the analysis and are 
contained within each of the other eight elements.  

 
ELEMENTS OF REASONING 

1. Hypothesis 
generation 

Compares and reasons about the group trend. 

2. Summary Compares equivalent five-number summary points. Compares 
non-equivalent five-number summary points. 

3. Shift Compares one box plot in relation to the other box plot and 
refers to comparative shift. 

4. Signal Compares the overlap of the central 50% of the data. 
5. Spread Compares and refers to type of spread/densities locally and 

globally within and between box plots. 
6. Sampling Considers sample size, the comparison if another sample was 

taken, the population on which to make an inference. 
7. Explanatory Understands context of data, considers whether findings make 

sense, considers alternative explanations for the findings. 
8. Individual case Considers possible outliers, compares individual cases. 

MODERATING ELEMENTS OF REASONING 
9. Evaluative  Evidence described, assessed on its strength, weighed up. 
10. Referent Group label, data measure, statistical measure, data attribution, 

data plot distribution, contextual and statistical knowledge.  
 

Figure 3. Teacher’s model of reasoning from the comparison of box plots 
 

3.1.  THE ELEMENTS OF REASONING 
 
The goal of the teacher was to make an informal inference about populations when 

comparing sample distributions and to justify that inference. Since informal inferences 
were being drawn, visuo-analytic thinking was used by the teacher. She gradually built 
up, in her communication, the multifaceted ways in which she looked at and interpreted 
the comparison of box plots. Within some elements there are sub-elements, not all of 
which are illustrated below. The focus of the analysis is on her reasoning within each 
element as she learns more about the data under consideration. Her reasoning, however, 
is linked to how she teaches and therefore consideration is given to instructional methods 
in the analysis. It should be noted that the teacher uses the term graph when talking about 
stem-and-leaf plots or box plots but to be consistent the analysis of her reasoning will use 
the term plot. 
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Element 1: Hypothesis Generation Hypotheses may be formed at the beginning of an 
investigation before data are collected or on inspection of a given dataset, or during an 
investigation when analyzing a graph, or at the end of an investigation. In teaching 
episode one (see Figure 1) the teacher discussed the back-to-back stem-and-leaf plots 
before showing the students how to construct the box-and-whisker plots. In the 
hypothesis generation element she communicates that the inference “males earn more 
than females” does not capture the actual story in the data. 

 
Teacher: All right, what’s the first thing that strikes you when you looked at this graph 

[Figure 1(b)]? 
Student: Males earn more. 
Teacher: Males earn more – what gave you that impression from the graph? 
Teacher: Yes, the higher amounts go down, so the mass or the bulk of the graph is lower 

down than the females. So that gives us the impression, that the males earn more 
than the females. Is that true for every single person? Did every single male earn 
more than every single female? No. Okay. This person here, this woman here, 
earns $605, she earns way more than this male here $257 …[later on] … 
because there’s a bit of an overlap, I have to be a bit more subtle about my 
language and say it appears from the graph that the bulk of males, appear to earn 
more than the bulk of the females. 

 
To generate a data-based hypothesis, consideration is given to variability through 
acknowledging that the reasoning is about the group trend and not about individual cases.  

 
Element 2: Summary In this element the five-number summary is located on the 

plots and equivalent summary points are compared. For example in teaching episode one: 
 

Teacher: Right if we were to compare each measure like the median, the females are 
lower than the males. Lower quartile, females are lower than the males. Upper 
quartile, females are lower than the males, top – right, so each of the statistics is 
lower for the females than it is for the males. 

 
The box plot representation also encourages the comparison of non-equivalent summary 
points such as “75% of males earn more than 75% of females,” which is a comparison of 
a lower quartile with an upper quartile. The teacher briefly mentioned that “a quarter of 
the ladies, women, are earning more than these guys” in teaching episode one. Sometimes 
her focus is specifically on the comparison of the medians as was the case in teaching 
episode two: 
 

Teacher: The next thing that I think is a really important factor for helping me make up 
my mind is the measure of central tendency or average. What have I got to help 
me figure out what the central tendency is? 

Student: The median. 
Teacher: The median, so next I’m going to look at my median because that’s the middle 

of the data, that gives me where the bulk of the data is and I’ve got females 
slightly higher than males. So I’m going to say the feature that I’ve noticed for 
the female’s median I’m going to say what it is (116), is slightly higher than 
males. 

 
The notion of the median being representative of the distribution or the signal amongst 
the noise is unclear in the communication but the teacher is drawing attention to its 
importance as a factor for making a decision under uncertainty. Mentioning the “bulk of 
the data” in terms of the median may be a misleading interpretation for these datasets. 
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Element 3: Shift In the shift element the plots are looked at as a whole and compared 
in terms of whether one is higher or further along than the other. This shift element could 
be incorporated into the summary element when equivalent summary values are 
compared but the way of reasoning is different in that for the shift element the box plots 
are looked at as a whole visually not as a straight comparison between values. From 
teaching episode two: 

 
Teacher: All right, one of the biggest factors that helps me make up my mind, … is 

whereabouts is the whole of the graph in relation to each other. And when I look 
at this, straight away I notice that the males’ graph is a little bit higher up than 
the girls’ graph. Pretty much? 

Teacher: You reckon it’s a long way? 
Teacher: No, not a long way up, they’re quite overlapped, they seem to be quite next to 

each other but one’s a little bit higher than the other. So, I’ll write that down. 
Male’s graph is slightly higher. 

 
At a more detailed level she compared the plots in terms of the shift of the majority with 
statements such as “the mass or the bulk of the graph is lower down.” At no stage did she 
quantify the shift, preferring instead to use qualitative statements such as “slightly 
higher.” 

 
Element 4: Signal The signal element could be incorporated into the shift element 

but is given a separate category since reasoning about measures of center is important for 
formal inference. The signal element referring to the middle 50% of data, the box, may 
represent the starting point for informal reasoning about center. In her communication in 
teaching episode two the box appears to be used as a crude measure of the center and is 
represented as the “typical value” or the “signal” of each distribution. She is interested in 
how much overlap there is between the middle 50% of data so a sense of comparison of 
the “middle” is conveyed to students. In response to a student’s query on the meaning of 
the term overlap she drew double-arrowed lines in the “central boxes” to demonstrate the 
term. 

 
Teacher: All right, I also might notice that the graphs are overlapped okay. 
Student: What does that mean? 
Teacher: Well that means that there’s not one graph separate from the other graph, 

they’re overlapping. So see this central box here and this central box here, 
remember that gives me the middle 50% of the data, they are quite overlapped, 
okay. Especially between, and I’ll write this down, especially between the lower 
quartile and the upper quartile. They’re very overlapped in this central part. 
Now in terms of which part of the graph gives me the most information or the 
most significant information okay, this middle box is most important, okay 
’cause that’s where the middle bulk is. 

 
Possibly the teacher is laying down intuitive foundations for formal inferential reasoning 
where the difference in centers are compared relative to the variability. The drawn lines 
may also be conceived as visual foundations for confidence intervals for population 
medians. 

 
Element 5: Spread The teacher drew attention to the spread element by focusing on 

comparing ranges and interquartile ranges visually and quantitatively. At a more detailed 
level she drew attention to the location of the data, that is, where and how the data are 
distributed. From teaching episode one: 
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Teacher: What does each of these sections represent? Because that’s the highest, the 
upper quartile, median – because each part, there’s four parts. See how I’ve 
broken the graph essentially into four parts. 

Student: Is it the spread of money? 
Teacher: It’s the spread, yes, it’s the spread of how much they get paid. So there are, of 

all the people in this study, 25 of them – percent sorry, 25 percent – a quarter 
right, are sitting in here. … Okay, in here is another quarter of the people, in 
here, another quarter, and in here another quarter. So if you imagine these 
women, and they were standing on this number line, and they would be – 

Student: Squashed up. 
Teacher: Squashed up, yes. Right because there’s the same number here, same number 

here, same number here. But because this is a smaller area, they were close 
together. What about up here? 

Student: Sparse. 
Teacher: Yes, spread out – sparse. We’ve found a new word. What’s the new word for 

today? So they’re more spread out. 
 
When comparing densities of the data there is a dual comparison: for each quarter within 
one group and between the two groups. This dual comparison was not communicated in 
this episode, rather she focused only on the female box plot. In the second teaching 
episode the spreads at a global level were compared and therefore the dual comparison 
tended to be communicated to students in a vague manner. In her reasoning the 
distinction between comparing variability within and between box plots was not well 
articulated. Although she did not consider the shape of the distributions, such as 
symmetry or skewness, in these teaching episodes she did in another teaching episode 
involving a matching exercise between histograms and box plots. At no time did she 
consider whether the shape was expected or unusual.  
 

Element 6: Sampling The sampling element is underpinned by the belief that the data 
have been sampled from a population and that an inference will be made about the 
underlying population distributions from the sample distributions. David Pratt (personal 
communication, 7 July 2005) observed that confusion existed between the teacher and 
students about the game being played in this element. The students believe the teacher is 
making inferences about the samples, which Pratt refers to as game one, whereas the 
teacher is attempting to make inferences about the populations from the samples, which 
Pratt calls game two.  

In the sampling element consideration is given to the sample size of each group and 
its effect on any inferences, whether a repetition of the experiment would give rise to the 
same difference, and determining the population for which the inference is applicable. In 
the 2003 analysis of the student assessment data about half the students, on the basis of 
fairness, mentioned that the sample size of the two datasets being compared should be the 
same (Pfannkuch, 2005). In cognizance of this finding the teacher brought students’ 
attention to the datasets from teaching episode one: 

 
Teacher: Yesterday’s graph …did you remember that one set had 20 in it and the other set 

had 30 in it – were we still able to make comparisons between those sets? 
Student: But that’s not very fair. 
Teacher: Not very fair? 
Student: Like, with males and females. 
Teacher: Yes, it’s not but it doesn’t necessarily affect your conclusion. 
Student: Oh cause with box and whisker it doesn’t matter cause it’s just percentages aye? 
Teacher: That’s right, good call. Okay, so with the box and whisker it doesn’t matter so 

much, although if one set could be smaller like say 5 people and you had say 
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another set which had 30 and you were comparing them – then you probably 
would make some mention on that okay. But if they’re roughly the same that’s 
fine, doesn’t have to be exactly the same. 

 
The student seems to understand the sample size effect from a proportional basis, but the 
teacher’s point appears to be that small samples (n=5) are more variable than larger 
samples (n=30). If she was playing game two she would point out that it would be unwise 
to draw conclusions from the comparison of such samples, but instead she states that it 
would be noteworthy. There is considerable conflict in this interchange since the teacher 
does not seem to have resolved which game she is playing.  

When discussing the plots in teaching episode two the teacher attempted to 
hypothesize what would happen if she did the study again. Two ideas appear to be 
present in her discussion. The first idea is “if I took another sample from the population 
would I get the same results?” and the second idea may not have been the teacher’s 
intention but it is worth considering, “if I repeated this experiment again would I get the 
same results?” 

 
Teacher: Now I’m going to throw in one more idea that I hope will convince you. This is 

20 people, 20 people here. Okay, do you reckon, if we went back to the same 
place and did the same study and got another different 20 people, 20 boys and 
20 girls, do you reckon we’ll get exactly that same graph? 

Student: No. 
Teacher: Do you think, but don’t you think that the median will be just a little bit higher 

for the girls? 
Student: Yes. 
Teacher: Do you think? Is it possible that maybe the results will be the other way around 

if it was another 20 people? 
Student: Yes. 
Teacher: Okay, can you see that really, they’re so close, that if you were to get another 20 

people, that it might just come out the other way. And then maybe in Mrs. L’s 
classroom, maybe they’ve got that dataset and the girls graph might be a little 
bit higher than the boys and they’ll be saying oh yes, and here we are looking at 
these, we read them the other way. So we have a bit of a problem here, I’ve only 
done this study once, we only did it with 20 girls and 20 boys, and probably if 
we repeated the experiment, we would find that we would have slightly different 
results. 

 
The two ideas, taking another sample and repeating the experiment, are distinct. The first 
idea centers on the resultant outcome if a different sample was taken from the population 
and hence game two is being played. The second idea is to consider the consequences if 
the experiment was repeated on the same people. The implication of this idea is that 
another source of variation, namely measurement errors, should be considered but the 
game being played with this idea is game one. Again the sampling element becomes 
muddied.  

The conflict between making inferences about samples, game one, and about 
populations, game two, is further illustrated by a student who wanted a definite 
conclusion and the teacher’s subsequent conclusion. 

 
Student: But couldn’t you say, from the graph, that males do have a little bit higher IQ 

than females? 
Teacher: … We’re writing our conclusion: “Based on these data values we are not 

certain that males have higher IQ.” It’s not certain okay. “There is some 
evidence to suggest that males have higher IQ for these students.” 
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 The teacher’s first statement draws a conclusion about populations whereas her second statement 
draws a conclusion about the samples. When writing her second statement (“There is some 
evidence to suggest that males have higher IQ for these students.”), she draws students’ attention 
to who was studied: 
  

Teacher: I’m even going to write, Uni students, all right, because these are all University 
students. I mean if we were trying to find out some information about all men 
and for all women and their IQ then this study wouldn’t be enough. We would 
want to do surveys of people who are older, who are younger, who have 
different types of jobs, males, females, who are from New Zealand, Australia, 
India, China, Japan, Scandinavia, right we want to do that with people from all 
over the place. So we want to be really careful. 

 
Unfortunately this reference to “Uni. students” was a game one statement, which further 
confuses the situation. Enculturating students into looking at who was studied in the 
sample and then being careful about determining the population on which the results can 
be generalized is part of learning about inference space judgment. Such a judgment is 
only possible when sufficient information is known about the data, which was not the 
case in teaching episode one. 

Furthermore, during her discussion in teaching episode one she mentioned that if the 
distributions overlapped she would be careful about making a claim that men earned 
more than women, whereas if there was no overlap she would make the claim. The lack 
of overlap in sample distributions could be an artifact of sampling variation and hence the 
indeterminacy of her sampling reasoning is continued.  

 
Element 7: Explanatory In the explanatory element, the background to and findings 

from the investigation are considered by referring to one’s own real-world knowledge. 
This contextual knowledge is used to check whether the findings make sense or whether 
other variables should be considered before venturing a conclusion or hypothesis about 
the situation under consideration. Before students can compare box plots they need to 
understand the origin of the dataset, where and how the data were collected, and how the 
measures were defined. In teaching episode two the teacher first of all engaged the 
students’ interest by telling them about an interesting talk on brain development that she 
had recently heard. Secondly, she discussed the measures used and on whom the study 
had been conducted. Part of her conversation was: 

 
Teacher: What, where does this data come from? 
Student: United States. 
Teacher: It comes from the United States, okay. What else do we know about this data? 
Student: They’re all right handed. 
Teacher: They’re all right handed, good, so all the people in this survey were right 

handed. What else do we know about these people? 
Student: They’re university students. 
Teacher: They’re university students, okay. What age group are university students 

usually? 
Student: Twenties? 

 
Such information sets the data in context and lays the foundations for drawing reasonable 
inferences from data. In comparison, in teaching episode one, the data came from a 
textbook and all that was known about the data was that they were collected from a local 
firm. Such a paucity of background information led the teacher to consider female and 
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male salaries in general, in an attempt to discuss whether the findings made sense with 
what they knew about the world. 
 

Teacher: Did anyone see the recent results on the average salaries for men and women? I 
remember seeing something on the news about that. I think it was to do with 
people who work for the government and public service and that includes 
people like teachers, nurses, policemen, officials who work in government 
departments – everyone who gets paid by the taxpayer if you like, right, they did 
a survey to have a look at who earned more – men or women and they found 
that it appeared that men earned a little bit more than the females. … 

 
Later, the discussion considered whether there was an alternative explanation for the 

findings rather than gender being the discriminating factor for salaries: 
 

Teacher: Like, teaching for example, whether we’re female or male maybe doesn’t affect 
how much we earn, but maybe it affects things like – 

Student: What position you’re in. 
 
Such a discussion enables more variables to be considered before making an inference 
based on given data. Thinking of confounding variables and alternative explanations for 
findings are part of the argumentation with data, and more information on this dataset, 
together with other relevant data, could have provided a richer exploration.  
 

Element 8: Individual Case When reasoning from distributions, observations which 
appear to be outliers are inspected as individual cases to determine whether they are part 
of the dataset or are errors and can be corrected or removed. Because box plots are not 
drawn with outliers at this Year level and dot plots were not kept under the box plots this 
element was not articulated. However, the teacher did reason with individual cases when 
she was arguing from a hypothesis generation element: 

 
Teacher: This person here, this woman here, earns $605, she earns way more than this 

male here $257. 
 
The comparison of individual’s earnings between the datasets is a method of 
argumentation based on particular instances that is used to illustrate that definitive 
statements cannot be made for all cases. 

 
3.2.  THE MODERATING ELEMENTS OF REASONING 

 
The moderating elements of reasoning, evaluative and referent, serve two distinct 

supporting functions in the reasoning process. The evaluative element’s function is to 
support the reasoning process by qualitatively judging the strength of the evidence 
provided by an element and then weighing up that evidence towards making a decision 
about whether there is a real difference between the two groups under consideration. The 
referent element’s function is to ground and maintain the reasoning process within 
contextually-based data, since the box plot is a representation that compresses and 
obscures information. 

 
Element 9: Evaluative As each of the eight elements is considered, the evidence 

provided by that element is described, assessed on its strength. and weighed up in the 
process of making a judgment on the data. For example, for teaching episode one, a 
description would be “the male graph is higher than the female graph,” whereas the 
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strength of the evidence is conveyed by “the male graph is a lot higher than the female 
graph.” Weighing the evidence is conveyed by statements such as “even though the 
graphs overlap these data suggest males on average earn more than females.” In teaching 
episode two, the teacher describes, assesses and then weighs all the evidence she has 
accumulated. The language of this evidence is italicized. 

 
Teacher: Now I know the numbers are different, the males are bigger than the females, 

but it’s not that different, it’s not like one’s 100 and the other’s – you know? So, 
it’s another contributing thing, men’s stuff is more spread out. But it’s not 
massively different, especially when you see it on the graph, you know, it’s not 
that different, can you accept that? Okay, so at the moment, I’ve got some 
conflicting kind of information, right median – females are more clever, but 
when I look at the whole graph, the whole graph’s a bit more higher for males. 
They’re a little bit different in their spreads but you know, so I’m still not ready 
to say yes males have got a higher IQ than females. 

 
The weighing of evidence involves qualitative judgments and a subtle use of language 

to convey how a decision is being reached. Since informal inferences are being made it 
may be hard for students to determine in inconclusive situations what evidence is taken 
notice of by the teacher when making a decision (see Figure 2(c)).  

 
Element 10: Referent When the teacher is comparing two distributions represented as 

box plots in a symbolic system, then reasoning from this symbolic system necessitates a 
constant reference to other systems. The box plots are constantly being decoded in a 
back-and-forth switching between the visual symbol system and the concepts and ideas to 
which it refers. For example, the teacher in the spread element of reasoning decodes the 
visual system, a rectangular box divided by a line with a whisker at each end, when she 
imagines a quarter of the females standing in each section. Such an imagining, with some 
females standing closer together than others, is a switch to another reference system or 
another representation of the box plot. Her main referents were the context or the 
statistical measures the symbol system was portraying. For example, she said “female 
graph is higher,” “male earnings are higher, or “female median is higher.” Sometimes her 
referent was the imagined underlying distribution of the data, “this central box here gives 
me the middle 50% of the data.” Her language did not refer very often to the underlying 
plots, which had been summarized by the box plots. Furthermore, her referents to the data 
plot for her justifications in the written conclusions (Figures. 1(d), 2(c)) seem to be 
insufficient.  

 
3.3.  LIMITATIONS 

 
There are two main limitations to this research. First, the study has only captured one 

teacher learning to communicate her reasoning from box plot distributions. Second, one 
researcher categorized the elements and hence there is no triangulation from independent 
sources, although the teacher did take the opportunity to assess the interpretation. 
Because there seemed to be no account of how to draw informal inferences from the 
comparison of box plots at an introductory level, an action-research method, where 
learning to reason occurred in and from practice, was deemed appropriate. Hence, the 
research can only offer some insight into possible ways teachers and students could be 
expected to reason informally and into possible pitfalls in the reasoning process. The 
research also makes the case for developing sampling reasoning concepts and keeping 
data with the box plots, but again this is based on one teacher’s reasoning. Therefore the 
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discussion that follows draws on the literature from students’ reasoning to support some 
findings but remains speculative in terms of teachers’ reasoning.  

 
4. DISCUSSION 

 
Informal inference should be stimulating intuitive foundations for formal inference. 

Making informal inferences based on distributions alone is not the usual statistical 
practice and hence the teacher in this study should be viewed as a learner in a new 
situation struggling to convey the messages in data. Indeed Biehler (1997, p. 176) stated 
that “there are profound problems to overcome in interpreting and verbally describing 
statistical graphs that are related to the limited expressability of complex quantitative 
relations by means of a common language” and that researchers need to become more 
aware of the difficulties.  

The key finding from this research is the proposal of a descriptive model (Figure 3) of 
reasoning from box plots. The model is complex and is the beginning of an exploration 
into the elements of reasoning that could be considered when structuring teaching 
towards formal inference. The elements, hypothesis generation, summary, shift, signal, 
spread, and individual case, have been described by other researchers. The shift element 
could be incorporated into another element and may not be as important as the others in 
the reasoning process. The summary element, especially the comparison of equivalent 
five-number summaries, may be considered unimportant but nevertheless such reasoning 
does exist and the purpose is to document all the types of reasoning invoked. The main 
findings from this research, however, are the description of ways in which the elements 
of sampling, explanatory, evaluative and referent are also part of a reasoning process that 
leads towards formal inference. Each element will now be discussed.  

The hypothesis generation element is an aggregate-based reasoning approach that 
Konold, Pollatsek, Well, and Gagnon (1997) and Ben-Zvi (2004) believe is essential if 
students are to reason about trends and patterns in distributions. The teacher’s discourse 
incorporates such notions. Her reasoning also highlights the link between the nature of 
the representation and the nature of the reasoning, particularly in the summary and shift 
elements. The teacher’s reasoning is led intuitively towards comparing the five-number 
summary boundaries, a facet of reasoning Biehler (2004) and Friel (1998) noticed in their 
students. The shift element documented by Biehler (2004) appeared to be intuitively 
inherent in the visual nature of the representation and hence in the teacher’s reasoning. 

Reasoning with measures of center is expressed by the teacher in the signal element. 
Both Bakker (2004) and Biehler (2004) report that the median as a representative value of 
a distribution is difficult to develop. When Bakker (2004) and Konold et al. (2002) 
searched for an alternative notion of center, they hypothesized that students’ intuition of 
middle group or modal clump could support the development of center as being a 
characteristic of the distribution. The teacher does use the middle 50% of data as an 
intuitive device for the signal. Also the nature of the representation leads to this type of 
argumentation. 

Within the spread element of reasoning by the teacher, two comparisons are evident: 
comparing the densities within one box plot and comparing the densities between the two 
box plots. Such a discussion was not clear to students nor was the purpose of the 
discussion of how comparing spreads helped in making an inference. Biehler (2004) 
noted that his students did not comment on spread differences. Another problem with the 
spread element, which is closely aligned to the nature of the representation, is how 
concepts can be built up for viewing spread as a dispersion from the median, which 
according to Bakker (2004) is a big transition. When the teacher compared the overlap of 



  

 

42  

 

the boxes with drawn lines, she was taking into account some of the variability. The 
question is whether such a comparison could be conceived as an intuitive beginning for 
confidence interval ideas for true population medians and for viewing spread as 
dispersion from the median. 

The sampling reasoning element is presented by the teacher via thought-simulations 
rather than by empirical simulations in which students could actually experience the 
variability of samples drawn from populations (Pfannkuch, 2005). Both verbalization and 
experience of sampling behavior are necessary if teachers and students are truly to grasp 
the nature of sampling reasoning. Moreover, this element is key to bridging students 
towards formal inference. The game to be played is game two whereby the reasoning 
involves making inferences about populations from samples, not making inferences about 
samples, game one. The teacher did not resolve which game she was playing and 
therefore a large part of inferential reasoning eluded her and her students. In order to play 
game two, activities, such as “growing a sample” (Bakker & Gravemeijer, 2004), 
bootstrapping (Finzer, personal communication, 7 July 2005), and experiencing and 
building concepts about sampling behaviour (Pfannkuch, 2005) could assist in developing 
her and her students’ sampling reasoning. Reasoning about samples also includes how the 
sample was selected and sample size (Watson, 2004). Although the teacher referred to 
sample size, she did not discuss how the sample was selected as that information was not 
presented as background information, but she was careful in acknowledging who was 
sampled and on whom she could draw an inference. In other words she paid attention to 
inference space judgment. 

For the explanatory element a way of perceiving her reasoning is to consider that the 
distributions are a statistical model of a real world situation. Since contextual knowledge 
is essential for seeing and interpreting any messages in data, a continuous dialogue 
should exist between the statistical models and the real world situation. Hence features 
seen in data produce queries about context, which in turn suggest questions for the data 
(Wild & Pfannkuch, 1999). This continuous shuttling between the contextual and the 
statistical is present in the teacher’s reasoning. Her choice of learning task for teaching 
episode one, however, illustrated how lack of background information about data leads to 
speculation about the data rather than further exploration. Context is used by the teacher 
as an integral part of the interrogation of data, as a factor in determining whether 
confounding variables are present, and for determining whether there are alternative 
explanations for the findings. Friel et al. (2001, p. 140) also highlight that the contextual 
frame of data is necessary for comprehending and making judgments on graphs although 
it increases “the number of elements to which the graph reader must attend.”  

The moderating elements of reasoning, the evaluative and referent elements, act as 
anchors for weighing the evidence and for interpreting an abstract box plot representation 
respectively. The evaluative element includes making a judgment by comparing 
distributions and is alluded to by Friel et al. (2001) in their suggested taxonomy of 
judgment tasks. For actually making an informal inference this element is critical. 
Qualitative judgments on the whole must be made to ascertain whether one is prepared or 
not prepared to state Group A is greater than Group B, on average. Within each of the 
eight elements of reasoning, the teacher is continually making qualitative and sometimes 
quantitative statements as a prelude to weighing the evidence. Weighing the evidence is a 
matter of opinion, can be subjective, and rests on experience with data. The students’ lack 
of experience and seemingly innate need for a definite conclusion (see sampling element 
dialogue) may militate against realizing that in statistics findings may be inconclusive.  

Bakker and Gravemeijer (2004) consider referents as being essential for instructional 
design. The symbol system, the box plot, is a new representation, and students may need 
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to interpret it with a better-known system such as a dot plot where individual data are 
identifiable (Carr & Begg, 1994). Friel et al. (2001, p. 139) also note that a “major 
component of the graph reader’s interpretation process is relating graph features to their 
referents.” The teacher’s referents are many-fold, each acting to place the abstract 
representation into a context as well as to imagine the data underneath the box plots. For 
someone with her experience there may be no problem in imagining the plot underneath, 
but for the students the abrupt transition from the stem-and-leaf plot to the box plot may 
have been too fast (Pfannkuch, 2006). 

According to Moore (1990) and Wild and Pfannkuch (1999), variation is at the heart 
of statistical thinking. All the elements are underpinned by variation as it is noticed, dealt 
with, measured informally, and explained. Or as Finzer (personal communication, 7 July 
2005) more succinctly stated, “distribution reasoning is the recognition and utilization of 
patterns in variability.” Reasoning about distributions is more than reasoning about 
shapes (Bakker & Gravemeijer, 2004), it is about decoding the shapes (Friel et al., 2001) 
by using deliberate strategies such as the proposed model (Figure 3) to comprehend 
distributions. Furthermore, there is a weighing of evidence to form an opinion on and 
inference from the information contained in the comparison of distributions. Such 
informal decision-making under uncertainty requires qualitative judgments, which would 
seem to be much harder than the quantitative judgments of statistical tests.  

The analysis of one teacher’s reasoning from box plot distributions contributes to the 
research base by enhancing understanding of the reasoning processes, and raising issues 
about the links to formal inference, the nature of the game being played, and instructional 
practice. The model (Figure 3) demonstrates the richness of verbalization necessary for 
communicating ideas and concepts from box plot distributions, and builds on other 
research findings. Thus the model begins to propose a coherent framework for the nature 
and type of informal inferential reasoning that might be addressed when teaching students 
how to reason when comparing box plot distributions. 

 
5. IMPLICATIONS FOR RESEARCH AND EDUCATIONAL PRACTICE 

 
More research work is needed on designing instruction and building teachers’ and 

students’ concepts and reasoning about distributions towards formal inference. Research 
is also needed on developing teachers’ and students’ sampling conceptions in terms of 
learning to reason about populations from samples using informal inference. Since this 
research is based on one teacher’s reasoning in a non-technological environment, there 
may be other reasoning elements necessary for informal inference. The challenge for 
future research is to move towards a prescriptive model of reasoning from box plot 
distributions. Such a model could specify how the different reasoning elements could be 
woven and sequenced together during instruction and exemplify how the elements 
contributed towards the development of formal statistical inferential reasoning. 

At the teaching level, the implications from this research suggest that developing 
teacher and student talk on how to communicate ideas and on concepts represented in 
distributions are essential. The model suggested by this research has now been used as a 
guide in developing teacher reasoning and for writing down how to reason from box 
plots. Instruction, however, needs to adopt a gradual transition approach from dot plots to 
abstract box plots to improve the referent element of reasoning and to build the sampling 
reasoning element through giving teachers and students opportunities to experience 
sampling behavior. Such an opportunity was taken by the teachers in this project in 2006. 

Hill, Rowan, and Ball (2005) believe that teachers’ mathematical content and 
pedagogical content knowledge are linked to student achievement and that improving 
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teachers’ mathematical knowledge will improve students’ understanding. Teachers and 
researchers need to collaborate to develop a coherent, deeper conceptual approach to the 
learning of statistics. A research agenda should be implemented since the current 
situation in teaching and assessment requires teachers and students to make informal 
inferences from the comparison of distributions. Without an underlying research base on 
informal inference and reasoning from distributions, this situation may lead to some 
unforeseen consequences in later years of schooling. 
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ABSTRACT 

 
Recent research into students’ reasoning about variation refers specifically to notions 
of distribution that emerge. This paper reports on research where written responses, 
from tertiary introductory statistics students, were coded according to the level of 
consideration of variation. A hierarchy of reasoning about distribution is proposed, 
based on the notions of distribution that were evident in these responses. The 
hierarchy reflects students’ progression from describing key elements of distribution 
to linking them for comparison and inference. The proposed hierarchy provides 
researchers with an emerging framework of students’ reasoning about distribution. 
The research also highlights that educators need to be aware that, without a well 
developed consideration of variation, students’ ability to reason about distribution 
will be hampered. 
 
Keywords: Statistics education research; Reasoning about variation; Reasoning 
about distribution; Tertiary; Hierarchy 
 

1. OVERVIEW 
 
As one of the fundamental forms of statistical thinking (Wild & Pfannkuch, 1999), 

reasoning about variation impacts all aspects of statistics including reasoning about 
distribution. Recent research into statistical reasoning (Bakker, 2004; Bakker & 
Gravemeijer, 2004; Ben-Zvi, 2004; Chance, delMas & Garfield, 2004; Reading & 
Shaughnessy, 2004) highlights the importance of both variation and distribution in the 
study of statistics. The Fourth International Research Forum on Statistical Reasoning, 
Thinking and Literacy (SRTL-4), held in 2005, focused on reasoning about distribution. 
Many questions were provided as stimulus for participants in SRTL-4, and a subset of 
these was relevant to the work reported in this paper: What is the nature of the connection 
between students’ reasoning about variation and students’ reasoning about distribution? 
How can students’ explorations of variation help to unravel the mystery of distribution? 
How can cognitive growth in reasoning about distribution be described? 

First, consider what is meant by the terms variation and distribution. Variation, in its 
broadest sense, will be construed as the description or measurement of the observable 
characteristic variability (Reading & Shaughnessy, 2004, pp. 201-202). Four components 
of consideration of variation were developed by Wild and Pfannkuch (1999) after 
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interviewing statisticians and students: noticing and acknowledging, measuring and 
modelling, explaining and dealing with, and investigative strategies. In Moore and 
McCabe’s (2003) well-known tertiary introductory statistics textbook, the distribution of 
a variable is defined as “the values that it takes and how often it takes those values” (p. 
5); though later the definition for probability distributions is expanded by using 
proportions rather than frequencies. Basic features expected in descriptions of 
distributions (p. 12) are the overall pattern (i.e., shape, centre and spread) and deviations 
from the pattern (e.g., outliers). When Bakker and Gravemeijer (2004) investigated the 
concept of distribution, they identified centre, spread, density and skewness, as key 
elements. As density and skewness provide detail about shape, the authors of the current 
paper propose a framework for distribution with five key elements: centre, spread, 
density, skewness and outliers. 

Next, consider that among the latest trends in statistical reasoning, thinking and 
literacy research, the development of hierarchies to describe cognitive growth has 
become a desirable research objective. The comprehensive review of models of 
development in Jones, Langrall, Mooney and Thornton (2004) included a summary of the 
models of cognitive development that relate to specific statistical concepts. Amongst 
these was a model for “sampling and sampling distributions,” but not for distribution. 
Since then, Makar and Confrey (2005b) proposed a five level hierarchy of statistical 
inference that referred to distribution in its upper levels. However, lack of a hierarchy 
describing the cognitive development of distribution as a concept provided the impetus 
for the goal of this study – to develop and describe a hierarchy of reasoning about 
distribution. Of the various theories that may be used to explain cognitive growth, one in 
particular, the Structure of Observed Learning Outcomes (SOLO) Taxonomy (Biggs & 
Collis, 1982), has been identified as a powerful tool in the assessment of mathematical 
reasoning (Pegg, 2003). More recently, statistics education researchers have used SOLO 
to develop hierarchies of cognitive development (e.g., Watson, Kelly, Callingham & 
Shaughnessy, 2003; Pfannkuch, 2005), leading to its selection as a suitable framework for 
the hierarchy to be proposed in this study. 

 
2. LITERATURE REVIEW 

 
While there is general agreement that both variation and distribution are fundamental 

concepts in statistics, debate continues over which statistical concept provides a 
fundamental basis for the development of the other. The following review draws together 
research about the close connection between students’ reasoning about variation and 
reasoning about distribution, before expanding on the SOLO Taxonomy and its use to 
explain statistical reasoning. 

 
2.1.  CONNECTING REASONING ABOUT VARIATION AND DISTRIBUTION 

 
What does reasoning about variation contribute to reasoning about distribution? 

Reading and Shaughnessy’s (2004) overview of research into reasoning about variation 
helps to unfold the complexity of variation but other research refers specifically to links 
between variation and developing notions of distribution: the context of variability is 
important for shedding light on reasoning about distribution (Hammerman & Rubin, 
2004); comparison of data in distributions is important motivation for students to reason 
about variation (Ben-Zvi, 2004); and the underlying concept of distribution is critical for 
understanding variation (Makar & Confrey, 2003; delMas & Liu, 2003). Importantly, 
Bakker (2004) considered that both variability and shape are concepts that should be 
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developed in parallel. Bakker and Gravemeijer (2004) acknowledged the vital 
relationship between variation and distribution when they concluded “without variation, 
there is no distribution” (p. 149). Other researchers (Bakker, 2004; Ben-Zvi, 2004; Makar 
& Confrey, 2003) have also closely linked reasoning about variation and distribution, 
with Bakker (2004, p. 81) calling for more research to clarify how students can develop 
their informal notions of centre, clumps, spread, and shapes, into more conventional 
measures of distribution. 

The suggestion that reasoning about variation may lead naturally into reasoning about 
distribution becomes apparent when research findings are considered in light of the 
proposed five key elements of distribution: centre, spread, density, skewness and outliers. 
Seven developmental stages were identified when Ben-Zvi (2004) traced the reasoning 
about variation of two secondary students in an activity requiring them to compare two 
distributions. The final three stages dealt with use of centre and spread, informal 
variability modelling through handling outliers, and noticing and distinguishing 
variability within and between distributions. Makar and Confrey (2003) argued that 
learning environments should be structured to help develop this link between variation 
and distribution by pushing students to find a need for variation in their inferential tasks 
and assisting them to discuss variation in such a way that develops a discussion of 
distribution. Reading and Shaughnessy (2004, p. 223) developed a hierarchy about 
describing variation that included the notions of moving from general descriptions of 
extreme and middle values to deviations from an anchor. Such cognitive development 
could help students link the key distributional elements of centre and spread. 

Distributional reasoning is particularly difficult for students when dealing with 
sampling distributions. Chance, delMas and Garfield (2004, p. 312) noted that students 
were not able to reason about sampling distributions until they had a sound understanding 
of both variability and distribution. In the light of their proposed reasoning framework, 
they observed that at the Verbal Reasoning level a “student can select a correct definition 
but does not understand how the key concepts such as variability and shape are 
integrated” (p. 303). Lack of language, beyond the level of statistical summaries, has 
been identified as one of the difficulties in understanding distributions (Biehler, 1997), 
with students finding it difficult to take distribution concepts emphasized in probability 
theory and apply them in data analysis situations. An improved understanding of 
variation may help students to better reason about distribution by providing them with a 
vocabulary for describing distributions.  

Learning more about the link between variation and distribution is crucial if Makar 
and Confrey (2005a, p. 28) are correct in claiming that distribution gives “a visual 
representation of the data’s variation.” The study being reported in this paper aims to 
develop a hierarchy of reasoning about distribution, through a re-analysis of students’ 
responses to various tasks. The original analysis of the responses focused on reasoning 
about variation. The analyses and ideas presented in this paper assist in understanding 
what aspects of that reasoning may be helpful and provide a foundation for reasoning 
about distribution. 

 
2.2.  THE SOLO TAXONOMY 

 
The cognitive developmental SOLO Taxonomy model consists of five modes of 

functioning, with levels of achievement identifiable within each of these modes (Biggs & 
Collis, 1991). Although these modes are similar to Piagetian stages, an important 
difference is that with SOLO earlier modes are not replaced by subsequent modes and, in 
fact, often support growth in later modes. For a description of these modes see Pegg 
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(2003, pp. 242-243). A series of levels have been identified within each of these modes. 
The relevant mode for this study, the concrete-symbolic mode, is the mode which focuses 
on thinking through the use of a symbol system. Four levels within this mode are: 
prestructural (P) with no focus on relevant aspects; unistructural (U) focusing on one 
aspect; multistructural (M) focusing on several unrelated aspects; and relational (R) 
focusing on several aspects in which inter-relationships are identified. These four levels 
form a cycle of growth that occurs in each mode and recurs in some modes, with each 
cycle being identified by the nature of the aspects on which it is based. When there are 
recurring cycles the relational level of one cycle equates to the prestructural level of the 
next cycle. 

The application of this model of cognitive growth has varied among researchers. 
Some acknowledge that SOLO has been used to inform the development of their 
hierarchy, but do not explain how or do not explicitly use the SOLO terminology to 
describe their levels. For example, Watson et al. (2003) have four levels of understanding 
of variation entitled: Prerequisites for Variation, Partial Recognition of Variation, 
Applications of Variation, and Critical Aspects of Variation. Each level is articulated in 
detail, including the fourth level “where consolidation of concepts occurs” (Watson et al., 
2003, pp. 11-13). In both the methodology and discussion, Watson et al. stated that 
SOLO was the basis for the categorical coding but the actual levels described have not 
been linked specifically to the SOLO levels (P, U, M & R). Others use the SOLO 
taxonomy to inform hierarchy development and explain how it relates to the levels they 
describe, but do not explicitly name their levels using SOLO terminology. For example, 
initially Mooney (2002), and then later Jones et al. (2004), described levels for analyzing 
and interpreting data; Idiosyncratic, Transitional, Quantitative and Analytical, and then 
explained each of these levels in terms of specific SOLO levels. Finally, there are those 
who use SOLO as the framework to underpin their hierarchy and explicitly describe the 
levels of the hierarchy in terms of the SOLO level descriptors. For example, Watson and 
Moritz (1999) for comparing two datasets, Watson and Kelly (2003) for understanding of 
statistical variation, Reading (2004) for describing variation, and Pfannkuch (2005) for 
the nature of the various strands of the statistical process, developed levels clearly 
articulating the parallel with SOLO levels (especially the U, M and R levels). 

The existence of more than one cycle of levels within a mode (Pegg, 2003, p. 245) is 
already being acknowledged by statistics education researchers. Jones et al. (2004) 
explained the differing coding levels of statistical reasoning at the primary and secondary 
level as reflecting two different cycles of SOLO levels. Watson, Collis, Callingham and 
Moritz (1995) described two cycles of drawing inferences from data. The first based on 
developing an aggregated view of data, and the second based on sorting data and 
hypothesizing associations. Watson and Moritz (1999) identified the use of proportional 
reasoning in responses as indicative of the move from the first to the second cycle, in the 
comparison of two datasets. Reading (2004) described a cycle based on responses of a 
qualitative nature followed by a cycle of responses of a quantitative nature, in the 
description of variation. 

 
3. APPROACH 

 
The continuing success of the use of SOLO as a framework for hierarchy 

development led to its use in developing the hierarchy proposed in this paper. However, 
rather than the standard use of SOLO as a framework for directly coding students’ raw 
responses, this study used SOLO for analysing responses that had already been coded 
(grouped) according to the level of another variable, consideration of variation. First, the 
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Reading and Reid (2005a) Hierarchy of Consideration of Variation (Figure 1) was used to 
code students’ responses to assess the level of consideration of variation. The coded 
responses for each level of consideration of variation were then re-analyzed to determine 
any reasoning about distribution. This coding and re-analysis formed the first phase of the 
study. The SOLO framework was then applied to the results of the re-analysis to inform 
the proposition of a hierarchy of reasoning about distribution. This development of the 
hierarchy was the second phase of the study. 
 
No consideration of variation 
MP1&4: discusses the means only as evidence of the inference, with no mention of variation 
MP2: does not mention the relevant factors to explain variation of trial outcomes 
MP3: does not mention variation in relation to the distribution  
Weak consideration of variation 
MP1&4: discusses the amount of variation but does not explain how this justifies the inference 
MP2: incorrectly applies relevant factors to explain variation of trial outcomes 
MP3: some description of variation that implies how variation influences distribution  
Developing consideration of variation 
MP1&4: discusses the amount of variation and explains how this justifies the inference made 
MP2: interprets some factors correctly to better explain variation of trial outcomes 
MP3: indicates appreciation of variation as representing distribution of values  
Strong consideration of variation 
MP1&4: indicates an appreciation of the link between variation and hypothesis testing 
MP2: interprets all factors correctly to give good explanation of variation of trial outcomes 
MP3: recognizes effect of variation on the distribution and relevant factors  

 
Figure 1. Hierarchy of Consideration of Variation  

(adapted from Reading & Reid, 2005a) 
 

The remainder of this paper is organized according to these two main phases. 
Sections 4-6 describe the first phase, in which students’ responses were re-analyzed for 
evidence of reasoning about distribution, after having been coded for consideration of 
variation using an existing hierarchy (Figure 1). Section 7 describes the second phase of 
the study, where a new hierarchy of reasoning about distribution is proposed, using 
SOLO as the developmental framework. The proposed hierarchy in section 7 is based on 
the analysis of the data in the first phase (i.e., on the work described in section 4-6), as 
well as interpretation of ideas by various researchers both in published papers and in 
discussions and intellectual debates at the two recent SRTL forums (Bakker, 2004; Ben-
Zvi, 2004; Hammerman & Rubin, 2004; Ben-Zvi & Amir, 2005; delMas, Garfield & 
Ooms, 2005; Makar & Confrey, 2005b; Pratt & Prodromou, 2005; Rubin, Hammerman, 
Puttick & Campbell, 2005; Wild, 2005). For space considerations, some technical details 
regarding the data used in this study and coding schemes are omitted, and can be found in 
Reading and Reid (2005b) and Reid and Reading (2004). 
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4. METHODOLOGY 
 

4.1.  SUBJECTS 
 
The study is based on responses collected from 57 students enrolled in an 

introductory statistics course, at a regional Australian university. The participants were 
those who consented to participate in the study out of 207 students in the course.  

 
4.2.  TASKS AND PROCEDURE  

 
Students completed four minute papers, presented in the Appendix. A minute paper is 

an informal writing task that consists of a short question given at the beginning, or end, of 
a class to be completed in five or ten minutes and submitted immediately. For more detail 
about the use of minute papers see Reid and Reading (2004). The minute papers 
addressed four key themes in the course: exploratory data analysis (MP1), probability 
(MP2), sampling distributions (MP3), and inferential reasoning (MP4). Students 
responded to the minute papers during non-compulsory lectures, both before and after an 
instructional sequence related to each of the four themes. Later in this paper the letters a 
and b are used to designate before and after assessments (e.g., Minute Paper 1 had two 
versions, MP1a (before) and MP1b (after)). In each case, the ‘a’ paper involved as little 
use as possible of statistical symbols or terminology. The minute paper questions were 
displayed on an overhead transparency. Before each was completed, points of 
clarification were addressed to ensure that all students were clear about the requirements 
of the task, in particular understanding of graphical representations. This clarification was 
restricted - no explanations were given to inform the question given in the minute paper.  
 
4.3.  CODING 

 
Initially the minute paper responses were independently coded in relation to 

consideration of variation by the two authors (researchers) using the Reading and Reid 
(2005a) hierarchy (Figure 1). This allowed a separation of the responses into groups with 
no, weak, developing and strong consideration of variation respectively. This initial 
grouping based on consideration of variation, as a lens through which to investigate 
reasoning about distribution, was undertaken because of the strong connection between 
variation and distribution in the published literature. The responses in each grouping 
(with the exception of ‘no’) were then re-analysed to determine any indications of 
reasoning about distribution. The five key elements of distribution: centre, spread, 
density, skewness, and outliers, were used as an organizing framework. 

One of the researchers was an instructor in the course but was not involved in the data 
analysis until the course was completed, as required by the ethics approval. Inter-coder 
reliability was good (i.e., greater than 80%), for all but two minute papers. When there 
were disagreements about the coding level of a response, each of the two researchers 
explained what aspect of the response had caused her to choose the particular level. The 
ensuing discussion, and negotiation, about the interpretation of the response resolved 
itself in every case. 
 

5. RESULTS 
 
Results of the initial coding for level of consideration of variation are summarized in 

section 5.1. For more detailed discussion of the methodology and examples of responses 
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at each level see Reading & Reid (2005b). Results of the re-analysis to determine any 
indication of reasoning about distribution are summarized in section 5.2. 

  
5.1.  CONSIDERATION OF VARIATION 

 
Coding of the minute paper responses identified three levels of consideration of 
variation: no, weak and developing. None of the responses were coded as ‘strong.’ Table 
1 is provided to inform the reader about how many responses were used to develop the 
evidence reported in the next section. No comparative analyses about the student before 
and after performance are reported in this paper, as the focus is not on measuring change 
but rather developing a hierarchy, treating all available responses as equally important. 
The number of responses available for analysis was disappointingly low, ranging from 48 
for MP1a down to 12 for MP3b. This may have been partially due to the fact that the 
minute papers were completed in lecture timeslots and attendance varied. The last line in 
Table 1 reports on inter-coder reliability (ICR) for each of the minute papers. More 
technical details regarding coding appear in Reading and Reid (2005b). 

 
Table 1. Consideration of Variation - Percentages of responses for minute papers 

(adapted from Reading & Reid, 2005b) 
 

 Minute Paper 1 
(EDA) 

Minute Paper 2 
(probability) 

Minute Paper 3 
(sampling distr) 

Minute Paper 4 
(inferential stat) 

 

Level 
 

MP1a 
(n=48) 

MP1b 
(n=26) 

MP2a 
(n=40) 

MP2b 
(n=31) 

MP3a 
(n=26) 

MP3b 
(n=12) 

MP4a 
(n=18) 

MP4b 
(n=22) 

Total 
(n=223)

no 12 8 0 3 11 0 22 4 8 
weak 71 65 70 36 81 83 45 14 59 
developing 17 27 30 61 8 17 33 82 33 
Total 100 100 100 100 100 100 100 100 100 
ICR 82% 77% 93% 81% 85% 75% 89% 91% 

 
 
5.2.  REASONING ABOUT DISTRIBUTION: EVIDENCE FROM RESPONSES 
 

Following is the reasoning about distribution identified in the minute paper 
responses. It should be remembered that the ‘weak,’ and ‘developing’ terms referred to in 
this discussion are a measure of the consideration of variation demonstrated. So, for each 
minute paper, the indications of reasoning about distribution are described first for the 
weak (consideration of variation) responses and then for the developing (consideration of 
variation). For convenience, information from both the ‘a’ and ‘b’ responses are 
combined for each minute paper. When student responses are reproduced in full they are 
labeled SR1, SR2, and so forth for reference. 

 
Minute Paper 1 (exploratory data analysis) The weak (consideration of variation) 

responses only focused on spread and centre, and used terms that suggested consideration 
of shape that were either incorrect, or not explicit enough to indicate understanding. 
Spread was mostly expressed as end values for the distribution, although some responses 
also described how the scores were positioned within the range. Some considered the 
dispersion (e.g., “distributed evenly throughout” - SR1), while others considered the 
grouping together (e.g., “major group or clump”), indicated how the spread was centred, 
(e.g., “condensed at a different point), or used the average to represent a modal cluster. 
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Attempts at describing the shape included “right skewed” and “left skewed” without 
elaboration, and the effect of shape on the measure of centre by claiming that the “median 
is pulling down causing the graph to be skewed,” while skewness was indicated by a 
“very compact bottom 50%” (SR2). Some responses tried to link features of the 
distribution (e.g., linked the behaviour of the middle 50% of the distribution to that of the 
range). 

 
SR1 There are more fish that weigh between 0-400 grams in the Perch 

Species and then the rest of the species are spread more evenly between 
400-1000 grams. The bream species on the other hand primarily weigh 
over 200 grams and the different weights are distributed evenly 
throughout. This shows that there is a difference in weight for the two 
species. 

 
SR2 There is some difference in the weight of the 2 species. However for the 

most part they have a similar range. Species B has a larger range than 
species A, the data for species B is heavily skewed, it has a very compact 
bottom 50% suggesting a concentration of weights towards the bottom. 

 
The developing (consideration of variation) responses more clearly indicated the 

amount of spread and how it was centred, where “more condensed” was explained as one 
set “around the middle heavy weights” and the other at “the lower weights” (SR3). Some 
gave more information about the ends of the distribution by comparing extreme data 
values rather than where the majority of the data were concentrated (SR4). Many of the 
developing responses referred to the density of the distribution as well as the shape, 
sometimes explaining away inconsistent shapes as an anomaly due to outliers. Sources of 
variation outside the scope of the data, or sampling error, were also used to explain 
different ranges when the two distributions were basically the same (i.e., the middle 50% 
of the distributions were similar (SR5)). 

 
SR3 Yes. The perch are more distributed in their weight than the bream 

making the bream heavier as it is more condensed around the middle 
heavy weights (e.g. 500-1000 grams) whereas the perch are greatly 
varied in weight reducing the total mass and they are more condensed at 
the lower weights than the higher masses. 

 
SR4 Bream has an upper weight recorded at approx 1000g while perch has an 

approx 1100g. Therefore there is a weight difference at the upper limit, 
though not significant and due to the variability of weights can not 
conclude that there is an upper limit weight difference. There is a more 
significant weight difference at the lower extremes of weight, of approx 
10g to 250g. However both species will have minimum weights of a 
gram or two. Thus not conclusive. 

 
SR5 There is not! Though the two species have different means and different 

ranges, there [sic] mid 50% weights in fact line up. The differing ranges 
could be due to inaccurate sampling or another variable, as their lowest 
weights should be similar and stretch upwards from zero. 
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Minute Paper 2 (probability) For MP2a most weak (consideration of variation) 
responses opted for the always 50% red scenario, thus allowing no variability in 
outcomes and identifying the centre of the distribution but not shape, with such terms as 
“clustered” (SR6) and “around the 5 lolly mark.” MP2b gave little information on 
reasoning about distributions because the question was often misinterpreted, and 
responses did not take into account the importance of order thus considering the two 
different situations as the same. One weak response, in particular, showed the conflict 
between theory and intuition (personal experience), choosing the mixture MFFM as more 
likely despite producing a calculation that showed the same probability for all 
combinations (SR7). Others attributed similarities in probability to the small sample size. 

 
SR6 C because they have a 50% chance of picking a red one, as there are 100 

candies in total & 50 red ones. 50% of 10 = 5 & scores are clustered 
around & on five. 

 
SR7 (a) Both are likely because the probability for having a male or a female 

is equal. Although it may be more likely to have a mixture (MFFM) 
rather than all females (FFFF) probability wise either could happen 
P(any) = 1/2 × 1/2 × 1/2 × 1/2. 
(b) As in question (a) the probability for both scenarios is equal and 
therefore all F and FFMM are likely. 

 
The developing (consideration of variation) responses generally indicated shape 

(arrangement of the numbers) as well as the centering (e.g., giving a range of numbers), 
“with some less than 5” and “some more than 5” (SR8), that suggest some appreciation of 
balancing of the distribution around the average value. 

 
SR8 B because the majority of the lollies in the jar are red (50 out of 100). 

This in theory indicates that you would be most likely to pull out a larger 
number of red lollies. B gives a variable range of numbers-> some less 
than 5 some more than 5. B averages around 5. 

 
Minute Paper 3 (sampling distributions) Some weak (consideration of variation) 

responses failed to recognize that the question was focused on the distribution of the 
sample means rather than of the parent population. Many thought that the distribution of 
the sample means would be the same as the original population, more often elaborating 
on the mean of that distribution than the amount of variation, or attributing the changing 
nature of the distribution to the possible occurrence of extremes. Some incorrectly 
attributed greater variance to the distribution of the sample means (SR9) rather than to the 
distribution of individual values, and many described clumping of data, allocating data to 
within one standard deviation either side of the mean. The better responses included the 
more detailed information required to discuss the variability of the distribution, although 
not explicitly acknowledging it as standard error. Some idea of the density of the data 
was suggested with “a lot will be close to the population mean and then fewer will extend 
to the edges” (SR10). 

 
SR9 The means of the 100 sample sizes are going to have a greater variance 

than that of the whole population, the bigger the sample, the closer it is 
to the mean. 
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SR10 The values of the mean will be distributed either side of the population 
means [sic]. But a lot will be close to the population mean and then 
fewer will extend to the edges. 

 
Developing (consideration of variation) responses gave more attention to the shape 

but mostly did not make it clear whether the variance was in fact less than that for the 
original population (e.g., “not much variance” (SR11)). Some responses indicated an 
appreciation of the sample size effect on the distribution (e.g., a sample of 100 limiting 
“the error that occurs in small samples”). One response clearly showed diagrammatically 
the expected shape of the sampling distribution but did not articulate this well in words 
(SR12), while another got closer to the notion of standard error by identifying that “σ will 
become smaller” with the majority of values being closer to the true mean. 

 
SR11 The means of each of the samples would be fairly close with not much 

variance. This is because the samples are all the same size and are 
repeated within the same population. Also the sample size of 100 each 
time is a good number as this will limit the error that occurs in small 
samples. 

 
SR12 The distribution of the sample means 

will mimic that of the population but 
over a smaller area in the center of the 
pop. distribution.  

 
Minute Paper 4 (inferential reasoning) The weak (consideration of variation) 

responses clearly referred to measures of centre, as means or medians, or the spread, as 
range. One compared the number of dots on either side of the mean (SR13) suggesting 
that density of the data may also be important. Some mentioned overlap but did not 
elaborate (SR14). 

 
SR13 Example 1 and 2 because they have a bigger range than 3. Example 1 has 

more dots on one side of the mean than the other which might change 
the mean. 

 
SR14 No, all boxplots show an overlap. 

 
The developing (consideration of variation) responses clearly considered the density 

of the distribution, usually described as clustering of some form with some responses 
being more specific about the location of the clusters. Overlap of data was elaborated by 
stating what was overlapping and connecting this to the conclusions drawn. 
Interpretations of overlap varied considerably: some were very specific about overlapping 
boxes (SR15), or whiskers, or both; but others were more vague about the overlap 
(SR16), not indicating what was being compared. Very few responses actually mentioned 
the word distribution. 

 
SR15 Yes, there is significant difference in regards to the Wren species. It is 

not overlapping with the other species at all (i.e., its central 50% doesn’t 
overlap with the central 50% of the other species). The Hedge Sparrow 
and the Meadow Pipit also are significantly different because there is no 
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overlap between them either. The other four species overlap too much 
for there to be any difference in the mean. 

 
SR16 Example 3 has a real difference in group means. None of the data plotted 

overlaps and it is very clustered so that each mean is separate from the 
other. 

 
6. DISCUSSION OF STUDY RESULTS 

 
What was learnt about students’ reasoning about distribution from their reasoning 

about variation? The reasoning about distribution as evidenced in minute paper responses 
with weak (section 6.1) and developing (section 6.2) consideration of variation is 
discussed. These insights into students’ reasoning about distribution contributed to 
conjectures (section 6.3) about how consideration of variation provides a foundation for 
reasoning about distribution. 

 
6.1.  REASONING ABOUT DISTRIBUTION BY STUDENTS WITH WEAK 

CONSIDERATION OF VARIATION 
 
More than half the minute paper responses demonstrated weak consideration of 

variation. Of interest now is what these responses indicated in terms of reasoning about 
distribution. These responses rarely demonstrated a sound understanding of the key 
elements of the distribution, or ability to reason about distribution in context, and 
incorrectly linked increased sample size to increased variation. Most responses focused 
on some measure of location (mean, median, mode) and possibly the range of the data. 
Some responses did incorporate terminology suggesting consideration of more than the 
centre and spread. Terms such as “clumped” and “condensed at a different point” gave 
some sense of the shape and density, respectively, of the distribution, although the 
responses did not demonstrate a sound understanding of distribution. Those responses 
that made reference, using standard (e.g., “right-skewed”, “outliers”) or non-standard 
language (e.g., “a very compact bottom 50%”), to some of the other key elements that 
characterize a distribution rarely included sufficient detail to indicate a sound 
understanding of the links between these key elements. Any response attempting to link 
some key elements and/or use them for comparative purposes, did so incorrectly. 

 
6.2.  REASONING ABOUT DISTRIBUTION BY STUDENTS WITH 

DEVELOPING CONSIDERATION OF VARIATION 
 
One-third of all minute paper responses demonstrated a developing consideration of 

variation. Such responses discussed and explained the amount of variation within and 
between distributions, explained the effect of variation on the distribution, and used that 
information to justify their inference. So, again, of interest is what these responses 
indicated in terms of reasoning about distribution. The responses moved beyond a limited 
focus on centre and spread, often making a link between these two key elements. Many 
demonstrated a sound understanding of at least some of the other key elements of 
distribution. Furthermore, some referred to the density of the distribution (e.g., “more 
condensed”, “bunched”), building up a better picture of the shape of the distribution. In 
addition, many were able to use the information gained from linking the key elements for 
comparative purposes, discussing overlap of the distributions, or parts of the distributions 
(e.g., “clusters … are confined to different areas”). A discussion of overlap of two 



  

 

57 

 

distributions leads towards recognition of the link between the systematic (between-
group) and random (within-group) variation suggesting an intuitive analysis of variance. 
However, few responses were able to successfully apply their understanding of centre, 
spread and density to the complex notion of the sampling distribution of the mean. 
Chance et al. (2004, p. 314) have previously identified the difficulty of understanding the 
concept of the sampling distribution without an understanding of distribution and 
variation. 

 
6.3.  CONJECTURES ABOUT VARIATION – DISTRIBUTION LINKS 

 
A student’s ability to understand and articulate variation may be an indicator of a 

student’s ability to reason about distribution. The minute paper analysis showed that in 
their efforts to discuss, explain and use the concept of variation, the responses indicated 
that students had developed a refinement of their understanding of many of the key 
elements of distribution: centre, spread, density, skewness and outliers. This suggests that 
consideration of variation is an important tool for unlocking the mystery of how students 
reason about distribution. Other influencing factors are: use of non-standard language 
(discussed below), interpretation of the task, interpretation of data representation, and 
discussion with peers (for more detail see Reading & Reid, 2005b). 

Especially important to unlocking the mystery of reasoning about distribution is what 
was evident in developing responses but not evident in weak responses. Responses that 
exhibited a developing consideration of variation generally demonstrated a more 
advanced understanding of at least some of the key elements of the distribution compared 
with weaker responses. Many linked the key elements to compare distributions, thus 
demonstrating a more sophisticated reasoning about distribution. Although some weaker 
responses demonstrated intuitive understanding of key elements of distributions, only 
those responses that had a more developed consideration of variation were able to draw 
these key elements together to reason better about distribution, through the language they 
used and the links they made.  

Responses showed a variety of non-standard terms to describe and compare 
distributions, such as “clustered” and “compact 50%,” which reflect some appreciation of 
the density of a distribution. Furthermore, discussion of the overlap of distributions 
indicates that students are moving closer to inference based on their reasoning about 
distribution. Although there was an increase in the use of standard statistical terms and 
notation during the course, the responses continued to include ideas using non-standard 
terms but were able to be more precise about the meaning of both standard and non-
standard terms. Makar and Confrey (2005a) found that it was important to be able to use 
non-standard terminology to express views, even when correct terminology is known. 
Students should be encouraged to use non-standard terminology to express their ideas to 
ensure that they understand the concepts clearly, while familiarising themselves with the 
corresponding statistical terminology. 

This study has demonstrated that consideration of variation is important for students 
in developing their reasoning about distribution. Those students, who are unable to 
appreciate a need for variation, nor describe it, are not in a position to identify, 
understand, and use the key elements of a distribution. They will not have the concepts or 
the language to describe what they see or visualize, and consequently will be unable to 
reason about distribution in context. 
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6.4.  LIMITATIONS 
 
When interpreting the above results, the limitations of this study, in relation to the 

sample, task, procedure and resulting analysis, should be considered. The sample size for 
the minute papers, while providing sufficient responses for analysis, was not as large as 
had been planned. The minute papers varied in usefulness for studying reasoning about 
distribution. In particular, those based around the probability theme need to be redesigned 
to better facilitate students’ expression of their reasoning about distribution. One possible 
limitation of the minute papers, in terms of the potential for depth of response, was the 
restricted time allowed for completion. As always, with qualitative research, there were 
issues based around the interpretation of students’ responses. This research should be 
viewed as the researchers’ interpretation of what these particular students were sharing in 
their responses for this particular course. While useful for guiding other educators and 
researchers these conclusions may not necessarily be universally applicable. 

Thus far, the study has been outlined and the key indications of reasoning about 
distribution, which were evident in the responses previously coded on their level of 
consideration of variation, have been described. In the following section these indicators 
are combined with the findings reported by other researchers, both at SRTL-4 and 
elsewhere, to propose a hierarchy of reasoning about distribution (second phase) that uses 
SOLO as a framework. 

 
7. EMERGING HIERARCHY OF REASONING ABOUT DISTRIBUTION 
 
The proposed Hierarchy of Reasoning about Distribution (Figure 2) was informed by 

the observations of reasoning about distribution evident in responses coded according to 
their consideration of variation (in section 6) and based on SOLO levels of cognitive 
development. The hierarchy is arranged with increasing sophistication in dealing with the 
key elements of distribution: centre, spread, density, skewness and outliers. Two cycles 
of levels based in the concrete-symbolic mode are described. 
 
CYCLE 1 Understanding the key elements of distribution 
Prestructural (P1) does not refer to key elements of distribution 
Unistructural (U1) focuses on one key element of distribution (centre, spread, 

density, skewness or outliers) 
Multistructural (M1) focuses on more than one key element of distribution 
Relational (R1) develops relational links between various key elements of 

distribution 
CYCLE 2 Using distribution for statistical inference 
Prestructural (P2) recognizes the concept of distribution but does not use it to 

make inferential statements 
Unistructural (U2) makes one inferential statement described in such a way as to 

indicate a correct understanding of the concept of distribution 
Multistructural (M2) makes more than one inferential statement described in such a 

way as to indicate a correct understanding of the concept of 
distribution 

 
Figure 2. Hierarchy of Reasoning about Distribution 
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The first, well-defined cycle of P-U-M-R levels is based on an understanding of the 
key elements of distribution. The responses that exhibited weak consideration of 
variation, as described in section 6.1, informed the P-U-M part of this cycle. The 
developing responses that demonstrated a linking of the key elements, as described in 
section 6.2, provided the background for the relational level (R2) in this first cycle. The 
second cycle of levels, based on using distributions for making statistical inferences, 
could only be partially defined based on the better developing responses described in 
section 6.2. The responses that were able to make some inference informed the 
unistructral (U2) and multistructural (M2) levels, depending on whether one or more 
inferential statements were made. Analysis of responses incorporating more sophisticated 
reasoning about distribution is needed to further develop this second cycle. It is 
anticipated that this may have been possible from responses that demonstrated strong 
reasoning about variation but such responses were not available in the study reported. 

Note that the relational level (R1) of the first cycle is equivalent to the pre-structural 
level (P2) of the second cycle, in that the key elements have been linked to form the 
concept of distribution but the distribution itself is not used for statistical inference. Thus 
two cycles of cognitive development have been identified: the first based on 
understanding the key elements of distribution, and the second about using distribution 
for statistical inference. This is consistent with the Jones et al. (2004) and the Watson et 
al. (1995) descriptions of two cycles of SOLO levels of statistical reasoning: the first 
associated with development of understanding of concepts, and the second associated 
with the application of these concepts. 

Before expanding on the levels of the hierarchy it is necessary to consider a 
terminology issue raised at SRTL-4. To allow for other non-standard ways of determining 
where the distribution is located on the axis, researchers suggested altering the ‘centre’ 
element to ‘location.’ However, the authors decided to retain the term ‘centre,’ but allow 
it to include references to the more general concept of location as well as standard 
statistical measures of centre. 
 
7.1.  CYCLE 1 – UNDERSTANDING THE KEY ELEMENTS OF DISTRIBUTION 

 
In this first cycle the focus is on the key elements themselves (i.e., centre, spread, 

density, skewness and outliers), and not on the distribution as a whole. The way that data 
are distributed is dealt with in an informal fashion. 

 
Prestructural (P1) Responses do not refer to any of the key elements of distribution. 

It is likely that such responses indicate a problem dealing with the representation, either 
graphical or numerical. For a discussion of levels of understanding of data representation 
see Reading (1999). 

 
Unistructural (U1) Responses refer to just one key element of distribution. For 

example, two datasets may be compared based on the range only, rather than taking into 
account whether the data representation is bumpy or flat. Responses showing weak 
consideration of variation that described just one key element of distribution fall into this 
category. Generally this single key element was a measure of centre or spread (i.e., if 
only one key element is discussed it is less likely to be the density, skewness or outliers). 
Ben-Zvi and Amir (2005) found that seven year olds only see the relevance in the actual 
values of the data and not in how many there are of each value. This flat (one-
dimensional), rather than distributional (two-dimensional), view of the data did not allow 
them to reason with distribution. Similarly, responses given at a unistructural level (i.e., 



  

 

60  

 

dealing with centre or spread), indicate a one-dimensional view of the distribution of data 
that needs to be expanded to two dimensions. 

The complexity of each key element of distribution was emphasized by delMas et al. 
(2005), for example, regarding what density meant in relation to the histogram 
representation. The complexity of any one key element would need to be resolved before 
it would be possible to give a multistructural response, dealing with more than one key 
element. Sometimes, when using the SOLO taxonomy for coding, there are responses that 
show features to suggest coding at a particular level but incorrect conceptualization 
prevents this. Such responses are described as transitional. Some responses, transitional 
to multistructural, tried to include another key element but not in an acceptable form. 

 
Multistructural (M1) Responses refer to more than one key element of distribution 

but do not link the various key elements. Most noticeable at this level is the discussion of 
shape as more than one key element of the distribution has been assimilated. Some weak 
consideration of variation responses did incorporate terminology, using standard (e.g., 
“right-skewed,” “outliers”) or non-standard language (e.g., “a very compact bottom 
50%”), suggesting consideration of more than just the centre and spread. Terms such as 
“clumped” and “condensed at a different point” gave some sense of the shape and 
density, respectively, of the distribution. There were some responses, transitional to being 
relational, that attempted to link key elements but this was not correctly done. 

Another issue which arises at this level is “cut-points” for dividing a visually 
presented dataset, as discussed by Rubin et al. (2005) based on their work with teachers. 
Such points may indicate centre by showing where the distribution is located on the axis, 
but students decide where to cut based on density, thus indicating more than just a 
consideration of location. Rubin et al. (2005) also found that the teachers ignored outliers 
and chose to deal with a simpler set of data. In that instance, the software had made it 
easy for them to ignore the outliers and recalculate statistics for their inferences. 
Effectively these teachers were removing the problem of dealing with a skewed 
distribution. Such action may be a form of simplifying the linking process by removing 
some of the complicating key elements. 

 
Relational (R1) Responses make links between the various key elements of 

distribution. Some of the developing consideration of variation responses explained the 
effect of variation on the distribution by discussing the amount of variation within and 
between distributions, and used that information to justify their inference. The simplest 
links made were between centre and spread, with links to density in some way (e.g., 
“more condensed,” “bunched”), building up a better picture of the shape of the 
distribution. Bakker (2004, p. 65) emphasized the complexity of the distribution concept 
and the possibility of dealing with it initially in a less formal way by focusing on shape. 
The relational level of cognition required to deal with shape, linking the two key elements 
density and skewness, confirms that an appreciation of shape is important for making the 
difficult ‘jump’ to the actual concept of distribution. Relational responses consider the 
distribution as “an aggregate with its own characteristics,” as described by Makar and 
Confrey (2005a, p. 28) and others (see, e.g., Bakker & Gravemeijer, 2004, p. 148). This 
linking of the various key elements of distribution (aggregation) allows the move to more 
complex reasoning using distribution. 
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7.2. CYCLE 2 – USING DISTRIBUTION FOR STATISTICAL INFERENCE 
  
In this second cycle the focus is on the distribution as a whole and its use as a tool for 

making statistical inferences. The importance of understanding distribution to enable 
students to comprehend standard deviation was highlighted by delMas and Liu (2003). 
Hammerman and Rubin (2004) found that even when students were able to deal with data 
as an aggregate there were still complex processes needed to move away from just 
considering variation. Statistical inference, whether formal or informal, involves dealing 
simultaneously with signal (centre), noise (variability), sample size and shape of the 
distribution. This second cycle involves recognizing the distribution as an aggregate and 
being able to move on and use this concept of distribution for inference. The notion of a 
student moving from a data-centric (data spread across a range of values) to a modelling 
perspective (variation as a random movement away from the main effect), as outlined by 
Pratt and Prodromou (2005), should help to explain the important move from the first to 
the second cycle of reasoning about distribution. The need to recognize that there is a 
family of distributions that make up a model as variables change value (Wild, 2005), 
would also be critical to being able to use distributions for inferences, thus moving into 
the second cycle. 

 
Pre-structural (P2) This is equivalent to the relational level in the previous cycle 

(i.e., there is no indication of statistical inferences being made using distribution which is 
essential for the second cycle). Responses make the necessary links to perceive the 
distribution as a “whole” but do not make any steps towards using distribution in detailed 
statistical inference. 

 
 Unistructural (U2) Responses make one inferential statement described in such a 

way as to indicate a correct understanding of the concept of distribution. Many of the 
developing consideration of variation responses were able to use the information gained 
from linking the key elements for comparative purposes, discussing overlap of the 
distributions, or parts of the distributions (e.g., “clusters ... are confined to different 
areas”). A discussion of overlap of two distributions indicates recognition of the link 
between the systematic (between-group) and random (within-group) variation and is 
suggestive of an intuitive analysis of variance. Also important here is the need for an 
understanding of the concept of distribution to be able to work with the complex notion 
of the sampling distribution of the mean. 

 
Multistructural (M2) Responses make more than one inferential statement described 

so as to indicate a correct understanding of the concept of distribution. There were not 
enough responses of a sufficient quality to allow elaboration on the definition of this 
level. 

 
Relational (R2) There were no responses to allow description of this hypothesized 

relational level of cognition for the hierarchy. It is anticipated that responses at this level 
would be able to link together the inference statements made thus indicating a strong 
understanding of the concept of distribution. 

 
8. IMPLICATIONS 

 
This paper has provided a suggested alternative approach for use of the SOLO 

Taxonomy and also contributed to the ongoing development of hierarchies in statistics 
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education research. A conventional use of the SOLO Taxonomy would involve directly 
coding student responses in relation to their reasoning about distribution. The approach 
used in this paper was somewhat different - the researchers chose initially to code (no, 
weak, developing) the responses in relation to the underlying concept of variation and 
then apply the SOLO Taxonomy to the reasoning about distribution found in the grouped 
responses. 

As reasoning depends heavily on an understanding of underlying concepts (Garfield, 
2002), it was not unexpected that the better indications of reasoning about distribution 
were found in the responses with a higher level of consideration of variation. It should be 
remembered, however, that like the coding of all open-ended responses, the indicated 
levels are only what the student was able to demonstrate at that particular time to that 
particular question. While the described hierarchy can be used as a guide to the types of 
responses that may occur for other questions, there is no guarantee that students will 
achieve at a similar level on a different question. In fact, whether reasoning about 
distribution occurs at all will depend on the nature of the task. It is not sufficient to 
provide a situation where students are merely asked to describe a distribution. They need 
activities that require working with distribution in some way. For example, a comparison 
task can provide the motivation to reason about distribution (Ben-Zvi, 2004; Makar & 
Confrey, 2003). 

The Hierarchy of Reasoning about Distribution proposed in this paper has added to 
previous research on the cognitive development of distribution as a concept. This 
hierarchy is consistent with, and elaborates on, the detail provided by the five level 
hierarchy of use of statistical evidence proposed by Makar and Confrey (2005b). Cycle 1 
and cycle 2 of the proposed hierarchy (Figure 2) correspond to Makar and Confrey’s final 
two levels: Level 4 – Distribution and Level 5 – Inference. The P1-U1-M1-R1 levels 
described in cycle 1 (understanding the key elements of distribution) represent a deeper 
articulation of Makar and Confrey’s Level 4. While the P2-U2-M2 levels described in 
cycle 2 (using distribution for statistical inference) provide an insight into Makar and 
Confrey’s Level 5. More work is needed in this area to inform the description of cycle 2, 
especially the R2 level. 

 
8.1.  IMPLICATIONS FOR RESEARCH 

 
Implications for researchers arise from both the existing hierarchy and the proposed 

hierarchy. The existing Hierarchy of Consideration of Variation (see Figure 1) can be 
used by other researchers to assess students’ consideration of variation. Such background 
information about students in relation to one of the key fundamental statistical thinkings, 
consideration of variation, can then be used to determine whether responses indicate a 
readiness to develop cognitively in relation to other related statistical concepts. In the 
case of the study reported in this paper, this background information about consideration 
of variation was used to arrange responses, thus separating those with the less developed 
indicators of reasoning about distribution from those with the more developed indicators. 
The Hierarchy of Reasoning about Distribution (see Figure 2) proposed in this paper sets 
two challenges for researchers. One is to elaborate on this hierarchy description, 
particularly in the second cycle by analysing responses that exhibit a ‘strong’ level of 
consideration of variation. The second is to use the hierarchy to code responses from 
larger and more diverse groups of students, and test the hierarchy’s validity as an 
instrument to allow students’ reasoning about distribution to be measured thus allowing 
developing reasoning to be mapped. 
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8.2.  IMPLICATIONS FOR TEACHING AND ASSESSMENT 
 
The conclusions drawn are useful for guiding educators in both learning activity 

design and assessment. When designing learning activities for students, educators need to 
plan for knowledge development that will assist students to move from their informal 
notions to more statistically sophisticated notions. Such planning, in relation to 
distributions, should focus heavily on nurturing students’ conceptions of variation and 
extending these to reasoning about distribution. It is proposed that activities that use 
distributions, but do not expect sophisticated reasoning about distributions, be used to 
allow students to progress naturally through the first cycle of cognition, developing a 
strong understanding of the concept of distribution through its key elements, before being 
expected to use it for statistical inference. This is especially important for students who 
are identified as having weak consideration of variation and hence will need to be given 
the opportunity to develop a better appreciation of variation. Educators should note that 
this research has also demonstrated that assessment tasks designed for one purpose can be 
used for other purposes. Tasks designed to assess outcomes in core themes can also be 
used to identify indicators of reasoning about distribution. Further research is now needed 
to assist educators to develop more assessment tasks that are multipurpose and also to 
develop supportive learning strategies to nurture reasoning about variation, thus laying a 
firm foundation for reasoning about distribution. 
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APPENDIX: MINUTE PAPER QUESTIONS 
 

Minute Paper 1a 
Look at the following plot. It shows the 
weights in grams of two species of fish (bream 
and perch). 

 
Do you think that there is a difference in 
weight for the two species? Explain your 
response. 

Minute Paper 1b 
Look at the following boxplots. They show the 
weights in kg of 2 different species of animal (A 
& B). 

 
Do you think that there is a difference in weights 
for the two species? Explain your response. 

 
Minute Paper 1 

 
Minute Paper 2a 

A bowl has 100 wrapped hard candies in it. 20 are yellow, 50 are red, and 30 are blue. They are 
well mixed up in the bowl. Jenny pulls out a handful of 10 candies whilst blindfolded, counts the 
number of reds, and tells her teacher. The teacher writes the number of red candies on a list. Then, 
Jenny puts the candies back into the bowl, and mixes them all up again. Five of Jenny’s 
classmates, Jack, Julie, Jason, Jane and Jerry do the same thing. They each pick ten candies, count 
the reds, and the teacher writes down the number of reds. Then they put the candies back and mix 
them up again each time. 

From the lists choose the one that you think is 
most likely to represent the teacher’s list for 
the number of reds. Explain why you chose 
that one. 

A. 5, 9, 7, 6, 8, 7 
B. 3, 7, 5, 8, 5, 4 
C. 5, 5, 5, 5, 5, 4 
D. 2, 4, 3, 4, 3, 4 
E. 3, 0, 9, 2, 8, 5  

Minute Paper 2b* 
Suppose the probability of having a male child (M) is equal to the probability of having a female 
child (F). A couple has four children. 
(a) Are they more likely to have FFFF or to have MFFM? Explain your answer. 
(b) Are they more likely to have four girls or to have two children of each sex? Explain your 
answer.  
(Assume that the decision to have four children was independent of the sex of the children.) 
* Question from J. Utts (2005, p. 346) 

 
Minute Paper 2 
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Minute Paper 3a 

Suppose a sample of 100 women is drawn from a certain population and their heights measured. 
The mean of this sample is 170.1 cm. Census data indicated that the adult female population has a 
mean height of 168.4 cm and a standard deviation of 4.5 cm. 
If repeated samples of size 100 are taken from the same population of women and the resulting 
means from each of the samples recorded what can you say about the distribution of these means? 

Minute Paper 3b 
Suppose a sample of size n is drawn from a population. The mean of this sample is x . The 
population has a mean E(X) = μ and a standard deviation sd(X) = σ. 
If repeated samples of the same size are taken and the resulting means from each of the samples 
considered what can you say about the distribution of these values? 

 
Minute Paper 3 

 
Minute Paper 4a* 

There are 3 different examples. In each 
example, a sample was taken from each of 
3 groups and the data plotted, along with 
the sample means. Sample means are 
indicated by vertical lines. For which 
example(s) might you conclude that there 
is a real difference in group means? 
Explain your response. 

 
*Diagram from Wild & Seber (2000, p. 439) 

 
Minute Paper 4b* 

Cuckoos are known to lay their eggs in 
the nests of other (host) birds. The eggs 
are then adopted and hatched by the host 
birds. These data give the lengths (mm) 
of cuckoo eggs found in the nests of 
other birds. 
This study investigates the difference in 
mean egg length (mm) of cuckoos’ eggs 
according to the species of the foster-
parent. With reference to the boxplot, do 
you think that there are any significant 
differences in mean egg lengths among 
the six species? Justify your response. 

 

HS: Hedge Sparrow 
MP: Meadow Pipit 
PW: Pied Wagtail 
R: Robin 
TP: Tree Pipit 
W: Wren 
*Data from Tippett 
(1952, p. 176) 

 

 
 

Minute Paper 4 
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ABSTRACT 
 
Our primary goal is to design a microworld which aspires to research thinking-in-
change about distribution. Our premise, in line with a constructivist approach and 
our prior research, is that thinking about distribution must develop from causal 
meanings already established. This study reports on a design research study of how 
students appear to exploit their appreciation of causal control to construct new 
situated meanings for the distribution of throws and success rates. We provided on-
screen control mechanisms for average and spread that could be deterministic or 
subject to stochastic error. The students used these controls to recognise the 
limitations of causality in the short term but its power in making sense of the 
emergence of distributional patterns. We suggest that the concept of distribution lies 
in co-ordinating emergent data-centric and modelling perspectives for distribution 
and that causality may play a central role in supporting that co-ordination process. 
 
Keywords: Distribution; Causality; Randomness, Probability; Variation; Microworld 
design; Emergent phenomena  
 

1. TWO PERSPECTIVES ON DISTRIBUTION 
 
Distribution is commonly recognised as one of the key ideas in probability and 

statistics, certainly at secondary school level. For example, in the UK National 
Curriculum (DfES, 2000), students at lower and upper secondary level are expected to 
“compare distributions and make inferences, using the shapes of distributions and 
measures of average and range.” Higher achieving students should be able to extend this 
to other measures of spread and understand frequency density. The assessment regime in 
that National Curriculum implies that the above statements refer to distributions of data, 
either prepared for students or generated through experiments and surveys. 

The introduction of digital technology into schools has prompted interest in 
Exploratory Data Analysis (EDA) as a means of engaging students in statistical analysis, 
arguably reducing the need for a sophisticated understanding of theoretical statistical 
principles, demanding an appreciation of probability theory, prior to meaningful 
engagement. The technology is ideally suited for supporting students as they manipulate 
data and portray it in a range of different representations in order to infer underlying 
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trends. The EDA approach then promotes a perspective on distribution as a representation 
of collections of actual data, consistent with the goals of the National Curriculum. 

Previous research has conceived of distribution as “an important part of learning to 
look at the data” (Moore, 1990, p. 106) and as an organising conceptual structure with 
which we can observe the aggregate features of datasets rather than just a collection of 
individual values (Cobb, 1999; Petrosimo, Lehrer, & Schauble, 2003). Other researchers 
have claimed the centrality of the concept of data as an aggregate which is characterised 
by core features that are invisible in any of the individual elements in the aggregate 
(Konold & Higgins, 2003; Mokros & Russell, 1995). Students, however, have a strong 
attachment to the case-oriented view; in other words, data are perceived as a collection of 
individual data values or cases (Wilensky, 1997; Ben-Zvi & Arcavi, 2001). To help 
students move beyond the case-oriented view, Hancock, Kaput and Goldsmith, (1992) 
claimed that it is prerequisite for students to mentally construct such an aggregate, before 
they can see the dataset as a whole. We consider the above approaches to be taking a 
data-centric perspective on distribution. A data-centric perspective on distribution pays 
attention to the variation and shape of data that has been collected, perhaps through a 
sampling process. 

 Petrosino et al. (2003) have suggested that students need to conceive of distribution 
“as an organizing conceptual structure for thinking about variability located within a 
more general context of data modelling” (p. 132). Bakker and Gravemeijer (2004), in 
their attempt to investigate the relationship between data as individual values and 
distribution as a conceptual entity, examine key aspects of both datasets and distributions 
such as centre, spread, density, and skewness. They propose a three-level structure; the 
lowest level comprises of distribution as a set of data values, and the highest level 
recognises the conceptual entity, distribution. Between these two levels, they position 
summary statistics such as centre, spread and skewness. They imagine that this structure 
can be read both upwards and downwards. In the upward perspective, students tend to 
perceive data as a series of individual cases, which they can use for calculations of any 
sample statistics (mean, median, etc.). In the downward perspective, students should look 
at the data with a notion of distribution as an organising structure, conceiving centre, 
spread and skewness as features of that distribution. The upward perspective leads to a 
frequency distribution of a dataset. In the downward perspective, alternatively, 
theoretically derived distributions, such as the Normal and other probability distributions, 
are typically used to model data. Bakker and Gravemeijer (2004) chose to deal informally 
and consistently with core ideas, such as variation and sampling but with distribution still 
being in a central position. They also envisioned that informal consideration of the shape 
is the basis for reasoning about distributions. Perusal of recent research literature suggests 
that reasoning about variation and distributions are strongly associated (Bakker, 2004; 
Ben-Zvi, 2004; Makar & Confrey, 2003) since “without variation, there is no 
distribution” (Bakker and Gravemeijer, 2004, p. 149) 

However, the notion that variation generates distribution is only part of the story, and 
it is that part told from the perspective that recognizes what we are terming the data-
centric perspective, in which distribution is seen as a collection of data results. Compare 
this perspective to that of the classical statistician, who accounts for unexplained 
variation as that part of a hypothetical model which is not apparently associated with a 
main effect. Here the emphasis is on a model and so we refer to this approach as the 
modelling perspective on distribution. Indeed, from this perspective, we might reverse 
Bakker and Gravemeijer’s aphorism to state “without distribution there is no variation.” 

When we refer to theoretical distributions (for example, Normal, Uniform and 
Binomial), we idealise mathematical models, in which we attribute probabilities to a 
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range of possible outcomes (discrete or continuous) in the sample space. In this 
modelling approach, the model gives rise to variation. Data distributions are seen as 
variations from the ideal model, the variations being the result of noise or error randomly 
affecting the signal or main effect, as reflected in the model itself. The modelling 
perspective on distribution pays attention to randomness and the shape of the 
probabilities that mould the outcomes, perhaps through some experiment. The modelling 
perspective reflects, in our view, the mindset of statisticians when applying classical 
statistical inference. Indeed, Borovcnik (2005) offered six variations on the notion of data 
being modelled as a main effect together with an error: 

 
(i) Signal + Error  (ii) Pattern + Deviation (iii) Fit + Residual 
(iv) Model + Residual (v) Explained + Un-

explained Residual 
(vi) Common + Specific 

causes 
 
In the same vein, Konold and Pollatsek (2004) viewed the data as a combination of 

signal and noise, where the signal can be an average value with variation as noise around 
it. They argued that “the idea of distribution comes into better focus when it is viewed as 
the distribution around a signal” (p. 171). Bakker (2004), in turn, referred to a second 
type of signal in noisy processes or shape as a pattern in variability. Bakker (2004) 
viewed signal as a distribution, such as the shape of a smooth bell curve of the normal 
distribution, with which we model data. He suggested that the noise in that case is the 
variation around that smooth curve. The idea of “signal” and “noise” is evident in several 
research studies (Biehler, 1994; Wild & Pfannkuch, 1999; Noss, Pozzi & Hoyles, 1999).  

In our view, a sophisticated view of signal and noise requires a co-ordination of the 
data-centric and modelling perspectives. We argue that the emphasis in the UK National 
Curriculum, and indeed as apparent in EDA approaches, is insufficient alone to nurture 
such co-ordination. We dream of a pedagogy which somehow enables students to 
appreciate the connection between the data-centric and modelling perspectives on 
distribution. 

The development of such a pedagogy demands that we research the design of tools 
that aim to facilitate the co-ordination of these two perspectives. Our approach is to adopt 
a design perspective in which we develop a software-based task to act as a window on 
thinking-in-change (Noss & Hoyles, 1996). In looking to bootstrap the iterative design 
process, we found immediate resonance with research on emergent phenomena 
(Wilensky, 1997), which contain a sense of “organised randomness” (Davis & Simmt, 
2003) and a tension between living within rule-defined boundaries and using the space 
created within those boundaries productively (Johnson, 2001). Thus, we began to think of 
the challenge of co-ordinating the two perspectives on distribution as one of seeing 
distribution as an emergent phenomenon (Prodromou, 2004). At the same time, we were 
alerted to the observation that there is a “centralised mindset” amongst students that may 
be rooted in a natural habit of interpreting phenomena in a cause-and-effect manner rather 
than in complex emergent terms (Resnick, 1991; Johnson, 2001; Gould, 2004). However, 
as we will see, we found that the tendency towards deterministic thinking was a useful 
resource for co-ordinating the two perspectives. 

Our broad aim then is to understand better how students might conceive of data-
centric and modelling perspectives of distribution. Furthermore, we aspire to develop 
environments in which meanings that embrace these two views of distribution might be 
constructed. 
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2. EMBRACING CAUSALITY 
 
The modelling and data-centric perspectives on distribution offer different views of 

variation. In the data-centric perspective, data will spread across a range of values; in the 
modelling perspective, variation is portrayed as a random movement away from the main 
effect. In order to co-ordinate these two perspectives, we argue that it is necessary to see 
them as a duality that encompasses both the deterministic and the stochastic. We 
therefore examine research on how students apparently perceive the stochastic. 

Piaget & Inhelder (1975) suggested in their seminal work that the organism 
eventually succeeds in inventing probability as a means of operationalising the stochastic. 
Prior to that achievement, random mixtures were unfathomable and the literature is 
abundant with examples of how even adults use various, often misleading, heuristics to 
make judgements of chance (for example, Kahneman, Slovic and Tversky, 1982). How is 
that process of operationalising the stochastic achieved? Clearly Piaget’s constructivist 
stance would demand that we consider what students already know since therein must lie 
the resources for coming to appreciate distribution and other key stochastic concepts. 

Pratt (2000) reported how students of age 11 years were able to articulate meanings 
about random phenomena which were remarkably akin to expert-like views in one 
respect. They understood the unpredictable, uncontrollable and unpatterned nature of 
randomness. These so-called local resources were brought to bear by these students in 
order to describe short-term randomness. Significantly, these same students were unable 
to demonstrate meanings for the predictable, controllable and patterned nature of long-
term behaviour. Such global resources however began to emerge as these students 
engaged with specially designed tools, in an environment called ChanceMaker. This 
microworld consisted of mini-simulations of so-called gadgets, common random 
generating devices such as coins, spinners and dice. These gadgets were presented as not 
working properly and the challenge to the students was to mend them using tools made 
available within the gadgets. The students began to articulate situated versions of the Law 
of Large Numbers, such as “the more trials you do, the more even is the pie chart.” The 
significance of this work for the present study is the causal nature of the students’ global 
resources. The number of trials determines the state of the pie chart. Pratt (1998) 
discusses the notion of phenomenalising, the process of transforming mathematical ideas 
into quasi-concrete objects (Papert, 1996), which can be manipulated on-screen by the 
student, who can make sense of the mathematical concept through using it, much as most 
of us do, to come to appreciate everyday phenomena. By phenomenalising randomness, 
Pratt claimed that the students were able to exploit well-established knowledge about 
causality to concretise (after Wilensky, 1991) the Law of Large Numbers. 

It is our conjecture that, given appropriate phenomenalised tools, students will be able 
to bridge the modelling and data-centric perspectives of distribution. In this vision, 
randomness becomes an agent that causes variation and in turn randomness can be 
“controlled” through parameters, perhaps instantiated as on-screen sliders, that experts 
might think of as measures of average and spread. Indeed the blurring of a distinction 
between a measure or representation and a control is one of the hallmarks of using 
technology to promote using before knowing (Papert, 1996). 

It seems though that there is a paradox here. On the one hand, the work of Pratt 
(2000) makes a prima facie case that technologically-based environments may have the 
potential to offer a method of constructing meanings for distribution out of causality. On 
the other hand, such an approach may reinforce the centralised mindset and militate 
against the construction of distribution as an emergent phenomenon that bridges the data-
centric and modelling perspectives of distribution. This apparent paradox lies at the heart 
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of our work. We must design an environment that supports students in discriminating and 
moving smoothly between data as a series of random outcomes at the micro-level and the 
shape of distribution as an emergent phenomenon at the macro-level. In that respect, we 
conjecture that we can build an environment that enables the student (i) at the micro-level 
to use their understanding of causality whilst at the same time begin to recognise its 
limitations in explaining local variation, and (ii) at the macro-level to use the parameters 
as causal agents to appreciate the impact of those sliders on features of the distribution 
whilst appreciating their failures to completely define the distribution. We intend to use 
the microworld that embodies these conjectures not only to test those conjectures but 
further as a window on the evolution of students’ thinking about the two perspectives on 
distribution. Through that window, we ask whether and how students co-ordinate the 
data-centric and modelling perspectives on distribution.  

 
3. METHOD 

 
Approach and tasks To elaborate this research question, we aimed first to instantiate 

the conjectures into a microworld that would perturb the students’ thinking and act as a 
window on that thinking-in-change (Noss & Hoyles, 1996). Learning situations are 
complex ecologies in which many variables interact. Experimental methodologies are 
often impossible, either because of the confounded nature of the variables or for ethical 
reasons. We have found in previous work that the delicate process of phenomenalising a 
mathematical concept in order to observe thinking-in-change demands a gradual 
sensitising towards that complex ecology. The current ongoing study therefore falls into 
the category of design experiments (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003), 
whereby we gain insights about both thinking-in-change and design issues from the 
participants’ interactions during the iterative design of the microworld. Typically design 
experiments require several iterations. Each iteration raises new issues about the learning 
process and generates conjectures about how the design may better help to elaborate the 
research question. 

In this article, we report on pupils’ interactions with the third iteration of the 
microworld. A major issue raised by the first iteration was that the design at that time 
failed to generate purposeful student activity. In order for it to act as a window on 
students’ thinking-in-change about distribution, it was essential that they were able to 
explore with relatively little input from the researchers. We therefore searched for a 
context that might stimulate such activity whilst at the same time encourage focus on 
distribution as a central concept. In fact, our design strategy has subsequently been 
influenced by the notions of Purpose and Utility (Ainley, Pratt & Hansen, 2006). We 
needed to provide students with a setting that would inspire a deterministic interpretation 
of behaviour and would find purpose in adopting a perspective that sees behaviour 
captured and explained in terms of emergent distributions. We have approached the 
problem by setting the exploration in the second iteration in the context of playing 
basketball. Our observations during the second iteration alerted us to the significance of 
the two different perspectives on distribution and the need to find a design that might 
support their co-ordination. 

This article reports on a case study of how two pupils interacted with the third 
iteration of the microworld, in which they were presented with the basketball-throwing 
activity depicted in Figure 1. Students were first asked to throw the ball into the basket 
using various sliders that control the throw. Once this preliminary task was completed, 
they were asked whether they felt that the simulation was realistic. This normally 
generated the response that it seemed artificial that the ball was entering the basket every  
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Figure 1. The player has successfully thrown the ball into the basket. The release 
angle, speed, height and distance can all be varied using the sliders or by entering the 

data directly. Once the play button has been pressed, the player continues to throw with 
the given parameters until the pause or stop button is pressed. The trace of the ball can 

be switched off. Feedback is shown in the Monitors and Graphs panes. 
 

time. Since the system was completely determined at this point, the ball replayed 
faithfully its successful path on every throw. The subsequent discussion typically 
introduced notions such as skill-level and we showed them the error buttons as in Figure 
2 which can make the situation more realistic by allowing for errors in throws. 

 

 
 

Figure 2. Three players each throw their ball simultaneously. Because the error button 
has been pressed, the balls vary their paths. Only one of the three throws is successful. As 

the three players continue throwing, the release angles will average 51.8 degrees. 
 
The students were able to control the spread of the error through two arrows on the 

slider, which corresponded to points that were roughly two standard deviations above and 
below the mean average as in Figure 2. The students were able to move either or both of 
these arrows, generating values that corresponded to distributions with differing spreads 
and bias. The microworld also allowed the students to explore various types of graphs 
relating the values of the parameters to frequencies and frequencies of success. When the 



  

 

75 

 

parameters were determined, the graphs appeared as single bar columns as in Figure 3. 
When the error had been introduced, the graphs appeared as histograms as in Figure 4.  

 
(We do not wish to enter here into the debate about whether these graphs should be 
referred to as histograms. With equal width bars, the matter is of no real consequence.) 

 
Subjects The microworld was trialled with six students in a UK secondary school. 

The first two pairs of students were, according to their teacher, of average ability. One 
pair was age 14; another pair was 15. The third pair, 16 years of age, was at an early stage 
of advanced level study of mathematics and was of above average ability. In this paper 
we report on the emerging insights of the two 14 year-old students, Tom and Chris. 
Although we recognize the same issues as reported below from analysis of other pairs, 
Tom and Chris provide in our view the clearest illustration so far of the co-ordination of 
the two perspectives on distribution. 

 
Procedure The pair was observed by both authors and the programmer, who had 

coded the microworld in Imagine Logo, a powerful version of Logo, published by 
Logotron (www.logo.com/imagine/). For the purposes of this paper, we refer to all three 
as the researchers. The episode described below took place in one session lasting about 
90 minutes. The data collected included audio recording of the students’ voices, video 
recording of the screen output on the computer, and researchers’ field notes. The analysis 
was one of progressive focussing (Robson, 1993). At the first stage, the recordings were 
simply transcribed and screenshots were incorporated as necessary to make sense of the 
transcription. Subsequently, the first author turned the transcript into a plain account with 
no explicit interpretation other than through selection of the more promising sections. The 
less interesting sections were replaced with discursive descriptions of what happened. At 
third stage, an interpretative account was written by the first author and discussions about 
the validity of those interpretations took place with the second author. In this respect, we 
followed Mason’s (1994) advice to make an account of the data before accounting for the 
activity. At the fourth stage of analysis, issues were extracted and turned into conjectures 
for use in the next and ongoing iteration of the design cycle. 

 

 
Figure 3. With no error set, the graph 
will appear as a single bar. The graphs 
can be rescaled using the button/sliders. 

 
Figure 4. With error set, the green (lighter) bars 
in the histogram indicate the successful throws; 

the red (darker) bars show the remainder. 
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4. FINDINGS 
 
Our analysis suggests that Tom and Chris’s meanings for distribution were co-

ordinated through four distinctive phases, which we use below to structure the story of 
how the relationship between causality and variation shifted as they moved through these 
phases. 

 
4.1. PHASE 1: DETERMINING A SUCCESSFUL THROW 

 
Tom and Chris were introduced in the microworld to a single basketball player who 

was clearly failing to throw the ball successfully into the net. However, they were shown 
that his throws could be changed using the various sliders. They were challenged to 
improve the player’s throws. 

They began to vary the sliders for release speed and angle as well as height and 
position. They demonstrated sophisticated intuitions for altering speed and angle in such 
a way that the path of the ball was gradually moving nearer to the basket. Within two 
minutes, they had successfully set the sliders to throw the ball into the net (Figure 5). 
Tom and Chris continued to explore other successful throwing positions by moving the 
player and finding the corresponding successful release speed and angles. Although Tom 
and Chris had found an initial successful throw quickly, they appeared to enjoy exploring 
other values of the parameters that also resulted in a successful throw. It turned out later 
that it was important that as researchers we allowed Tom and Chris this space to become 
comfortable with the software, moving the sliders in a playful and exploratory way. 

 

 
Meanwhile, the data for all throws was being continuously collected by the computer 

since at no stage did Tom and Chris reset the data collection process by stopping the 
experiment. On two occasions during this phase, the researchers asked the boys to look at 
the histograms. Although no errors had been introduced, the graphs showed variation. 
This variation had been created by the manual changing of the parameters during the play 
(Figure 6). In fact, Tom and Chris did not comment on this variation and the researchers 

 

 
Figure 5. Within two minutes, Tom and Chris had 
managed to find values for the parameters that caused 
the player to throw the ball directly into the basket. 

 
Figure 6. The graph of the release 
speed, based on 77 throws, shows 
variation caused by the two boys 
changing the parameters during the 
data collection. 
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did not probe into the boys’ understanding of this aspect. Nevertheless, we suspect that, 
in the light of the later developments, their own role as agents of variation was an 
important feature of how they later understood variation in which they were not the 
agents.  

 
4.2. PHASE 2: EXPLORING THE ARROWS 

  
After 24 minutes, the researchers began to introduce the notion of error. It was 

suggested to Tom and Chris that the previous simulation was not very realistic since, 
once the correct values had been discovered, the player was successful every time. The 
boys were introduced to the error buttons. They observed how, when the error button was 
pressed, two arrows appeared either side of the handle on the corresponding slider. They 
began to explore the effect of moving these arrows but found it difficult to make sense of 
what the arrows were doing. (In the transcript, Res refers to the researchers.) 

 

 
 

Figure 7. Tom noticed that the path was slightly different 
even though they had made no changes. 

 
(1) Tom: They (referring to the arrows) might help our decision.  
(2) Tom and Chris spent three minutes moving the arrows around whilst the player threw 

the ball continuously. 
(3) Chris: It doesn’t really make it any easier. 
(4) Res: Why? 
(5) Chris: I can’t see how it is improving our chances.  
(6) Res: What do you think (looking at Tom)? 
(7) Tom: Same. 
(8) Chris: Still… I’m trying to work out what these arrows are. 

 
 At first the boys appeared to associate error with something being wrong, probably 

associating the word itself and the cross on screen with marking of their work in class. 
Although confused, the boys continued to try to make sense of the role of the arrows and 
we did not seek to clarify. After allowing the simulation to run for about two more 
minutes, Tom noticed that the path of the ball changed. 
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(9) Tom: It’s like… when it’s throwing the ball, it’s changing occasionally… yeah, like 
then (as he was talking the ball took a different path, as in Figure 7)… it just 
went differently.  

(10) Chris:  Could that be to do with the arrows?  
 
A few seconds later, the researchers suggested that they look once more at the graphs. 

 
(11) Res: Can you understand these graphs?  
(12) Tom: Quite a lot of angles… spread out. 
(13) Chris: We tried a lot of angles. We kept adjusting the angles. 
(14) Res: Why? 
(15) Chris:  I don’t know. We were just playing with it.  

 
Tom and Chris were right in that they had indeed been adjusting the sliders during the 

simulation and that some of the variation in the angles was caused directly by them. 
However, at the same time, the angles were being chosen randomly by the computer and 
so some of the variation was due to randomness. It would appear that Tom and Chris 
recognised variation in this setting where they personally were the agents (lines 13-15) 
and were possibly entertaining the idea that the arrows may also somehow be involved 
(line 10).  

 
4.3. PHASE 3: ARROWS AS AGENTS 

 
Half an hour into the session, the researchers suggested that Tom and Chris might 

begin a new experiment in order to explore more systematically the role of the arrows. 
They began with error set for release angle but soon introduced error for speed as well 
(Figure 8). 

 

 
 

Figure 8. Tom and Chris explored the arrows further  
by introducing error to angle and then speed. 

 
(16) Chris: The arrows do change it. (They moved the two arrows closer together)  
(17) Tom: May be… might be between the two arrows… might be…  
(18) Res: What might be?  
(19) Chris: The release speed... might just be like random.  
(20) Tom: It seems to be a bit inconsistent.  
(21) Res: Why?  
(22) Tom: The shots are like changing… even though that’s not changing.  
(23) Res: Even though what’s not changing?  
(24) Tom: The shots are… like that missed (referring to the simulation in which the 

throw missed the basket)… that missed, that one went in (referring to the 
following throw)… but we are not changing them from there (pointing to the 
sliders).  

(25) Res: Not changing the slider. Is that what you’re saying? 
(26) Tom: Yeah. 
(27) Res: But even so sometimes it’s missing.  
(28) Tom: Yeah. 
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Our interpretation of this incident is that for the first time, Tom and Chris explicitly 
recognized that variation could occur without them acting as the agents of change (lines 
22-28) and that this insight was accompanied by the preceding recognition that the angles 
or speeds might be chosen randomly from values between the two arrows (lines 17-20). 
These two ideas were themselves preceded by an acknowledgement that the arrows did in 
fact seem to be changing something (line 16). Perhaps such ideas had been gradually 
growing (line 10). A causal link between the arrows, randomness and scoring or missing 
seemed now to be postulated. However, such a link was not as yet explicitly established 
in their minds. Tom and Chris continued to explore, setting errors on and off and moving 
the arrows around for all of the variables, often simultaneously. 

 
(29) Res:  So what conclusions have you got so far about these arrows?  
(30) Tom: A bit troublesome. 
(31) Chris: Like a random number between the two arrows. 

 
The two boys admitted that they were not yet confident about the idea that the arrows 

demarcated a region from which a random number would be chosen and so they 
continued to explore. There was now another intense period of exploration in which they 
moved the arrows around, sometimes close together, sometimes wide apart, sometimes 
symmetrically around the handle, sometimes asymmetrically. There did not appear to be 
much systematicity about this exploration. However, they constantly reviewed the 
continuing action in the simulation as they tried to make sense of the arrows. Eventually 
they made a breakthrough. 

 
(32) Tom: If it’s close, it’s more chance of going in. 
(33) Res: What do you mean? 
(34) Tom: When the arrows are close together, it’s got more of a chance of going into 

the net. 
 
In lines 32-34, Tom and Chris seemed to have spotted this pattern of behaviour by 

looking closely at the effect on the animation of moving the arrows. They did not refer to 
any graphs during this period. A few minutes later however (line 35), they did decide to 
look at the graphs. Initially, all the histograms appeared to consist of a single bar (Figure 
9). 

Line 35 is a revealing remark. Chris was content that the graphs apparently revealed 
no variation since he was still relating variation to changes that they personally had 
generated (line 35). The causal link relating the arrows to changes in the animation had 
not been extended to the distribution in the graphs. 

The researchers however noticed the small bar to the right of the main bar in the 
speed graph (see bottom left graph in Figure 9). They helped the boys to rescale the 
histogram of release speed, at the same time changing the block width (Figure 10). 

 
(35)  Chris There’s only one because we haven’t altered it. 
(36) Res: So what does that graph tell you? 
(37) Tom: Lines in the middle (referring to the green (lighter) success bars).  
(38) Res: What about the reds and greens? 
(39) Tom: There’s an area which is green.  
(40) Chris When we get the release speed to… whatever value that is (pointing to the 

start of the green area)… about 11… they’re all successes… and when we 
change it, it’s going to miss.  

(41) Res: Did you change it? 
(42) Chris Did you (looking at Tom)?  
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Figure 9. Tom and Chris supposed that the graphs were single bars because they had not 
made any alterations. They had not yet linked variation in the graphs to variation caused 

by the arrows. Careful inspection of the speed histogram would have revealed a tiny 
amount of variation. 

 

 
 

Figure 10. Tom and Chris needed to explain the variation in the  
histogram even when they had not themselves changed the speed slider. 

 
(43) Tom: Which one? 
(44) Chris Speed. 
(45) Tom: That was the one with the arrows, wasn’t it? 
(46) Res: Why have we got different speeds on here?  
(47) Tom: Because the arrows change it.  
(48) Res: Explain that to him. I’m not sure he understands it yet. 
(49) Tom: The arrows make it, like, random. So it’s a random number between the two, 

I think. 
 

It now seemed that Tom had abstracted a causal link between the variation in the 
histogram and the arrows (lines 47-49). Variation could occur even when they had not 
acted as agents. Instead the arrows acted as agents through some sort of unknown random 
mechanism. 

One of the difficulties with design experiments is that the researchers are often unable 
to anticipate activity. Indeed, it is these unexpected outcomes that are often the most 
influential in shaping the design in the subsequent iteration. Our probing in lines 35-49 
was certainly unplanned and as such leaves much unanswered. The precise manner by 
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which Tom and Chris arrived at their conclusion remains a little mysterious. Of course, 
the strength of design research is that it allows, indeed encourages, such unexpected 
behaviour and is able to respond later by building such issues into the next design. 

 
4.4. PHASE 4: MODELLING WITH THE ARROWS  
 

Tom and Chris returned to their earlier notion that when the arrows were closer 
together, the chance of a successful throw was increased. They sought to create a realistic 
simulation of a player who, perhaps, was not professional but was pretty skilful. They 
only allowed error on release speed and placed the arrows close together (Figure 11).  

 

 
Figure 11. Tom and Chris began to model a skilful but not professional player. 

 They used these values for their parameters. 
 

After 93 throws, they looked at the graphs (Figure 12). The researchers were interested in 
how the two boys interpreted the histogram of release speed.  

 
(50) Res: When he missed, why did he miss? 
(51) Chris Because the speed wasn’t enough. 
(52) Tom: Most of the reds are at the lower side.  

 
 

 
 

Figure 12. Tom and Chris produced this 
graph after 93 throws. 

  
 

Figure 13. Tom and Chris were 
surprised to see two green (lighter) 

areas. 
 

The researchers asked what would have happened if the player had been less skilful. 
Tom and Chris predicted that the red (darker) and green (lighter) areas would be 
swapped. It is difficult to understand what they meant by this but we think they meant 
that the red bars would be higher since there would be more misses (near to the height of 
the green bars in Figure 12) and the green bars would be lower (near to the height of the 
red bars in Figure 12). They did not refer to the spread of the graph. 

They set the experiment up so that the arrows on the speed slider were wider apart 
than in Figure 11. After 225 throws, they looked at the graphs. Tom and Chris admitted 
some surprise at the speed histogram (Figure 13). 
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(53) Res: Is that what you expected?  
(54) Tom: Not really… though there’s lots of reds. It’s kind of what I expected. I don’t 

know… I don’t know… it is kind of what I expected. There’s a green there. I 
don’t know why.  

 
The green bar on the leftmost part of the histogram was a surprise to the boys though they were 
not surprised to see much more red than green since they knew that this player was less skilful. 
The researchers probed further. 

 
(55) Chris: I think that green area bit will be where he hit off the side (referring to the 

more central green area) and that (referring to the single green bar) will be 
where he got it in straight away.  

(56) Res: Ah, so that’s why there are two separate areas of green, and why do you think 
the higher one is where he hit the backboard?  

(57) Chris: Because there’s more of it to hit… more area. 
 

 

 
Figure 14. Did Chris’s prediction that the results would be more to  

the left fit the speed histogram shown here? 
 

Chris was able to explain the bimodal green distribution in terms of what he had 
witnessed in the simulation. The larger spread had in fact allowed the possibility of two 
distinctive ranges of value of speed that would generate successful throws. (Since then 
the researchers have found that it is possible to create situations in which there are four 
distinctive success regions since occasionally it is possible to score after the ball has 
bounced on the floor!) 

 
5. DISCUSSION 

 
5.1. SUMMARY 

  
We should like to begin by summarising the four phases described above. In phase 1, 

Tom and Chris worked in an entirely deterministic fashion. They were comfortable with 
the idea that the path of the ball would be affected by the velocity and position of the 
throw. They were at ease in changing those parameters in order to determine a path in 
which the ball moved directly into the basket. This is evidenced by the brief time (about 
two minutes) needed to generate successful scores. Subsequently during this phase, Tom 
and Chris observed variation in the graphs though this was not randomly generated but 
the result of they themselves changing the values of the variables during the running of 
the simulation. We believe this appreciation enabled them to create a connexion between 
the variation in the histogram and causal actions in the simulation. During this phase, the 
agent of change was, of course, the boys themselves. 
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In phase 2, we used realism as an excuse to introduce the notion of error. As reported 
above, there was in fact some confusion over our use of this term as the boys initially 
expected that the computer would report an error, perhaps the ball would be somehow 
thrown incorrectly. This confusion though was transient. What was less transient was the 
sense-making process involved in gaining mastery over the arrows. Tom and Chris 
explored the arrows non-systematically, changing values of the parameters for variables, 
which also had error set as on. When they looked at the graphs, they believed that the 
variation was due to the changes that they had made. In this phase, they did not tend to 
attribute variation to randomness. 

Phase 3 was marked by three key insights. First, they recognised that the throws were 
being chosen randomly from values between the two arrows. Though this is not exactly 
correct, since the arrows represent values roughly two standard deviations above and 
below the mean if the arrows are symmetrically placed around the handle, it is a 
reasonable understanding of the situation. Secondly and almost simultaneously they saw 
the arrows as agents of the variation in how the player threw the ball in the simulation. 
Indeed, they articulated this relationship rather concisely, “When the arrows are close 
together, it’s got more of a chance of going into the net.” We see this statement as a fine 
example of what Noss and Hoyles (1996) have called a situated abstraction, a heuristic 
that characterises the general behaviour of certain phenomena within a specific system. 
Thirdly, Tom and Chris were able to connect that relationship to the histograms. They 
were able to discuss how the variation in the histograms was itself caused by the arrows, 
thus co-ordinating the causal relationships between the simulation, the arrows and the 
graphs. 

In phase 4, Tom and Chris began to use the co-ordinated understanding of the causal 
role of the arrows to model distributions. They saw this in a situated way. Their aim was 
to simulate a professional level player or one who was rather less skilful, and they set 
about that task by moving the arrows nearer or further away from each other. To their 
surprise, they encountered a bimodal distribution but were able to explain this in terms of 
the distinctive ways in which a player might throw the ball into the basket, namely 
directly or off the backboard. 

 
5.2. CAUSALITY AND THE TWO PERSPECTIVES ON DISTRIBUTION 

 
We began with the conjecture that we would be able to build an environment that 

enables the student to appreciate the limited explanatory power of causality to capture the 
essence of local variation. At the same time, we ventured that this environment would 
allow students to use causality to articulate features of distribution. 

In fact, we have demonstrated, in Phases 1 and 2, the potential to use notions of skill-
related error in a simulated sports context to perturb thinking away from a deterministic 
mindset towards one of randomly occurring events. Furthermore, in Phases 3 and 4, we 
have demonstrated how the sliders and arrows can become agents of change, in effect 
replacing the human agent. Moving the slider changes the position of the distribution. 
Moving the arrows changes the spread of the distribution. These ideas are articulated in 
situated ways such as “when the arrows are close together, it’s got more of a chance of 
going into the net.” We note the deterministic nature of this situated abstraction. While at 
the micro-level, causality is shown to have limited explanatory power, at the global level, 
causality can be harnessed to articulate the relationship between the parameters in the 
model (average, spread) and the shape of the distribution. 

We regard this paradox of seeing the limitations of causality at one level while 
recognising its power at another level is at the heart of co-ordinating the two perspectives 
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on distribution. We asked whether and how do students co-ordinate the data-centric and 
modelling perspectives on distribution. We are not able at this stage of our research to 
elaborate this aim to our complete satisfaction but we believe that insights into the role of 
causality are significant. We conjecture that as students pay attention to the sliders and 
arrows they are considering the modelling perspective on distribution, though of course 
they would not articulate it in that way. The aphorism “without distribution, there is no 
variation” regards distribution as the agent of variation and in effect comments on the 
ontology of distribution. We have tried to instantiate that perspective on distribution in 
the virtual world by offering students direct manipulation over the generational powers of 
distribution through instantiations of average and spread. In contrast, when students pay 
attention to the emerging data, they are considering the data-centric perspective on 
distribution. 

In this sense, we find support in this study for the model proposed by Bakker and 
Gravemeijer (2004) in which distributions can be read from or towards the collection of 
data. However, whereas Baker and Gravemeijer refer to the student moving bi-
directionally between the collection of data and a conceptual entity, we portray the 
journey as between a modelling and data-centric perspective. For us, the conceptual lies 
in the co-ordination of these two perspectives. Indeed, we wish to emphasise the equal 
status of those two perspectives. 

Nor is this difference in emphasis merely playing with words. We believe it has 
teaching implications. There is much excitement about EDA as a modern method for 
exploring statistics. We share much of that excitement. However, the approach places 
emphasis upon a data-centric perspective and so far has not offered a coherent statement 
about how students might abstract from that perspective a rich concept of distribution, 
which co-ordinates both modelling and data-centric perspectives. Our studies are 
suggesting that the modelling perspective may need to be given equal status if such a co-
ordination is to be encouraged. 

Our data so far suggest that causality may be acting as the co-ordinating agent since, 
not only is it an idea that feels comfortable to students, but it also plays a critical role in 
helping them to make sense of the relationship between the parameters of the model and 
the shape of the data. If our ongoing design research continues to support this finding 
(which in the spirit of design research now becomes a conjecture to be tested in the next 
iteration), it throws new light on earlier research. The claims that centre around the role 
of causality in making sense of the stochastic are to some extent out of line with common 
thinking, which tends to make clear and distinct separations between the two. For 
example, Piaget and Inhelder (1975) portray randomness as inconceivable within 
operational thinking, at least until resolved by the invention of probability at a later stage 
of development. One of consequences of phenomenalisation (Pratt, 1998), turning 
mathematical ideas into quasi-concrete objects (Papert, 1996), is that mathematical 
concepts can be expressed in causal terms through the use of situated abstractions, as we 
have seen in this study. Even it seems statistical ideas, apparently separated from the 
deterministic world, are accessible to some extent through causal meanings. 

We believe the role of causality in bridging the two perspectives on distribution may 
also have teaching implications. Fischbein (1975) has proposed that some of the difficulty 
that students have with probabilistic ideas is at least reinforced by a curriculum that 
emphasizes the deterministic. Indeed, commenting on this assertion by Fischbein, 
Langrall and Mooney (2005) state, “Children (as well as adults) need to recognize that 
situations involving chance can be examined and described logically and rationally” (p. 
115). If it is true that causality plays the role we are suggesting, the key may lie not so 



  

 

85 

much in reducing the emphasis on determinism as harnessing the power of causality 
towards the teaching of probability, perhaps through the use of technology. 

 
5.3. LIMITATIONS 

 
The reader must consider the limitations of this research to elaborate the conjectures 

and research questions. We have reported in some detail only on one pair of students, the 
clearest illustration of the emerging ideas. Even had it been possible to elaborate the 
activity of all three pairs, the findings must be regarded as tentative and in a sense 
interim. We may have, of course, further evidence after the following iteration but design 
research does not always follow such a smooth path. 

It is quite feasible that the role of causality is directly linked to the virtual nature of 
the setting for this study. Perhaps it is only possible, or at least far simpler, to instantiate 
these ideas in a technological environment where it is possible to phenomenalise 
mathematical notions. It is reasonable then to suppose that access to the ideas is 
understood through the manipulation of the mathematical concepts as articulated through 
situated abstractions that link causally the inputs and outputs on screen. This is a 
limitation in so far as we can no more claim that our findings relate to the co-ordination 
of the two perspectives on distribution in other settings than can other researchers, who 
unavoidably work in particular settings, though sometimes ill-advisedly in our opinion, 
ignore the critical role of setting in abstracting. (See Pratt & Noss, 2002, for detailed 
elaboration of this issue.) 

 
5.4. IMPLICATIONS FOR FURTHER RESEARCH 

  
We have discussed data from a fairly early stage of our work-in-progress. Although 

we have moved through two previous iterations in order to reach this design, we 
recognise there are some further design changes to be made. Nevertheless, we believe our 
results so far indicate support for our conjecture that it is possible to design an 
environment in which students’ well-established causal meanings can be exploited to co-
ordinate data-centric and modelling aspects of distribution. Tom and Chris began to 
appreciate how not only might they themselves be agents of variation, but also how 
randomness, instantiated in the form of the quasi-concrete arrows, can create histograms 
in which variation is apparent. In this sense, randomness might become understood as 
reality once removed. What we have called “letting go of determinism” might be seen as 
delegating control to a quasi-concrete object that exercises that power through random 
effects. 

It is in the nature of design research that the researchers gradually become sensitised 
to the ecology of the domain being investigated. We now feel that we have gained a 
handle on how to support the use of causal meanings in understanding distribution. In that 
respect we are close to having a design which can be used systematically to test out that 
conjecture. 

• We shall remove the confusion introduced by the term, error. In the next iteration 
we shall simply refer to the arrows and explore what the students make of their 
role. 

• We shall explore in more detail the notion of agency. We expect that agency will 
become an analytical category varying at least across human, slider and arrows. 

• We intend to introduce a graphical representation of the modelling distribution 
accessed by clicking on the relevant variable such as release angle or speed. We 
conjecture that access to both the modelling distribution and the data-centric 
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distribution will enable us to explore more systematically some of the issues 
described above that still appear relatively mysterious. 

• The introduction of a graphical representation of the modelling distribution 
allows us to introduce a new form of agency. We will hope to allow the students 
the facility to edit the modelling distribution as a means of transforming the 
modelling distribution directly but the data-centric distribution indirectly. We ask 
how will students articulate the chains of agency and how will that impact their 
co-ordination of the two perspectives on distribution. 

Thus, the above outlines our own research programme for the near future. There are 
however important research questions which our programme will not address. In raising 
the idea that causality may be a significant agent in constructing a bridge between the 
data-centric and modelling perspectives, we acknowledge at the same time the possibility 
that technology is playing a key role in this process. There is fascinating research to be 
done in exploring the role of causality when other materially-based methods of 
supporting the co-ordination of the two perspectives on distribution are deployed. 

There is much current interest (for example, Pfannkuch, 2005) in researching 
informal inference. (Informal inference is to be the focus of the fifth conference on 
Statistical Reasoning Thinking and Literacy to be held at the University of Warwick, 
August 2007.) EDA is developing interesting pedagogic approaches towards informal 
inference but we ask whether students can develop an appreciation of the robustness or 
power of their inferences without constructing a modelling perspective alongside their 
data-centric perspective. We see this question as one that should tax researchers of 
informal inference. 
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ABSTRACT 

 
This exploratory study, a one group pretest-posttest design, investigated the 
development of elementary preservice teachers’ understandings of distribution as 
expressed in the measures and representations used to compare data distributions. 
During a semester-long mathematics methods course, participants worked in small 
groups on two statistical inquiry projects requiring the collection, representation, 
analysis and reporting of data with the ultimate goal of comparing distributions of 
data. Many participants shifted from reporting descriptive exclusively to the 
combined use of graphical representations and descriptive statistics which supported 
a focus on distributional shape and coordinated variability and center. Others gained 
skills and understandings related to statistical measures and representations yet 
failed to utilize these when comparing distributions. Gaps and misconceptions in 
statistical understanding are discussed. Recommendations for supporting the 
development of conceptual understanding relating to distribution are outlined.  

 
Keywords: Statistics education research; preservice teacher education; distribution; 
statistical inquiry, data comparison, teacher knowledge 
 

1. INTRODUCTION 
 
The teaching of statistics in elementary schools has received increased attention and 

priority over the past three decades. The release of the Curriculum and Evaluation 
Standards for School Mathematics by the National Council of Teachers of Mathematics 
(1989), which incorporated a strand focusing on data analysis and probability, and the 
publication of the Guidelines for the Teaching of Statistics K-12 (1991) by the American 
Statistical Association, are two important landmarks. The increased focus on elementary 
level data analysis and statistics is evident in the proliferation of curricula designed 
specifically for younger students, such as the Used Numbers Project (Technical 
Education Research Centers and Lesley College, 1989), Mathematics in Context 
(National Center for Research in Mathematical Sciences at the University of 
Wisconsin/Madison and Freudenthal Institute at the University of Utrecht, 1997-1998), 
the Investigations in Number, Data, and Space (TERC, 1998), and the Connected 
Mathematics Project (Lappan, Fey, Fitzgerald, Friel, & Phillips, 2002). We also see 
computer software, minitools, and tutorial tools developed for elementary and middle 
grade students, such as Tabletop and Tabletop Jr. (Hancock, 1995; Hancock, Kaput & 
Goldsmith, 1992), Statistical Minitools (Cobb, Gravemeijer, Bowers, & McClain, 1997), 
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Authentic Statistics Stack (Lajoie, 1997), and Tinkerplots (Konold, 1998; Konold & 
Miller, 2001).  

The focus of recent curricula and software has been on the notion of distribution and 
how to support students in understanding distribution. One area which is lacking, 
however, is an analysis of the ways in which teachers understand and are prepared to 
teach fundamental notions associated with distribution. 

 
2. SCIENTIFIC BACKGROUND 

 
2.1.  DESCRIBING DISTRIBUTION 

 
Distribution refers to the arrangement of values of a variable along a scale of 

measurement resulting in a representation of the observed or theoretical frequency of an 
event. Descriptive statistics are indices of distribution: they summarize complex data into 
measures that can be compared against each other to ascertain the nature of a dataset, and 
the degree to which two or more datasets are similar. Central elements in the 
development of a concept of distribution are notions of central tendency, variability, 
symmetry (skew) and relative frequency (kurtosis), each of which can be modeled using 
descriptive statistics.  

One way to get a handle on distribution is through identifying landmarks and trends 
(Friel, Mokros, & Russell, 1992) in data. Taken together, identifying data landmarks 
(outliers, gaps) and generating measures that index certain characteristics of the data (for 
example, measures of center and variability) provide insights into properties of any given 
distribution. While descriptive statistics are central components of any treatment of 
distribution, a focus on them alone can, as cautioned by Makar and Confrey (2005), 
“aggravate the focus on individual points” (p. 28). Graphical representations serve as 
useful tools to communicate aspects of a distribution as they facilitate a focus on aspects 
of the data that may be missed with the use of descriptive statistics alone. Graphics have 
been described as revealing data (Tufte, 1983) and as being superlative to statistical 
computations in revealing information about data. However, little is known about the 
ways in which learners use graphical representations to communicate aspects of a 
distribution. 

Research reveals an emphasis on measures of central tendency as a means to describe 
data distributions resulting in an overemphasis on centers and the corresponding neglect 
of the variation found within a given distribution (Shaughnessy, 1992, 1997). Variation is 
a critical component of, and inextricably linked to, the concept of distribution and has 
been found to play a central role in children’s thinking (Cobb, 1999; Konold & Pollatsek, 
2002; Watson & Kelly, 2002). An understanding of distribution requires an awareness of 
the propensity of a variable to vary and comprehension of how that variability contributes 
to the notion of the distribution as an aggregate rather than a collection of individual data 
points.  

 
2.2.  USING DATA COMPARISON TO SUPPORT THE DEVELOPMENT OF 
UNDERSTANDINGS RELATED TO DISTRIBUTION 

 
A critical statistical notion for learners is that of dataset as an entity, in other words 

developing a ‘statistical perspective’ (Konold, Pollatsek, Well, & Gagnon, 1997). 
Holding a statistical perspective requires a focus on the dataset as a collective rather than 
focusing on individual data values. By focusing on comparing distributions students are 
provided with a conceptual structure that facilitates a focus on aggregate (Cobb, 1999). 
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More specifically, when comparing datasets the activity leads to consideration of the 
shape, center and variability of a distribution of data, in turn, providing a context for 
examination of the distribution as an entity.  

Another reason for engaging students in the activity of comparing datasets is due to 
the focus on variability that is nurtured. Unexplained variation in data creates noise and 
the primary purpose of many statistical techniques is to unearth the signal within the 
noise (Konold & Pollatsek, 2002; Wild & Pfannkuch, 1999). Comparing datasets requires 
a learner to examine the variation both within and between distributions of data. This 
requires identifying signals or patterns within a dataset worthwhile of attention, and 
comparing these signals against those emitted by the comparison dataset. Identification 
and communication of these signals reveals aspects of an individuals’ understanding of 
the notion of distribution.  
 

2.3.  PRESERVICE TEACHERS’ UNDERSTANDING OF DISTRIBUTION 
 

Given the relatively recent election of data analysis as a focus of mathematics 
instruction at the K-12 level, it is conceivable that many teachers may be teaching 
statistical content that they themselves have little experience with as learners. Lajoie and 
Romberg (1998) comment that statistical concepts may be as new a topic for teachers as 
for the students they teach and recommend that “teachers must be provided with 
appropriate preservice and in-service training that will give them the knowledge base 
they need to feel comfortable teaching about data and chance” (p. xv). 

Much of the current research focuses on preservice teachers’ understandings of 
measures used to index distributions of data (Canada, 2004; Gfeller, Niess, & Lederman, 
1999; Heaton & Michelson, 2002; Makar & Confrey, 2002). Many of these studies 
converge on the same finding – preservice teachers’ understanding of measures of center 
tends to be procedural rather than conceptually-based. Leavy & O’Loughlin (2006) report 
on elementary preservice teacher’s fluency in using the mean algorithm but identified 
gaps in conceptual understanding. Indicators of poor conceptual understanding were lack 
of understanding of the mean as a ratio, difficulty solving weighted means problems, and 
poor analog knowledge of the mean (a concept akin to Skemp’s (1979) concept of 
relational knowledge). The prevalence of procedural understandings is further supported 
by Gfeller, Niess, & Lederman’s (1999) finding that computational algorithms were the 
most prevalent method used by preservice teachers for solving problems related to the 
mean.  

Studies examining variability indicate that the provision of coherent and meaningful 
statistical activities can lead to gains in understandings of variability. Canada (2004) 
found that following activities involving chance and computer-generated simulations, 
preservice teachers’ predictions of variability moved from expectations of way too little 
or too much variation to more realistic expectations of variation. It has also been found 
that preservice teachers are more likely to use measures of variability to represent a 
distribution if the data are presented graphically (Makar & Confrey, 2005). This suggests 
that when choosing methods to represent a distribution of data, merely presenting the data 
graphically may draw attention to the variability of the data and make variability “ ... 
perhaps more compelling than any measure of center” (pp. 36-37). Other advantages of 
using graphical representations are identified by Hammerman and Rubin (2004) who 
reveal that having access to a visual representation of a distribution may influence the 
value(s) that one chooses to represent that distribution. The authors comment on the low 
occurrence of comparisons based on means or other measures of central tendency and 
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assert that “seeing a distribution makes it harder to accept a measure of center, especially 
a mean, as being representative of the entire distribution” (pp. 36-37). 

A recent analysis of the literature revealed that only 2% of published research in 
mathematics education was devoted to probability and statistics (Lubienski & Bowen, 
2000). Within this group, there is a visible absence of studies focusing on understandings 
of elementary preservice teachers, resulting in an inadequate picture of the preparedness 
of our elementary teachers to teach this new and emerging field of study. Unlike their 
secondary counterparts, elementary teachers are not expected to possess as strong or as 
broad a foundation in mathematics. However, given their role as primary mathematics 
educators of young children, a study of preservice elementary teacher’s mathematical 
understanding is warranted. Subject matter knowledge in the preparation of teachers has 
been identified as a fundamental component of teacher education programs (Ball & 
McDiarmid, 1990). We now understand that poor mathematics content knowledge may 
lead to an overemphasis on limited truths and procedural rules (Stein, Baxter, & 
Leinhardt, 1990), inaccurate explanations (Borko, Eisenhart, Grown, Underhill, Jones, & 
Agard, 1992), and a lack of understanding of the appropriate representations to utilize 
when supporting the development of rich mathematical understandings in children 
(Borko et al., 1992). These relationships between content knowledge and instructional 
practices make it critical that mathematics teacher educators develop a greater 
understanding of elementary preservice teachers’ statistical understanding.  
 

2.4.  PURPOSE OF THIS STUDY 
 
The purpose of this exploratory study was to investigate the development of 

preservice teachers’ understandings of distribution, expressed in the measures and 
representations used to compare distributions of data. Specific goals of interest were to: 

(i) investigate the approaches used to compare distributions of data. 
(ii) identify the statistical concepts focused on when reasoning about distributions of 

data, and examine the ways in which different understandings of these particular 
statistical concepts support or hinder the description, analysis, and comparison of 
datasets. 

(iii) explore ways to support the development of rich understandings of distribution. 
 

3. METHOD 
 

3.1.  PARTICIPANTS 
 
Twenty-three participants were enrolled in a mathematics methods course in a 

university in the USA, as part of a one-year master’s degree program leading to 
elementary teaching certification. Participants ranged in age from 22 to 55, seven were 
male. All participants held a bachelor’s degree, with majors in Art, Business, Chemistry, 
Computer Science, Criminal Justice, Early Childhood Education, Economics, English, 
History, Psychology, Public Relations, Sociology, and Spanish. Three reported taking 
Advanced Placement Statistics in high school; almost half had no formal coursework in 
statistics.  

 
3.2.  APPROACH 

 
 This study employed a one-group pretest-posttest design and involved collection of 
baseline data or pre-test, an instructional intervention, and a post-test. The study 
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represents a blend of components from two analogous research methodologies: Teaching 
experiment methodology (TEM, Steffe & Thompson, 2000) and the teacher development 
experiment (TDE, Simon, 2000). Using a blend of both methodologies supported the 
documentation of participants’ understandings of distribution on entry to the study, the 
observation of changes in understanding over time, and the focus on the process of 
student learning and the concomitant teacher actions that promoted advances in statistical 
understanding. The study departed, though, from a true implementation of either 
methodology. The dearth of research relating to distribution resulted in the absence of an 
empirical research base from which to inform the construction of hypothetical learning 
trajectories, critical components of Teacher Experiment Methodology (TEM).  

The whole class teaching experiment was conducted over a 15-week semester in 
collaboration with two teachers who were members of the four-person research team. 
Two or more research team members were present in the classroom during teaching 
sessions and were involved in the daily organization and evaluation of classroom 
mathematical practices. It was through juxtaposing these multiple perspectives that we 
gained rich and accurate insights into the development of statistical understanding. 
Weekly meetings of the research team focused around “taken-as-shared” (Cobb, 1999) 
interpretations of classroom activity, taken as shared meanings constructed as a result of 
cycles of construct development that supported the refinement of our own statistical 
knowledge. Meetings were used primarily as contexts within which to share 
interpretations of events, devise contexts in which to test these interpretations, and 
eventually refine and extend interpretations. This researcher-level data analysis supported 
the development of refined understandings of the process of statistical learning in 
addition to providing a focus on the development of teachers and their pedagogical 
understandings, an important component of the Teacher Development Experiment (TDE).  
 

3.3.  DESIGN AND TASKS 
   
 This study was organized in three parts (see Table 1): Pre-test (P), intervention with 
instructional components (I), and post-test (PT). The baseline data collection (P) was 
intended to probe participants’ understandings of distribution. Central to this phase were 
the data collection and representation phases of the bean experiment investigation.  

During the intervention phase (I), instructional activities supported the development 
of statistical reasoning, and made use of two tasks described later in more detail, the 
Beans investigation and Popcorn experiment. Firstly, students worked together to 
compare distributions of beans grown in different conditions. Secondly, several weeks of 
instruction focused on the stages of statistical inquiry and what was involved in moving 
through a statistical investigation (also known as data modeling, see Lehrer & Romberg, 
1996). The foci of instruction were derived from analysis of the pre-test activities and 
related directly to distribution (representativeness, dataset as an entity). In an effort to 
maintain coherence between the areas of instruction, instructional themes were anchored 
within the umbrella concept of ‘carrying out a statistical investigation’. Instruction was 
related primarily to the ongoing statistical investigations with the beans; the ability to ask 
participants to examine and assess their own work facilitated us in highlighting events 
that occurred in participants’ own investigations. In preparation for the instruction, we 
had digital images of participants work (for example, the graphical representations 
constructed to compare datasets) or transcriptions of conversations or comments, which 
we then placed in our power point presentations. These records often became the focus of 
instruction and presented an opportunity for participants to reflect on and assess their 
work in light of research being examined as part of course experiences. The primary 
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topics of instruction are presented on table 1. A third component of the instructional 
phase engaged participants in making journal reflections on statistical understandings 
related to distribution. The fourth component was involvement in focus group discussions 
relating to the strategies and approaches used to analyze bean data.  

Finally, in the post-instruction phase (PT), we examined changes in participants’ 
understandings about distribution. To that end, during the penultimate class session 
participants engaged in the popcorn investigation that involved comparison of the effect 
of refrigeration on the popping of kernels.  

Engaging in statistical inquiry was a critical component of the study. From a 
pedagogical perspective, engaging preservice teachers in statistical investigation provides 
the potential to highlight statistical (and other) issues they may face when approaching 
statistical inquiry in their own classrooms. Secondly, engaging in ‘real life’ statistical 
investigation engages participants in the activities of statisticians and exposes them to 
real world ‘messy’ data. It was our goal that we set up statistical contexts that supported 
prospective teachers in learning ‘statistical concepts in an environment much like the one 
recommended for students – one that is active … involving authentic data, and offering 
plenty of opportunities to build their conceptions through experiences with data’ (Makar 
& Confrey, 2005, p. 30). Research focused on activities surrounding two investigations: 

 
The bean investigation A semester-long statistics research project, investigating 

optimal conditions for growing beans sprouts (Appendix A), was one context within 
which the research was carried out. Participants were presented with an experimental 
design to determine which growing conditions supported the best growth.  

Participants were divided into groups and provided with a bag of 25 lentil beans, a 
solution (lemon or water), a paper towel, a plastic sealable bag, and a card identifying the 
light intensity (light/dark) in which the beans would be placed. There were eight groups 
and four conditions: water/light, water/dark, lemon/light, lemon/dark. Participants were 
instructed to spray the solution on a paper towel, place the bean on the towel, fold the 
towel, and place in the plastic bag. The bags were sealed and placed in the labeled light 
intensity for seven days. The following week the beans were brought to class and the 
sprouts measured and recorded by the groups. Each group was then responsible, over the 
course of the semester, for constructing a hypothesis regarding the optimal condition for 
bean growth and determining what statistical measures or approaches they might utilize 
to test the hypothesis. Each group was instructed to analyze and compare the data 
collected by all eight groups and prepare a presentation of the findings. It was by 
engaging participants in this data comparison scenario that we established the need for 
individual distributions of data to be represented and indexed in a way that required a 
focus on distribution and in turn facilitated the comparison of the distributions. 

 
The popcorn experiment The purpose of the post-intervention statistical 

investigation, the popcorn investigation (Appendix B), was to provide a context similar to 
the bean experiment where participants were once again engaged in a data comparison 
activity. The requirements of the task were similar to those of the pre-intervention task 
thus allowing identification and examination of changes in statistical understanding. 

The investigation involved two samples of popcorn kernels (n=100 in each sample), 
one kept at room temperature and the other refrigerated, being popped in an open-top 
popcorn popper for 4 minutes. The position that each popped corn kernel landed was 
marked on the plastic ‘target sheet’ which had been placed beneath the popper. Groups 
were then presented with the data, asked to examine the distribution, and determine 
whether refrigerating the kernels influenced the distance that they reached when popped. 
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Table 1. Outline of statistical experiences over the course of the semester 
 

Phase Wk Activity Specific (teaching) experiences 
P 4 Bean investigation: 

Setting up the 
experiment–planting 

See section 3.3 

P 5 Bean investigation: 
Data collection–
measuring beans 

See section 3.3 

I 6 Instruction relating to 
asking research 
questions, collecting 
data 

Instruction focused on overview of data modeling 
(Lehrer & Romberg, 1996), supporting children in 
formulating research questions, examples/analysis of 
questions children construct, types of data generated 
from questions, overview of categorical and 
numerical data types, overview of data collection 
methods (surveys, experiments, observations), 
supporting children in choosing appropriate data 
collection methods, identifying and overcoming 
obstacles and common difficulties faced by children 
when collecting data. 

P 7 Bean investigation: 
Data representation 
phase 

See section 3.3 and Appendix A 

I 7 Bean investigation: 
Data analysis and 
comparison 

The session was considered instructional in that 
students were presented the opportunity to learn 
when working in groups. Activity focused on the 
analysis and comparison of datasets.  

I 9, 
10 

Reflection on 
statistical 
understandings arising 
from the bean 
experiment 

Revisiting the stages of data modeling in the context 
of the bean experiment: What have we learned? 
What difficulties did we face (procedural, content 
understandings etc.) and how might this apply to 
classroom teaching of data analysis and statistics? 

I 11 Focus group 
discussion relating to 
the strategies and 
approaches used 
during the bean 
investigation 

The following are examples of questions asked 
during focus group discussion which focus on 
statistical misconceptions identified in weeks 1-10: 
What do descriptive statistics not tell us about a 
distribution? What does standard deviation mean in 
the context of a distribution of data? What is the 
relationship between the mean and sample size of the 
distribution? What role did zero values play when 
comparing distributions of data? Describe why some 
groups found the mean of group means? Why did 
others not? When are graphical representations 
useful? When/why might a box and whisker plot be 
used to represent a distribution? What does relative 
size of quartiles in a box and whisker plot 
communicate about the data? When/why might you 
use (or not use) a scatter plot?  

I 11 Instruction relating to 
representing data 
(using graphical 
representations), 
analyzing and 
comparing data 

Instruction on representing data focused on 
advantages of using graphs, guidelines from research 
about elements to attend to when constructing 
graphs, relationship between graphs and the data 
they represent (categorical/numerical), features of 
specific graphical representations and inherent 
advantages and disadvantages of their use (tables, 
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pictograms, pie charts, bar graphs, line plots, stem 
and leaf plots, box and whisker plots), examples of 
graphs constructed by children, common errors 
children make when constructing graphs, 
categorizing representations of data.  
     Instruction on analyzing and comparing data 
focused on defining distribution, important features 
of distributions, examining distributional shape 
(landmarks, bumps, gaps, outliers), locating 
measures of center on a distribution of data, 
examining models of the mean (leveling out, 
balance, fair share), locating indicators of variability 
on a distribution, thinking about skew when 
examining distributions, engaging in data 
comparison (Ben-Zvi, 2003; The “basketball 
problem,” McGatha, Cobb & McClain, 2002), 
examining children’s thinking about distribution, 
common errors children make when using, 
generating, and describing measures of center and 
variability. 

I 13 Instruction on 
graphical 
representations; 
measures of central 
tendency and 
variability; means and 
weighted means 
 
 

Instruction on graphical representations focused on 
revisiting features of graphical representations (Friel, 
Curcio & Bright, 2001), relationship between box 
and whisker plots and variability, what is a quartile?, 
distinguishing between univariate and bivariate data, 
scatter plots and the data they represent, why we use 
particular graphs, thinking about our bean data and 
graphs we used to represent the data (error analysis).  
     Instruction on measures of central tendency and 
variability distinguishing between measures of 
central tendency, what research tells us about 
children’s understanding of the mean and median, 
features of the mean (e.g., Strauss & Bichler, 1988), 
revisiting models of the mean, identifying when 
measures of central tendency are most appropriate, 
examining use of the mean in the bean data 
experiment, identifying and indexing variability, 
representing variability using graphs, looking at use 
of variability in the bean experiments. 
     Instruction on the weighted mean focused on 
what is a weighted mean, examining the elevator 
problem (Pollatsek, Lima, & Well, 1981), analysis of 
responses on weighted means problems (Leavy & 
O’Loughlin, 2006), examining the GPA problem 
(Pollatsek, Lima, & Well, 1981), analysis of 
responses on the GPA problems (Leavy & 
O’Loughlin, 2006), thinking about the bean data and 
weighted means. 

PT 14 Popcorn investigation: 
Representing, 
analyzing, and 
comparing data 

See section 3.3 and Appendix B 

PT 15 Self report on growth 
in understanding 
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3.4.  DATA SOURCES 
 
Several types of data were collected: videotape data, observational data, audio taped 

data of small group interactions, and student artifacts. Weekly sessions were videotaped. 
During statistical investigations two cameras were used: One focused on the whiteboard 
at the front of the room (where groups presented the outcomes of their investigation and 
where the instructor was located); the other moved between groups and focused on 
particular students during large group discussions. Teacher and researchers observations 
were recoded during the weekly sessions. There were always a minimum of two 
researchers in the room during each session, and for four weeks three researchers were 
present. The third data source was audio taped records of small group conversations 
during the investigations. Student artifacts were the fourth data sources and took several 
forms: student journals focusing on the development of statistical understanding, small 
group reports completed during the bean and popcorn investigations, and large 
presentation posters used at the culmination of the statistical investigations. 
 

3.5.  ANALYSIS OF DATA 
  
In line with TEM and TDE there were two cycles of analysis: ongoing and 

retrospective analyses. Following each teaching episode, researchers examined the data 
and met as a group to discuss interpretations of classroom events. Each researcher had 
responsibility for examining in-depth a subgroup of students over the course of the 
semester. Discussion focused primarily on the types of understandings about distributions 
that were evident from videotape and audiotape recordings of participant activity during 
the class session. Each researcher shared the findings of her analysis and observations 
and when necessary situated the activity in relation to previous class sessions. The group 
then identified themes that emerged from the individuals’ analysis of the data and 
constructed assertions relating to the themes. Individual researchers then revisited the 
data relating to their subgroup of participants with a view to finding supporting or 
contradictory evidence for the assertions. If the assertion was found to hold for a number 
of subgroups the cumulative class data were revisited in an effort to seek out evidence to 
triangulate the data. In cases where there was no supporting evidence we constructed a 
task or activity to present in the next teaching session (or in a focus group) that would test 
the assertion. On occasions where misconceptions relating to distributions were 
identified, statistical tasks were constructed to address misconceptions. It was through 
these cycles of hypothesis construction, data mining, triangulation, and hypothesis testing 
that understanding of the participants’ understandings of distribution were developed. 
Figure 1 illustrates the interaction between data collection, analysis teaching episodes. 
 

TEACHING EPISODES 
Week 1   ………………………………………………………. Week 15 
 

DATA COLLECTION 
 
 

DATA INTERPRETATION 
 

Figure 1. The interaction between data collection and data analysis in the context of a 
teaching experiment. Adapted from Lesh and Lehrer (2000). 
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Retrospective analysis at the end of the study involved re-examining participant 
activity over the entire semester. This allowed for a reanalysis of the findings and 
identification of supporting and contradictory evidence for the major claims arising form 
the ongoing weekly analysis of data. 
 

4. RESULTS 
 

4.1.  INITIAL UNDERSTANDINGS RELATING TO DISTRIBUTION 
 

 Engaging in the bean experiment (Appendix A) provided insights into the types of 
distributional understandings held by preservice teachers. Participants compared lengths 
of germinated beans and presented their conclusions for feedback from their peers.  

A lack of attention to distributional features of the data was apparent in the 
dominance of numerical methods for making data comparisons. Three of the groups (A-
C) used descriptive statistics, alone, on which to base judgments about data. While use of 
the mean is appropriate as a comparative measure, absolute reliance on descriptive 
statistics is limiting as they provide merely one perspective on the data, that of centers, 
and do not take into account other features of the data (e.g., shape, variability). These 
groups did not invoke the use of graphical representations as a way to explore the datasets 
nor did they provide alternative perspectives not immediately apparent through the use of 
descriptive statistics. Group A’s justification of their data comparative method follows: 

 
Our hypothesis was that the beans in lemon water would grow longer than the ones in 
water. We compared means because it sort of cancelled out the real high ones and the 
real low ones [data values representing bean heights] but incorporated every single 
piece of data. The main limitation is because there are high and low values they skew 
the data. … our answer was the sprouts in water were 20.2mm and in lemon water 
were 1.7mm so we were wrong in our hypothesis.  

 

 
 

Figure 2. Illustration of Group A’s approach to comparing datasets 
 

The remaining five groups used a combination of graphical representations and 
descriptive statistics as data comparative tools. Interestingly, these students who used 
graphical representations in the pre-assessment did not have more statistical experiences 
with data prior to taking the course than their peers who did not construct graphs. 
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Examination of the graphical representations constructed by these groups, however, 
reveals that the graphs were used merely to illustrate summary statistics rather than 
illustrate distributional features. Four of these five groups used bar charts to represent 
group means resulting in a representation of subgroup means, rather than presenting a 
picture of the distribution of values along a scale of measurement (see Figure 3). The 
following is the response of Group D: 

 
We were interested in how lemon or no lemon affected the growth of beans in light or 
in the dark. Our hypothesis was that dark and lemon would yield the longest beans so 
… we were close in the sense that lemon was up there as number 2 and water and 
dark were number 1. So why did we do a bar graph? Cause it was easiest to show 
everything. So we got the averages for the four conditions. We didn’t count zero 
cause they didn’t germinate. The limitation is that outliers skew the average. 
 

 
  

Figure 3. Illustration of group D’s use of bar charts to illustrate sub group means 
 
There was evidence of an attempt to represent the variability of the data. This is 

illustrated in the graphical representation of group G (see Figure 4). The representation 
resembles a double bar graph consisting of eight groups arranged in pairs; each pair 
corresponds to the two sets of data collected for each of the four conditions. The height of 
each bar represents the mean height of beans within each group (rather than the frequency 
of elements within the group). The line superimposed on each bar represents the range of 
heights of beans within each sample, thus the ‘whiskers’ represented the lower and upper 
limits of bean height. Thus the graphical representation was used as an instrument to 
report descriptive measures with the bars reporting group means and the whisker lines 
reporting the range of the data; indicating an attempt to coordinate both center and 
variability. Examination of group G’s justification for inclusion of the range line reveals 
that they decided to report the variability given the large discrepancies in the sample 
statistics for beans grown under the same conditions. It seems that the unexplained 
variation in the measurement of bean heights was creating so much noise (Konold & 
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Pollatsek, 2002; Wild & Pfannkuch, 1999) that it was causing the group to refute the 
presence of a common signal across samples representing identical conditions. As Stan 
reported: 

 
We decided to go with a double bar chart cause of all the inconsistencies in 
measurement. So we did 8 groups and not 4 we also decided to do a box and whisker 
plot to show the full range … it is the orange line on the bar graph. 

 

 
 

Figure 4. Illustration of Group G’s attempt to coordinate variability and center  
 
 Analysis of pretest data did not reveal a relationship between participant’s 
experiences with statistics prior to the study and the nature of the analyses carried out in 
the pretest. 
 

4.2.  END-OF-SEMESTER UNDERSTANDINGS RELATING TO DISTRIBUTION 
 
We shift now to present some findings related to how groups coped with the Popcorn 

experiment, which as explained earlier was used to examine post-intervention 
performance of the groups. As compared to findings at the beginning of the semester 
outlined in the previous section, six of the groups shifted to using graphical 
representations to provide a picture of the distribution of data values. Groups reported 
that the selection of graphical representations to compare popcorn data was based on the 
capacity of the representations to highlight distributional features of the data, in contrast 
to the graphs used at the beginning of the semester which functioned merely to represent 
group means. This attention to global patterns in distributions of data was evident in the 
use of representations that highlighted distributional features in the data in particular the 
use of stem and leaf plots by five of the groups, and to a lesser extent box and whisker 
plots which were utilized by one group. The increased use of representations did not lead 
to the neglect of descriptive statistics. Figure 5 shows the data comparison strategy used 
by one group. Reporting the sample means and the range on the stem and leaf plots 
maintained the focus on measures of center and variability evident at the beginning of the 
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study. As compared with their previous strategy (see Figure 3) this response represented a 
coordinated and detailed approach to analyzing data.  

 

 
 

Figure 5. A comparison of distances by graphically illustrating distributional features in 
conjunction with the calculation of measures of central tendency 

 
Tom: We chose this [stem and leaf plot] cause it gives you a way to see all the 

points at the same time and it gives you a sense of the distribution while 
getting all the data points there. And em … we thought that it was pretty 
representative. We predicted our mean would be higher for the room 
temp popcorn because of the way the tail skewed and we were right 
about that (pointing to the means)… and although the refrigerated 
popcorn did get a better yield it seems like the room temp popcorn did 
fly a little farther.  

Barry: Melissa and I talked a lot about the kind of analysis we could use to 
think about the distribution curve. ... Well the curve for refrigerated has 
a bulk (pointing to the values at 10-40mm) where the curve for room 
temperature doesn’t seem to have a bump it seems to be a much 
smoother curve. And we noticed that the number of kernels that popped 
even though it was different it wasn’t all that big of a deal because the 
sizes were large enough that we could see what the curve would do if 
there were a ton more data points. You could kinda visually ... kind of .. 
visualize what the data would look like … how things would fall into 
that distribution curve. 

R:  During the discussion, you were trying to decide to do a box and 
whisker plot and you decided not to. Can you explain why? 

Barry: Cause even though I like box and whisker it is difficult for me to 
verbalize exactly what that [box and whisker plot] represents. And I like 
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how I can look at it and say “okay that’s cool” but to try and make 
descriptions about what that represents is difficult.  

Mia: With stem and leaf plots you can see gaps and bumps in the data. While 
it looks nice on the box and whisker to see where medians lie against 
the boxes, is difficult to see what numbers are in between the quartiles 
and see how the distribution looks. 

Barry: Even though in box and whisker you can see that the quartile is large 
you can’t see why. When you look at the stem and leaf you can see it is 
because 60 has the bulge. With the double stem and leaf you can see 
there is a bump coming out that skews the data one way or another .. 

 
While increased attention to the distributional features of data is a welcome finding, 

examination of the specific groups who used representations reveals a disconcerting 
pattern. Five of these groups had used graphs in the bean experiment, while the sixth 
group had used means. Two of the three groups who relied exclusively on descriptive 
statistics at the end of the study to make comparisons had not used graphs to represent the 
bean data in the initial weeks of the study. This finding indicates the development of a 
broader understanding of the functionality of graphical representations, but only for those 
who were already inclined to use such representations. Those who set out using 
descriptive statistics exclusively demonstrated stability in strategy use. Thus we were 
successful in helping participants understand the differential limitations and advantages 
of particular graphical representations, as indicated in their reflections at the end of 
semester; however the stability in strategy use for those who used descriptive statistics 
indicates that for these participants we were less successful in communicating the 
functionality of graphical representations as exploratory data analysis tools.  

Figure 6 shows the data comparison strategy used by Group A who had used similar 
descriptive statistics to support their argument in the bean investigation (see Figure 2). 

The following transcript is Group A’s reasoning for not constructing a graph: 
 

Valerie: Cause the question was more about distance and you can’t compare 
individual kernels, we weren’t concerned with how they clustered. 
That’s why we didn’t do a graph. It was more in terms of the average 
distance that we looked at it. We didn’t do the graph .. cause frankly the 
double stem and leaf is very messy for me. I understand you can see the 
bell curve but em it is very … it is too much. I’d prefer more concise 
data and more gearing towards the average. If it had asked perhaps how 
would you show the data or …  

Robyn: How would you visually represent it? 
Anne: Right. 
Valerie: That’s why we chose average cause the question wasn’t so specific. 

 
 Closer examination of the dialogue indicates that participants in Group A may have 
interpreted the Popcorn task as estimating the average distance from the refrigerated to 
the non-refrigerated kernels. This involves a comparison of averages and does not require 
the construction of a graphical representation of the data. In this case, participants may 
have decided against constructing a graph as it did not represent a useful or efficient 
strategy in the context of this particular task.  
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Figure 6. The use of descriptive statistics to describe a distribution of data 
 
Examination of the reports accompanying the popcorn experiment reveals one 

common theme underlying the choice of descriptive measures: the ability of descriptive 
statistics to include all data values in the comparison. As Group B stated “averages were 
used because it is too difficult or rather impossible to compare individual kernels between 
the two [conditions].” This comment indicates the realization that unequal sample size 
would make a one-to-one comparison of values impossible, and in any event any one-to-
one comparison of values would result in the loss of data (of the larger dataset). The 
upshot of this is twofold. On the positive side, participants understood the mean as a 
proportional measure appropriate to use in comparison of unequal size datasets. On the 
other hand it seems that the group was not prepared, or able, to examine global aspects of 
the distribution. Their comments indicate that a focus on individual data values would be 
the alternative had the datasets been equal in size. Thus it may be that this group was still 
focused on individual values in the datasets rather than possessing what Konold et al. 
(1997) term a statistical perspective.  

When analyzing these groups’ responses across the semester we can see that 
participants have demonstrated growth in several areas. Firstly, they are now attuned to 
sample size, something that they did not consider in the bean experiment. Secondly, their 
choice of descriptive statistics is now grounded in an attempt to include all data values 
particularly given the realization that datasets are different in size. It seems that this 
newfound attention to sample size disparity provided greater support for use of the mean 
and median. Finally, two groups demonstrated some awareness of the limitations of their 
approaches. Following the group presentations, the act of revisiting their own analyses in 
light of the presentations (see Step 5d Appendix A, and Step 4b Appendix B) led them to 
reflect critically on the limitations of not providing a picture of the distribution. The 
following quotes highlight the discomfort that two groups felt with the data reduction that 
takes places with the use of descriptive measures. 
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Group A: After looking at the other groups’ presentations we now see that with 

this method [using means to make group comparisons] we cannot 
determine if there are clusters of distances 

Group C: We liked our method. But the limitation of it [using the mean, median 
and mode] is that it reduces all data into one number. If we had the 
opportunity we would re-do our analysis again because seeing other 
people’s graphical representations, it is much easier to see all data 
represented and to see how much farther it popped in either scenario. 

 
4.3.  OTHER ISSUES IMPACTING UNDERSTANDING OF DISTRIBUTION 
 

The mean as a proportional measure Despite focused instruction on the concept of 
the mean, Amanda posed a question on the last day of class that revealed her difficulty 
understanding the mean as a data comparative measure.  

 
Jay:  Okay then it looks like we’ll just find the means of the refrigerated ones 

and the regular ones. Then we can see if there is any difference between 
the groups. 

Amanda: But if we have different N’s doesn’t each one [popped corn] in the 
smaller set get more significance?  

 
This comment indicates that Amanda is grappling with the issue of how to best 

compare two datasets of unequal sample size. What is evident at the same time is her 
difficulty understanding the mean as a proportional measure. At this juncture, the 
instructors recapped on a conversation held several weeks previously in which particular 
features of the mean were explored and reminded Amanda of the ways in which the mean 
deals with unequal sample size. Amanda’s final comment indicates that she has accepted 
that the mean is a measure that can be used to compare datasets of unequal sample size 
however she is of the understanding that there may be some cut-off point representing 
magnitude in sample size difference when the mean is no longer an appropriate 
comparison measure.  

 
Amanda: I wonder how big does the difference [in sample size] have to be before 

you can’t use the mean to compare them? 
 
 The role of zero values when examining and describing distributions Uncertainty 

regarding whether zero values should be included in calculation of the means for 
particular conditions surfaced during the bean investigation. During the group 
presentations Andrew stated his group had “manipulated” the data so as to generate a 
finding that supported their original hypothesis. In an attempt to further probe this issue, 
the question of whether it was valid and justifiable not to count zeros was posed in the 
focus group discussion.  

 
R:  Andrew, you said you manipulated the data – how did you do it? 
Andrew: We left out all data points that were zero – if we had included them it 

[the subgroup means] would have averaged out differently – 
R:  Did you make the decision ahead of time? 
Maria: I didn’t think it would matter if we counted [the zeros] cause the total 

number was smaller anyway. 
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R:  The number you divided by didn’t count the zeros either? 
Maria: No. 
R:  Is it valid not to count the zeros?  
Maria: It would have skewed the data so badly 
Stan: I would go back to what the original question was that we wanted to 

ask. You may care about those that don’t germinate. But there may be 
another scenario where it wouldn’t matter.  

Andrew: Yeah if you just wanted to find the longest one then yeah those that 
don’t grow don’t matter. 

 
We can see in the transcript a number of understandings related to zero. Andrew 

understands that inclusion of the zeros will change the outcomes of the comparison. 
Whereas Maria’s statement implies the initial belief that not counting zero values would 
not matter given that the denominator of the mean algorithm adjusts to reflect the number 
of values being considered. We see, however, that Maria’s second comment indicates a 
change in her thinking. Her comment on skew indicates that the inclusion of zeros will be 
influential. It was not until Stan commented on the meaning of zero within the context of 
the research question that the groups’ consideration of zero shifted from thinking of zero 
merely as a number devoid of meaning to consideration of zero as a measure within the 
context of the investigation.  

Examination of the work carried out by groups in both statistical investigations shows 
that, in general, values of zero were eliminated and not considered as valid data. This has 
repercussions for reasoning about distributions in that within the context of statistical 
investigations a measure of zero is a value and its consideration, whether graphical or 
quantitative, influences the outcome of deliberations. While we never probed the reason 
behind why zero values were considered inconsequential by a large proportion of the 
participants, two explanations come to mind. The first hypothesis suggests that a 
conflation of one type of mathematical understanding of zero and the experimental 
situation resulted in zero not being considered. From a mathematical perspective 
participants may have been considering zero as representing the absence of elements, that 
is, a set of zero objects. In the context of the bean and popcorn experiments, beans that 
didn’t grow and kernels that didn’t pop were assigned the value zero, however 
participants may not have considered the value zero as a quantity but rather as the 
absence of growth or distance, if a bean didn’t grow or a kernel didn’t pop then it has no 
measure and shouldn’t be considered. The second hypothesis suggests that participants’ 
actions resulted from over generalizing the property of zero as the identity element in 
addition. This notion, that zero as an identity element leaves a set unchanged, is true for 
addition but is not true in the context of the mean. While the numerator of the mean is an 
addition context, the quantity derived from the addition is then divided by another 
quantity – in this case zero as the identity element does not hold.  

 
5. DISCUSSION 

 
The first goal of the study was to identify the statistical concepts preservice teachers 

focus on when analyzing and comparing distributions of data. The findings of this study 
suggest that elementary preservice teachers’ focus is on summary rather than exploration 
of datasets resulting in a focus on summary statistics such as measures of central 
tendency. This overemphasis on centers and corresponding neglect of variation has also 
been highlighted by Shaughnessy (1992, 1997) in the undergraduate student population. 
The focus on summary was also evident in that participants did not use graphical 
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representations to support the description and comparison of distributions of data. It 
seems that when presented with a distribution of data participants did not attempt to 
represent the distribution in a way that highlighted structural features, thus limiting the 
accuracy of the conclusions that can be drawn from the data. Shifting attention to 
exploration prior to summarization was not an insurmountable task. Once participants 
were made aware of the merits of data exploration and their attention drawn to 
distributional shape, they were eager to utilize a number of alternative measures (for 
example variation) and representations when comparing and analyzing datasets. Our 
finding that the increased attention to graphs resulted in revealing aspects of distributions, 
supporting the findings of Hammerman and Rubin (2004) and Makar and Confrey (2005) 
who noted a particular emphasis on variability.  

The second goal of the study was to examine the ways in which different 
understandings of these particular statistical concepts support or hinder the description, 
analysis, and comparison of datasets. As mentioned in the previous paragraph, the 
overemphasis on measures of central tendency went hand in hand with the neglect of 
graphs and variability. For many participants, their lack of exposure to statistical ideas 
and statistical inquiry lead to the blanket implementation of measures they were familiar 
with – the mean invariably. However, once participants’ attention was drawn to variation, 
in concert with an emphasis on how variation is modeled in graphical representations, 
variation quickly became a central component of participants’ understanding of 
distribution. Similarly, providing experiences which highlighted the functionality of 
graphical representations, as tools to explore and reveal aspects of distributions, 
supported a focus on graphs. This resulted in a concentration on the selection of particular 
representations according to their propensity to reveal features of distributions. 

Finally, this research reveals a number of ways to support the development of rich 
understandings of distribution. Firstly, it is critical that we draw preservice teachers’ 
attention to the notion of distribution; many participants did not hold a distributional view 
of data. The use of the experimental context supported the construction of distributional 
perspectives due to the emphasis drawn by the context on the variation of data values 
along a scale of measurement (i.e., how height of the bean varied within the range of 
possible heights). Once this notion of distribution was established participants could see 
the interrelationships between measures of center and variability and the underlying 
structures of data that they emulate, and recognize the importance of graphs in revealing 
aspects of data. Secondly, a focus on the dataset as an entity was essential as it provided a 
meaning and context for the construction of representative values (see also Mokros & 
Russell, 1995) – values that were initially applied without an underlying rationale. The 
act of comparing datasets forced the entity view in that the act of comparison required the 
search for comparison values, each of which needed to be representative of the body of 
data. Finally, once the notion of distribution is established and the concept of dataset as 
an entity developed, understandings of distribution can be further nurtured though 
exposure to the range of measures and representations that support the continued effort of 
describing, analyzing and comparing distributions. It was surprising to find that many 
preservice teachers were not adept at constructing, or in some cases even aware of, stem 
and leaf plots and box and whisker plots. This lack of experience as learners with 
representations and measures that they may be required to teach in the future is a 
worrying, yet not surprising, finding as highlighted by Lajoie & Romberg (1998) in their 
call for teachers to be provided with content experiences in data analysis and statistics. In 
essence, the study highlights that once provided the opportunity to engage in statistical 
inquiry in conjunction with instruction focusing on data analytic techniques, preservice 
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elementary teachers develop understanding of statistical measures and techniques and 
utilize them in statistically sound and justifiable ways.  
 

5.1.  LIMITATIONS  
 

 There are a number of limitations of this study which are related primarily to the 
research design and the nature of the experiences presented in the class. When 
considering the research design, the research participants are not representative of the 
general population of preservice teachers. Given their undergraduate degrees this study 
may overestimate the mathematical content knowledge of the general population of 
elementary preservice teachers. Other design limitations, related to the complexities of 
carrying out research in educational settings, carry with them implications related to the 
study validity. For example, there not was random assignment of participants to the study 
and there was not a control group. These factors pose threats in terms of the internal 
validity of the findings.  
 

5.2.  IMPLICATIONS 
  
 One challenge prospective teachers face is examining the structure of their own 
mathematical knowledge in an effort to come to know what it means to understand a 
particular concept. So when thinking about teaching statistics a preservice teacher may 
ask what it means for a 6th grade student to understand the mean. This requires examining 
what it is we know about the mean, how we came to know “it,” what “it” contributes to 
our understanding, and how we might embark on supporting students in developing 
similar understandings. So, we might agree, if asked, that the mean is a value that is not 
necessarily represented in the dataset. But if asked to list all we know about the mean we 
may not list this particular piece of knowledge – so how do we know what we know? 
How do we start to decompress (Ball & Bass, 2000) our mathematical knowledge? These 
types of understandings are what Ball and Bass (2000) call knowledge packages and Ma 
(1999) calls knowledge bundles – they are the fundamental understandings, connections, 
ideas that teachers need to develop (or may already possess) so that our knowledge 
becomes more accessible as a resource for teaching. This study provides insights into the 
ways in which engaging in statistical inquiry, wherein one is accountable for justifying 
the tools used to explore a distribution of data, challenges learners to question what it is 
they know and how this knowledge can be used in ways that are mathematically sound 
and justifiable. In their current form, traditional methods of teaching the pedagogy of data 
analysis and statistics fail to engage prospective teachers in examining their own 
knowledge for teaching.  
 This study also suggests that when considering the mathematical preparation of 
teachers we cannot assume that preservice teachers have sufficient exposure to statistical 
measures and techniques, in particular the construction and selection of appropriate 
graphical representations. Even when preservice teachers demonstrate knowledge of how 
to generate particular measures; this study shows that they may not recognize situations 
in which to use these measures, their understandings were what Skemp (1979) would 
categorize as primarily instrumental with poor relational understandings. It seems that 
participants did not have an adequate picture of the landscape of data analysis – in other 
words, what measures are available, when we might use them, and why. These findings 
suggest strongly that when considering the mathematical preparation of teachers that the 
focus be placed on what Hiebert and Lefevre (1986) define as knowing how-to 
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(procedural understanding) and why (conceptual understanding) we use particular 
statistical techniques and representations.  
 There are a number of ways in which future research relating to preservice teacher 
statistical knowledge can build on and extend the findings of this study. It is important to 
investigate whether similar studies using different types of statistical investigations result 
in similar conclusions as this study. This would have implications not only for the ways 
in which we research preservice teacher’s statistical understandings but also for the ways 
in which we structure our instruction in elementary schools. An extension of this work 
would be to investigate the ways in which providing experiences in data modeling at the 
preservice level influences the teaching practices of prospective teachers when they enter 
classrooms.  

 
5.3.  RECOMMENDATIONS 

 
The final paragraph of the discussion poses recommendations for ways to support the 

development of rich understandings relating to distribution. The remainder of this section 
poses recommendations for ways to support learners build conceptual understanding and 
skills.  

Firstly, while all students seemed to be good consumers of statistical information, in 
other words they demonstrated skills in graphical interpretation and comprehension 
(reading the data, reading between the data, and reading beyond the data), the majority 
exhibited difficulties constructing graphical representations. Efforts should be made to 
provide preservice teachers opportunities to work with real data and engage in activities 
related to constructing graphical representations. Secondly, of those students who 
demonstrated skills in deriving descriptive statistics and constructing graphical 
representations, relational understanding of these measures was absent. For example, 
some participants wished to construct scatter plots of the univariate data and persisted in 
trying to manipulate the data so that it would be amenable to presentation on a scatter 
plot. This again relates to their primary experiences as consumers of statistics – they have 
not been in the position of having to select appropriate statistics and representations for 
particular purposes. This finding calls for a coordinated effort to provide experiences that 
allow preservice teachers to consider the appropriateness of particular measures and 
representations for the purposes of data analysis. Thirdly, and not unrelated to the 
previous points, was the poor conceptual understanding of descriptive statistics and 
graphical representations, calling for a more conceptual focus in mathematics and 
methods courses. It also cautions teacher educators against drawing conclusions about 
conceptual understandings based on demonstrated proficiency in generating and applying 
measures (such as the mean for data comparison purposes). Finally, our observations lead 
to the conjecture that gains in understanding demonstrated over the course of the semester 
were influenced primarily by having access to strategies used by peers when engaging in 
data description and comparison activities. While classroom teaching experiences 
supported the development of skills and conceptual understanding, what they seemed not 
to do was convince participants of the utility of such measures when engaged in data 
analysis. In other words, our analysis indicated that factors other than classroom teaching 
were more influential in convincing students to apply new concepts and skills when 
engaging in statistical inquiry. It became apparent that engagement in small group 
statistical inquiry acted as a conduit whereby prospective teachers observed and gained 
access to the complex decision making processes of others when engaged in exploratory 
data analysis and then compared those decisions against their own. Such experiences 
provide opportunities for participants to learn in practice, to develop communities of 
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learners who engage in authentic statistical inquiry, and who continuously seek to find 
more efficiently and statistically justifiable ways of thinking about distributions of data. 
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APPENDIX A: SMALL GROUP REPORT GUIDELINES FOR THE BEAN 
INVESTIGATION 

THE BEAN EXPERIMENT: SMALL GROUP ACTIVITY 
 

Group members: ________________________________________________________ 
 
Step 1: Re-examine the primary research scenario and experiment design 
 

Ben likes bean sprouts in his salads and sandwiches. Lately he has been unhappy 
with the quality of bean sprouts available at the grocery store so he has decided to 
grow his own. He suspects that lighting conditions and the addition of lemon 
juice to the water may affect the length of the bean sprouts. Ben wants to grow 
the longest bean sprouts possible. Briefly describe how he could determine which 
growing conditions (Light vs. Dark, Plain water vs. Water with lemon juice) 
support the best growth.  

 Solution 
 Water Lemon

Light A B 

                
 

Light 
Intensity Dark C D 

 
Step 2: Construct research questions you may examine in an effort to investigate Ben’s 
suspicion. 
 
Step 3: What comparison method(s) would you utilize to examine the data and 
consequently answer your questions. 
 
Step 4: Construct a hypothesis describing what you will believe will be the outcome of 
the data analysis. 
 
Now use the data from the bean sprouts to answer your question. Prepare a poster to 
present your analysis and be prepared to discuss the questions below. 
 
Step 5: 

a) Explain why you chose your particular comparison method(s): 
 

b) Explain what (if any) limitations there are of this method(s): 
 

c) Present the answer to your research question. How did you come to this 
conclusion?  

 
Time to reflect! 
 

d) You have now viewed the presentations and approaches your peers took when 
approaching the same task. What would you do if you had the opportunity to 
complete your analysis again – would you change your approach? 

 
If so, why? And what would you do differently? 
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APPENDIX B: SMALL GROUP REPORT GUIDELINES 
FOR THE POPCORN INVESTIGATION 

 
USING AN EXPERIMENT TO TEST A CONJECTURE – IT’S ALL ABOUT POPCORN! 

SMALL GROUP ACTIVITY 
 
Group members: _______________________________________________________ 
 
 
There are some people who say that refrigerating popcorn kernels prior to popping 
changes certain characteristics of the kernels. In this experiment we are going to examine 
one such conjecture. 
 
 
Step 1: Make a list of factors that you think could be influenced by refrigeration.  
 

Today, we are going to investigate: 
 

Does refrigerating corn for 12 hours prior to popping influence either (a) the 
number of corn that pop over a 4 minute period, or (b) the distance that the corn 
falls/jumps from the popper? 

 
 
 
Step 2: Record the data for the first experiment: popping kernels for 4 minutes in an 
uncovered popper in the space below: 
 
Step 3: Record the data for the second experiment: popping refrigerated kernels for 4 
minutes in an uncovered popper in the space below: 
 
Step 4:  
Now use the data from both experiments to answer the research question. Prepare a poster 
to present your analysis and be prepared to discuss the questions below. 
 

a) Explain why you chose your particular comparison method(s): 
 

b) Explain what (if any) limitations there are of this method(s): 
 

c) Present the answer to the research question. How did you come to this conclusion?  
 
Time to reflect! 
 

d) You have now viewed the presentations and approaches your peers took when 
approaching the same task. What would you do if you had the opportunity to 
complete your analysis again – would you change your approach? 

 
If so, why? And what would you do differently? 
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PAST IASE CONFERENCES8 
 

ICOTS-7: WORKING COOPERATIVELY IN STATISTICS EDUCATION 
Salvador (Bahia), Brazil, July 2-7, 2006 

 
The International Association for Statistical 

Education (IASE) and the International Statistical 
Institute (ISI) organized the Seventh International 
Conference on Teaching Statistics (ICOTS-7) which 
was hosted by the Brazilian Statistical Association 
(ABE) in Salvador (Bahia), Brazil, July 2-7, 2006. 

Information about ICOTS-7 is on the website: 
http://www.maths.otago.ac.nz/icots7  

Abstracts for all papers (plenary, invited and 
contributed) and a list of all posters are on the website. 

ICOTS-7 papers are available at http://www.stat.auckland.ac.nz/~iase/publications.php 
 
 
 

OTHER PAST CONFERENCES 
 

JOINT STATISTICAL MEETINGS 2006 
Seattle WA, USA, August 6 – 10, 2006 

 
JSM (the Joint Statistical Meetings) is the largest gathering of statisticians held in 

North America. It is held jointly with the American Statistical Association, the 
International Biometric Society (ENAR and WNAR), the Institute of Mathematical 
Statistics, and the Statistical Society of Canada.  

The conference produced an impressive abstract book of 530 pages, which is 
available at the conference website or directly. The abstract book is packed with 
interesting abstracts of papers dealing with statistics education, statistical literacy, and 
other issues of interest. Most of the interesting papers can be found by use of keyword 
“Statistical Education.” 

Website: http://www.amstat.org/meetings/jsm/2006/ 
 

 
 

                                                      
Statistics Education Research Journal, 5(2), 115-123, http://www.stat.auckland.ac.nz/serj 
© International Association for Statistical Education (IASE/ISI), November, 2006 
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FORTHCOMING IASE CONFERENCES 
 

SRTL-5 
THE FIFTH INTERNATIONAL RESEARCH FORUM ON STATISTICAL 

REASONING, THINKING, AND LITERACY 
Coventry, UK, August 11 - 17, 2007 

 
Reasoning about Statistical Inference: 

Innovative Ways of Connecting Chance and Data. 
 

The Forum’s focus will be on informal ideas of inference rather than on formal 
methods of estimation and tests of significance. This topic is emerging from the 
presentations and discussions at SRTL-3 and 4 and is a topic of current interest to many 
researchers as well as teachers of statistics. As new courses and curricula are developed, a 
greater role for informal types of statistical inference is anticipated, introduced early, 
revisited often, and developed through use of simulation and technological tools. We 
encourage research papers that address reasoning about statistical inference at all levels 
of education including the professional development of elementary and secondary 
teachers. 
 
TOPICS 

Research presented at the conference will address questions such as the following:  
1. What are the simplest forms of statistical inference that students can understand? 
2. How does reasoning about statistical inference develop from the simplest forms 

(informal) to the more complex ones (formal)? 
3. How can instructional tasks and technological tools be used to promote the 

understanding of statistical inference?  
4. What are sequences of activities that can help student develop a conceptual 

understanding of statistical inference? 
5. What types of misconceptions are found in students’ reasoning about statistical 

inference? 
6. What types of foundational knowledge and reasoning are needed for students to 

understand and reason about statistical inference?  
7. How do students develop an understanding of the language used in describing 

statistical inference (e.g., significance, confidence)? 
8. How does an understanding of statistical inference connect and affect 

understanding of other statistical concepts? 
9. What are useful items and questions to use to assess understanding of statistical 

inference? 
 
THE LOCAL SRTL-5 ORGANIZERS 

Janet Ainley, janet.ainley@warwick.ac.uk 
Dave Pratt, dave.pratt@warwick.ac.uk 
For more information visit the SRTL-5 website: http://srtl.stat.auckland.ac.nz/ 
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IASE SATELLITE CONFERENCE ON  
ASSESSING STUDENT LEARNING IN STATISTICS 

Guimaraes, Portugal, August 19-21, 2007 
 
THEME 

This satellite conference invites papers on all aspects of assessing student learning in 
statistics. For example, we expect to have papers on writing effective exam questions, on 
exam implementation strategies, and on alternative assessment methods such as projects, 
lab assignments, and writing assignments. We also encourage submissions on how to use 
assessment to improve student learning, and on developing and administering 
assessments items to conduct research into student learning. Proceedings will be available 
free at the publication page of IASE 
 
CONFERENCE COMMITTEE 

Brian Phillips (Australia) (Joint Chair and Joint Chief Editor) bphillips@swin.edu.au 
Beth Chance (USA) (Joint Chair) bchance@calpoly.edu 
Allan Rossman (USA) arossman@calpoly.edu 
Ginger Rowell (USA) rowell@mtsu.edu 
Gilberte Schuyten (Belgium) gilberte.schuyten@UGent.be  
Larry Weldon (Canada) (Joint Chief Editor) weldon@sfu.ca 
Local Organiser: Bruno C. de Sousa (Portugal) bruno@mct.uminho.pt 

 
For more information visit the website: 
http://www.stat.auckland.ac.nz/~iase/conferences.php?show=iasesat07 

 
ISI-56 

THE 2007 SESSION OF THE INTERNATIONAL STATISTICAL INSTITUTE 
Lisboa, Portugal, August 22 – 29, 2007 

 
The 56th Session of the International Statistical Institute 
(ISI) will be held in Lisboa, Portugal. As it does at each 
major ISI conference, IASE will be organizing about 10 
statistics education sessions for ISI-56. Please check the 
website at http://www.isi2007.com.pt/ for more 
information, and contact the session organizers below if 
you would like to offer to speak in one of the sessions. 
 
 

IASE SPONSORED IPMS  
IPM37  Research on Reasoning about Distribution,  

Joan Garfield (jbg@umn.edu)  
IPM38  How Modern Technologies Have Changed the Curriculum in Introductory 

Courses,  
Lucette Carter (lucette.carter@gmail.com) 

IPM39  Preparing Teachers of Statistics,  
Allan Rossman (arossman@calpoly.edu)  

IPM40  Research on the Use of Simulation in Teaching Statistics and Probability,  
Rolf Biehler (biehler@mathematik.uni-kassel.de) 
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IPM41  Optimizing Internet-based Resources for Teaching Statistics (cosponsored 
by IASC),  
Ginger Holmes Rowell (rowell@mtsu.edu) 

IPM42  Observational Studies, Confounding and Multivariate Thinking,  
Milo Schield (milo@pro-ns.net) 

IPM43  Teaching of Official Statistics (cosponsored by IAOS) ,  
Sharleen Forbes (Sharleen.Forbes@stats.govt.nz) 

IPM44  Teaching of Survey Statistics (cosponsored by IASS),  
Steve Heeringa (sheering@isr.umich.edu) 

IPM45  Studying Variability through Sports Phenomena (cosponsored by Sports 
Statistics),  
TBD  

IPM46  Use of Symbolic Computing Systems in Teaching Statistics (cosponsored by 
IASC),  
Zaven Karian (Karian@Denison.edu) 

IPM92 Statistical Education and Literacy in the 21st Century (cosponsored by 
INE),  
Pedro Campos (pcampos@fep.up.pt) 

 
IASE ORGANIZING COMMITTEE: 

Allan J. Rossman (USA) arossman@calpoly.edu 
Gilberte Schuyten (Belgium) gilberte.schuyten@UGent.be  
Chris Wild (New Zealand) c.wild@auckland.ac.nz 
For more information visit the ISI 56 website at http://www.isi2007.com.pt/ or 

contact members of IASE OC. 
 

JOINT ICMI /IASE STUDY 
STATISTICS EDUCATION IN SCHOOL MATHEMATICS:  

CHALLENGES FOR TEACHING AND TEACHER EDUCATION 
Monterrey, Mexico, June 30 to July 4, 2008 

 
The International Commission on Mathematical Instruction (ICMI, 

http://www.mathunion.org/ICMI/) and the International Association for Statistical 
Education (IASE, http://www.stat.auckland.ac.nz/~iase/) are pleased to announce the 
Joint ICMI /IASE Study Statistics Education in School Mathematics: Challenges for 
Teaching and Teacher Education.  

Following the tradition of ICMI Studies, this Study will comprise two parts: the Joint 
Study Conference and the production of the Joint Study book. The Joint Study 
Conference will be merged with the IASE 2008 Round Table Conference. 

The Joint Study Conference (ICMI Study and IASE Round Table Conference) will 
take place at the Instituto Tecnológico y de Estudios Superiores, Monterrey, Mexico 
(http://www.mty.itesm.mx/), from June 30 to July 4, 2008. Participation in the 
Conference is only by invitation, based on a submitted contribution and a refereeing 
process. Accepted papers will be presented in the Conference and will appear in the 
Proceedings that will be published by ICMI and IASE as a CD-ROM and on the Internet.  

The second part of the Joint Study – the Joint Study book – will be produced after the 
conference and will be published in the ICMI Study Series. Participation in the Joint 
Study Conference does not automatically assure participation in the book, since a second 
selection and rewriting of selected papers will be made after the conference. 
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Proposed papers for contributions to the Joint Study Conference should be submitted 
by e-mail no later than October 1, 2007, to the IPC Study Chair (Carmen Batanero, 
batanero@ugr.es). Papers should be relevant to the Joint Study focus and research 
questions, as described in the Discussion Document (which is available at the Joint Study 
Website (http://www.ugr.es/~icmi/iase_study/). Guidelines for preparing and submitting 
the paper are also available in the Discussion Document. Please address questions to 
Carmen Batanero, batanero@ugr.es or Joan Garfield, jbg@umn.edu . 
 
INTERNATIONAL PROGRAMME COMMITTEE:  

Carmen Batanero (Spain)  
Bernard Hodgson (Canada, ICMI representative) 
Allan Rossman (USA, IASE representative)  
Armando Albert (México, ITSM representative)  
Dani Ben-Zvi (Israel)  
Gail Burrill (USA)  
Doreen Connor (UK)  
Joachim Engel (Germany)  
Joan Garfield (USA)  
Jun Li (China)  
Maria Gabriella Ottaviani (Italy)  
Maxine Pfannkuch (New Zealand)  
Mokaeane Victor Polaki (Lesotho)  
Chris Reading (Australia)  
 

LOCAL ORGANISING COMMITTEE:  
Blanca Ruiz (Chair)  
Tomás Sánchez 
Armando Albert 

 
More information is available from Carmen Batanero, batanero@ugr.es or from 
http://www.ugr.es/~icmi/iase_study/ 

 
ICOTS-8 

DATA AND CONTEXT IN STATISTICS EDUCATION: 
TOWARDS AN EVIDENCE-BASED SOCIETY 

Ljubljana, Slovenia, 11-16 July 2010 
 

We are pleased to announce that the IASE Executive 
accepted the proposal made by the Statistical Society of 
Slovenia to hold ICOTS-8 in 2010 in Slovenia.  

The decision was announced at the ICOTS-7 farewell 
dinner. The first steps towards organising have already been 
taken by the IASE Executive: The conference theme has 
been chosen and the Scientific and Local Committees have 
been appointed.  

The conference theme Data and Context in Statistics 
Education emphasises two concepts that are key concepts at nearly all levels of statistics 
education. The subtitle Towards an Evidence-Based Society offers a gateway to 
reflections about the past, present and future status of statistics in society and about the 



 120 

 

 

impact of statistics education on learning objectives. We shall learn about statistics and 
see how we learn through the use of statistics.  
 
THE INTERNATIONAL PROGRAMME COMMITTEE EXECUTIVE:  

IPC Chair: John Harraway 
Programme Chair: Roxy Peck 
Information Manager: John Shanks 
Scientific Secretary: Helen MacGillivray 
Editor Proceedings: Alan McLean 
 

THE LOCAL ORGANISING COMMITTEE 
LOC Chair: Andrej Blejec. 
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OTHER FORTHCOMING CONFERENCES 
 

THE 11TH ASIAN CONFERENCE IN MATHEMATICS 
ATCM 2006 

Hong Kong SAR, China, December 12-16, 2006 
 
CONFERENCE THEME 

The aim of this conference with the theme Advancing and Fostering Mathematical 
Sciences and Education through Technology is to provide a forum for educators, 
researchers, teachers and experts in exchanging information regarding enhancing 
technology to enrich mathematics learning, teaching and research at all levels. English is 
the official language of the conference.  
 
TOPICS OF INTERESTS  

The conference will cover a broad range of topics on the application and use of 
technology in mathematics research and teaching. Though statistics can be recognized in 
many proposed themes, a special theme, Statistics using Dynamic Statistics Software, 
might be of particular interest.  

Website: http://www.atcminc.com/mConferences/ATCM06/index.shtml 
 

THE 6TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON 
STATISTICS, MATHEMATICS AND RELATED FIELDS 

Honolulu HI, USA, January 17 – 19, 2007 
 

The 6th Annual Hawaii International Conference on Statistics, Mathematics and 
Related Fields will be held at the Renaissance Ilikai Waikiki Hotel in Honolulu, Hawaii. 
The 2007 Hawaii International Conference on Statistics, Mathematics and Related Fields 
will be the gathering place for academicians and professionals from statistics and 
mathematics related fields from all over the world. 

The main goal of the 2007 Hawaii International Conference on Statistics, 
Mathematics and Related Fields is to provide an opportunity for academicians and 
professionals from various statistics and/or mathematics related fields from all over the 
world to come together and learn from each other. An additional goal of the conference is 
to provide a place for academicians and professionals with cross-disciplinary interests 
related to statistics and mathematics to meet and interact with members inside and outside 
their own particular disciplines. 

Website: http://www.hicstatistics.org/ 
 

USCOTS 2007  
UNITED STATES CONFERENCE ON TEACHING STATISTICS 

Columbus OH, USA, May 17-19, 2007 
 

The second biennial United States Conference on Teaching Statistics (USCOTS 
2007) will be held on May 17-19, 2007 at the Ohio State University in Columbus, Ohio, 
hosted by CAUSE, the Consortium for the Advancement of Undergraduate Statistics 
Education. The target audience for USCOTS is teachers of undergraduate and AP 
statistics, from any discipline or type of institution. Teachers from two-year colleges are 
particularly encouraged to attend.  

The theme for USCOTS 2007 is Taking Statistics Teaching to the Next Level. “Next 
level” has many interpretations, such as developing a second course, gaining more 
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confidence in teaching statistics, moving students beyond statistical literacy to statistical 
thinking, and using the latest technology to improve teaching and learning. USCOTS is a 
“working conference” with many opportunities for hands-on activities, demonstrations, 
networking, idea sharing, and receiving the latest information on research and best 
practices in teaching statistics. Leaders in statistics education will give plenary talks, 
including Jessica Utts, Paul Velleman, Dick DeVeaux, Allan Rossman, and Mike 
Shaughnessy.  

For more information and registration, visit the USCOTS web page 
http://www.causeweb.org/uscots/ 

 
2007 JOINT STATISTICAL MEETINGS 

Salt Lake City UT, USA, July 29 - August 2, 2007 
 

The 2007 Joint Statistical Meetings will be held July 29 - August 2, 2007 at the Salt 
Palace Convention Center located at 100 South West Temple, Salt Lake City, Utah 
84101.  

JSM (the Joint Statistical Meetings) is the largest gathering of statisticians held in 
North America. It is held jointly with the American Statistical Association, the 
International Biometric Society (ENAR and WNAR), the Institute of Mathematical 
Statistics, and the Statistical Society of Canada. Attended by over 5000 people, activities 
at the meeting include oral presentations, panel sessions, poster presentations, continuing 
education courses, an exhibit hall (with state-of-the-art statistical products and 
opportunities), career placement service, society and section business meetings, 
committee meetings, social activities, and networking opportunities. Salt Lake City is the 
host city for JSM 2007 and offers a wide range of possibilities for sharing time with 
friends and colleagues. For information, contact jsm@amstat.org 

Website: http://www.amstat.org/meetings/jsm/2007/ 
 

JOINT SOCR (STATISTICS ONLINE COMPUTATIONAL RESOURCE)  
CAUSEWAY CONTINUING EDUCATION WORKSHOP 2007 

UCLA, Los Angeles CA, USA, 6-8 August 2007 
 

The 2007 joint SOCR/CAUSEway continuing education workshop aims at 
demonstrating the functionality, utilization and assessment of the current UCLA, SOCR 
and CAUSEweb resources. This workshop will be of most value to AP teachers and 
college instructors of probability and statistics classes who have interests in exploring 
novel IT-based approaches for enhancing statistics education. The workshop will provide 
an interactive forum for the exchange of ideas and recommendations for strategies to 
integrate computers, modern pedagogical approaches, the Internet and new student 
assessment techniques.  

For further information: 
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Events_Aug2007/ 

 
9TH INTERNATIONAL CONFERENCE OF THE MATHEMATICS 

EDUCATION INTO THE 21ST CENTURY PROJECT 
MATHEMATICS EDUCATION IN A GLOBAL COMMUNITY 

Charlotte NC, USA, September 7 - 13, 2007 
 

The Mathematics Education into the 21st Century Project has just completed its 
eighth successful international conference in Malaysia, following conferences in Egypt, 
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Jordan, Poland, Australia, Sicily, Czech Republic and Poland. Our project was founded in 
1986 and is dedicated to the planning, writing and dissemination of innovative ideas and 
materials in Mathematics and Statistics Education. The next conference is planned for 
September 7 - 13, 2007 in Charlotte, North Carolina. The chairman of the Local 
Organising Committee is Dr. David K. Pugalee, of the University of North Carolina 
Charlotte. The conference will open with an evening welcome reception on Friday, 
September 7th and finish with lunch on September 13th. The title of the conference is 
Mathematics Education in a Global Community. Papers are invited on all innovative 
aspects of mathematics education. Our conferences are renowned for their friendly and 
productive working atmosphere. They are attended by innovative teachers and 
mathematics educators from all over the world, 25 countries were represented at our last 
conference for example.  

More information: Alan Rogerson, arogerson@inetia.pl 
Website: http://math.unipa.it/~grim/21project.htm 
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