
  

 

69 

 

THE ROLE OF CAUSALITY IN THE CO-ORDINATION OF 
TWO PERSPECTIVES ON DISTRIBUTION WITHIN A 

VIRTUAL SIMULATION6 
 

THEODOSIA PRODROMOU 
Centre for New Technologies Research in Education, University of Warwick 

t.prodromou@warwick.ac.uk 
 

DAVE PRATT 
Centre for New Technologies Research in Education, University of Warwick 

dave.pratt@warwick.ac.uk  
 

ABSTRACT 
 
Our primary goal is to design a microworld which aspires to research thinking-in-
change about distribution. Our premise, in line with a constructivist approach and 
our prior research, is that thinking about distribution must develop from causal 
meanings already established. This study reports on a design research study of how 
students appear to exploit their appreciation of causal control to construct new 
situated meanings for the distribution of throws and success rates. We provided on-
screen control mechanisms for average and spread that could be deterministic or 
subject to stochastic error. The students used these controls to recognise the 
limitations of causality in the short term but its power in making sense of the 
emergence of distributional patterns. We suggest that the concept of distribution lies 
in co-ordinating emergent data-centric and modelling perspectives for distribution 
and that causality may play a central role in supporting that co-ordination process. 
 
Keywords: Distribution; Causality; Randomness, Probability; Variation; Microworld 
design; Emergent phenomena  
 

1. TWO PERSPECTIVES ON DISTRIBUTION 
 
Distribution is commonly recognised as one of the key ideas in probability and 

statistics, certainly at secondary school level. For example, in the UK National 
Curriculum (DfES, 2000), students at lower and upper secondary level are expected to 
“compare distributions and make inferences, using the shapes of distributions and 
measures of average and range.” Higher achieving students should be able to extend this 
to other measures of spread and understand frequency density. The assessment regime in 
that National Curriculum implies that the above statements refer to distributions of data, 
either prepared for students or generated through experiments and surveys. 

The introduction of digital technology into schools has prompted interest in 
Exploratory Data Analysis (EDA) as a means of engaging students in statistical analysis, 
arguably reducing the need for a sophisticated understanding of theoretical statistical 
principles, demanding an appreciation of probability theory, prior to meaningful 
engagement. The technology is ideally suited for supporting students as they manipulate 
data and portray it in a range of different representations in order to infer underlying 
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trends. The EDA approach then promotes a perspective on distribution as a representation 
of collections of actual data, consistent with the goals of the National Curriculum. 

Previous research has conceived of distribution as “an important part of learning to 
look at the data” (Moore, 1990, p. 106) and as an organising conceptual structure with 
which we can observe the aggregate features of datasets rather than just a collection of 
individual values (Cobb, 1999; Petrosimo, Lehrer, & Schauble, 2003). Other researchers 
have claimed the centrality of the concept of data as an aggregate which is characterised 
by core features that are invisible in any of the individual elements in the aggregate 
(Konold & Higgins, 2003; Mokros & Russell, 1995). Students, however, have a strong 
attachment to the case-oriented view; in other words, data are perceived as a collection of 
individual data values or cases (Wilensky, 1997; Ben-Zvi & Arcavi, 2001). To help 
students move beyond the case-oriented view, Hancock, Kaput and Goldsmith, (1992) 
claimed that it is prerequisite for students to mentally construct such an aggregate, before 
they can see the dataset as a whole. We consider the above approaches to be taking a 
data-centric perspective on distribution. A data-centric perspective on distribution pays 
attention to the variation and shape of data that has been collected, perhaps through a 
sampling process. 

 Petrosino et al. (2003) have suggested that students need to conceive of distribution 
“as an organizing conceptual structure for thinking about variability located within a 
more general context of data modelling” (p. 132). Bakker and Gravemeijer (2004), in 
their attempt to investigate the relationship between data as individual values and 
distribution as a conceptual entity, examine key aspects of both datasets and distributions 
such as centre, spread, density, and skewness. They propose a three-level structure; the 
lowest level comprises of distribution as a set of data values, and the highest level 
recognises the conceptual entity, distribution. Between these two levels, they position 
summary statistics such as centre, spread and skewness. They imagine that this structure 
can be read both upwards and downwards. In the upward perspective, students tend to 
perceive data as a series of individual cases, which they can use for calculations of any 
sample statistics (mean, median, etc.). In the downward perspective, students should look 
at the data with a notion of distribution as an organising structure, conceiving centre, 
spread and skewness as features of that distribution. The upward perspective leads to a 
frequency distribution of a dataset. In the downward perspective, alternatively, 
theoretically derived distributions, such as the Normal and other probability distributions, 
are typically used to model data. Bakker and Gravemeijer (2004) chose to deal informally 
and consistently with core ideas, such as variation and sampling but with distribution still 
being in a central position. They also envisioned that informal consideration of the shape 
is the basis for reasoning about distributions. Perusal of recent research literature suggests 
that reasoning about variation and distributions are strongly associated (Bakker, 2004; 
Ben-Zvi, 2004; Makar & Confrey, 2003) since “without variation, there is no 
distribution” (Bakker and Gravemeijer, 2004, p. 149) 

However, the notion that variation generates distribution is only part of the story, and 
it is that part told from the perspective that recognizes what we are terming the data-
centric perspective, in which distribution is seen as a collection of data results. Compare 
this perspective to that of the classical statistician, who accounts for unexplained 
variation as that part of a hypothetical model which is not apparently associated with a 
main effect. Here the emphasis is on a model and so we refer to this approach as the 
modelling perspective on distribution. Indeed, from this perspective, we might reverse 
Bakker and Gravemeijer’s aphorism to state “without distribution there is no variation.” 

When we refer to theoretical distributions (for example, Normal, Uniform and 
Binomial), we idealise mathematical models, in which we attribute probabilities to a 
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range of possible outcomes (discrete or continuous) in the sample space. In this 
modelling approach, the model gives rise to variation. Data distributions are seen as 
variations from the ideal model, the variations being the result of noise or error randomly 
affecting the signal or main effect, as reflected in the model itself. The modelling 
perspective on distribution pays attention to randomness and the shape of the 
probabilities that mould the outcomes, perhaps through some experiment. The modelling 
perspective reflects, in our view, the mindset of statisticians when applying classical 
statistical inference. Indeed, Borovcnik (2005) offered six variations on the notion of data 
being modelled as a main effect together with an error: 

 
(i) Signal + Error  (ii) Pattern + Deviation (iii) Fit + Residual 
(iv) Model + Residual (v) Explained + Un-

explained Residual 
(vi) Common + Specific 

causes 
 
In the same vein, Konold and Pollatsek (2004) viewed the data as a combination of 

signal and noise, where the signal can be an average value with variation as noise around 
it. They argued that “the idea of distribution comes into better focus when it is viewed as 
the distribution around a signal” (p. 171). Bakker (2004), in turn, referred to a second 
type of signal in noisy processes or shape as a pattern in variability. Bakker (2004) 
viewed signal as a distribution, such as the shape of a smooth bell curve of the normal 
distribution, with which we model data. He suggested that the noise in that case is the 
variation around that smooth curve. The idea of “signal” and “noise” is evident in several 
research studies (Biehler, 1994; Wild & Pfannkuch, 1999; Noss, Pozzi & Hoyles, 1999).  

In our view, a sophisticated view of signal and noise requires a co-ordination of the 
data-centric and modelling perspectives. We argue that the emphasis in the UK National 
Curriculum, and indeed as apparent in EDA approaches, is insufficient alone to nurture 
such co-ordination. We dream of a pedagogy which somehow enables students to 
appreciate the connection between the data-centric and modelling perspectives on 
distribution. 

The development of such a pedagogy demands that we research the design of tools 
that aim to facilitate the co-ordination of these two perspectives. Our approach is to adopt 
a design perspective in which we develop a software-based task to act as a window on 
thinking-in-change (Noss & Hoyles, 1996). In looking to bootstrap the iterative design 
process, we found immediate resonance with research on emergent phenomena 
(Wilensky, 1997), which contain a sense of “organised randomness” (Davis & Simmt, 
2003) and a tension between living within rule-defined boundaries and using the space 
created within those boundaries productively (Johnson, 2001). Thus, we began to think of 
the challenge of co-ordinating the two perspectives on distribution as one of seeing 
distribution as an emergent phenomenon (Prodromou, 2004). At the same time, we were 
alerted to the observation that there is a “centralised mindset” amongst students that may 
be rooted in a natural habit of interpreting phenomena in a cause-and-effect manner rather 
than in complex emergent terms (Resnick, 1991; Johnson, 2001; Gould, 2004). However, 
as we will see, we found that the tendency towards deterministic thinking was a useful 
resource for co-ordinating the two perspectives. 

Our broad aim then is to understand better how students might conceive of data-
centric and modelling perspectives of distribution. Furthermore, we aspire to develop 
environments in which meanings that embrace these two views of distribution might be 
constructed. 
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2. EMBRACING CAUSALITY 
 
The modelling and data-centric perspectives on distribution offer different views of 

variation. In the data-centric perspective, data will spread across a range of values; in the 
modelling perspective, variation is portrayed as a random movement away from the main 
effect. In order to co-ordinate these two perspectives, we argue that it is necessary to see 
them as a duality that encompasses both the deterministic and the stochastic. We 
therefore examine research on how students apparently perceive the stochastic. 

Piaget & Inhelder (1975) suggested in their seminal work that the organism 
eventually succeeds in inventing probability as a means of operationalising the stochastic. 
Prior to that achievement, random mixtures were unfathomable and the literature is 
abundant with examples of how even adults use various, often misleading, heuristics to 
make judgements of chance (for example, Kahneman, Slovic and Tversky, 1982). How is 
that process of operationalising the stochastic achieved? Clearly Piaget’s constructivist 
stance would demand that we consider what students already know since therein must lie 
the resources for coming to appreciate distribution and other key stochastic concepts. 

Pratt (2000) reported how students of age 11 years were able to articulate meanings 
about random phenomena which were remarkably akin to expert-like views in one 
respect. They understood the unpredictable, uncontrollable and unpatterned nature of 
randomness. These so-called local resources were brought to bear by these students in 
order to describe short-term randomness. Significantly, these same students were unable 
to demonstrate meanings for the predictable, controllable and patterned nature of long-
term behaviour. Such global resources however began to emerge as these students 
engaged with specially designed tools, in an environment called ChanceMaker. This 
microworld consisted of mini-simulations of so-called gadgets, common random 
generating devices such as coins, spinners and dice. These gadgets were presented as not 
working properly and the challenge to the students was to mend them using tools made 
available within the gadgets. The students began to articulate situated versions of the Law 
of Large Numbers, such as “the more trials you do, the more even is the pie chart.” The 
significance of this work for the present study is the causal nature of the students’ global 
resources. The number of trials determines the state of the pie chart. Pratt (1998) 
discusses the notion of phenomenalising, the process of transforming mathematical ideas 
into quasi-concrete objects (Papert, 1996), which can be manipulated on-screen by the 
student, who can make sense of the mathematical concept through using it, much as most 
of us do, to come to appreciate everyday phenomena. By phenomenalising randomness, 
Pratt claimed that the students were able to exploit well-established knowledge about 
causality to concretise (after Wilensky, 1991) the Law of Large Numbers. 

It is our conjecture that, given appropriate phenomenalised tools, students will be able 
to bridge the modelling and data-centric perspectives of distribution. In this vision, 
randomness becomes an agent that causes variation and in turn randomness can be 
“controlled” through parameters, perhaps instantiated as on-screen sliders, that experts 
might think of as measures of average and spread. Indeed the blurring of a distinction 
between a measure or representation and a control is one of the hallmarks of using 
technology to promote using before knowing (Papert, 1996). 

It seems though that there is a paradox here. On the one hand, the work of Pratt 
(2000) makes a prima facie case that technologically-based environments may have the 
potential to offer a method of constructing meanings for distribution out of causality. On 
the other hand, such an approach may reinforce the centralised mindset and militate 
against the construction of distribution as an emergent phenomenon that bridges the data-
centric and modelling perspectives of distribution. This apparent paradox lies at the heart 
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of our work. We must design an environment that supports students in discriminating and 
moving smoothly between data as a series of random outcomes at the micro-level and the 
shape of distribution as an emergent phenomenon at the macro-level. In that respect, we 
conjecture that we can build an environment that enables the student (i) at the micro-level 
to use their understanding of causality whilst at the same time begin to recognise its 
limitations in explaining local variation, and (ii) at the macro-level to use the parameters 
as causal agents to appreciate the impact of those sliders on features of the distribution 
whilst appreciating their failures to completely define the distribution. We intend to use 
the microworld that embodies these conjectures not only to test those conjectures but 
further as a window on the evolution of students’ thinking about the two perspectives on 
distribution. Through that window, we ask whether and how students co-ordinate the 
data-centric and modelling perspectives on distribution.  

 
3. METHOD 

 
Approach and tasks To elaborate this research question, we aimed first to instantiate 

the conjectures into a microworld that would perturb the students’ thinking and act as a 
window on that thinking-in-change (Noss & Hoyles, 1996). Learning situations are 
complex ecologies in which many variables interact. Experimental methodologies are 
often impossible, either because of the confounded nature of the variables or for ethical 
reasons. We have found in previous work that the delicate process of phenomenalising a 
mathematical concept in order to observe thinking-in-change demands a gradual 
sensitising towards that complex ecology. The current ongoing study therefore falls into 
the category of design experiments (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003), 
whereby we gain insights about both thinking-in-change and design issues from the 
participants’ interactions during the iterative design of the microworld. Typically design 
experiments require several iterations. Each iteration raises new issues about the learning 
process and generates conjectures about how the design may better help to elaborate the 
research question. 

In this article, we report on pupils’ interactions with the third iteration of the 
microworld. A major issue raised by the first iteration was that the design at that time 
failed to generate purposeful student activity. In order for it to act as a window on 
students’ thinking-in-change about distribution, it was essential that they were able to 
explore with relatively little input from the researchers. We therefore searched for a 
context that might stimulate such activity whilst at the same time encourage focus on 
distribution as a central concept. In fact, our design strategy has subsequently been 
influenced by the notions of Purpose and Utility (Ainley, Pratt & Hansen, 2006). We 
needed to provide students with a setting that would inspire a deterministic interpretation 
of behaviour and would find purpose in adopting a perspective that sees behaviour 
captured and explained in terms of emergent distributions. We have approached the 
problem by setting the exploration in the second iteration in the context of playing 
basketball. Our observations during the second iteration alerted us to the significance of 
the two different perspectives on distribution and the need to find a design that might 
support their co-ordination. 

This article reports on a case study of how two pupils interacted with the third 
iteration of the microworld, in which they were presented with the basketball-throwing 
activity depicted in Figure 1. Students were first asked to throw the ball into the basket 
using various sliders that control the throw. Once this preliminary task was completed, 
they were asked whether they felt that the simulation was realistic. This normally 
generated the response that it seemed artificial that the ball was entering the basket every  
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Figure 1. The player has successfully thrown the ball into the basket. The release 
angle, speed, height and distance can all be varied using the sliders or by entering the 

data directly. Once the play button has been pressed, the player continues to throw with 
the given parameters until the pause or stop button is pressed. The trace of the ball can 

be switched off. Feedback is shown in the Monitors and Graphs panes. 
 

time. Since the system was completely determined at this point, the ball replayed 
faithfully its successful path on every throw. The subsequent discussion typically 
introduced notions such as skill-level and we showed them the error buttons as in Figure 
2 which can make the situation more realistic by allowing for errors in throws. 

 

 
 

Figure 2. Three players each throw their ball simultaneously. Because the error button 
has been pressed, the balls vary their paths. Only one of the three throws is successful. As 

the three players continue throwing, the release angles will average 51.8 degrees. 
 
The students were able to control the spread of the error through two arrows on the 

slider, which corresponded to points that were roughly two standard deviations above and 
below the mean average as in Figure 2. The students were able to move either or both of 
these arrows, generating values that corresponded to distributions with differing spreads 
and bias. The microworld also allowed the students to explore various types of graphs 
relating the values of the parameters to frequencies and frequencies of success. When the 
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parameters were determined, the graphs appeared as single bar columns as in Figure 3. 
When the error had been introduced, the graphs appeared as histograms as in Figure 4.  

 
(We do not wish to enter here into the debate about whether these graphs should be 
referred to as histograms. With equal width bars, the matter is of no real consequence.) 

 
Subjects The microworld was trialled with six students in a UK secondary school. 

The first two pairs of students were, according to their teacher, of average ability. One 
pair was age 14; another pair was 15. The third pair, 16 years of age, was at an early stage 
of advanced level study of mathematics and was of above average ability. In this paper 
we report on the emerging insights of the two 14 year-old students, Tom and Chris. 
Although we recognize the same issues as reported below from analysis of other pairs, 
Tom and Chris provide in our view the clearest illustration so far of the co-ordination of 
the two perspectives on distribution. 

 
Procedure The pair was observed by both authors and the programmer, who had 

coded the microworld in Imagine Logo, a powerful version of Logo, published by 
Logotron (www.logo.com/imagine/). For the purposes of this paper, we refer to all three 
as the researchers. The episode described below took place in one session lasting about 
90 minutes. The data collected included audio recording of the students’ voices, video 
recording of the screen output on the computer, and researchers’ field notes. The analysis 
was one of progressive focussing (Robson, 1993). At the first stage, the recordings were 
simply transcribed and screenshots were incorporated as necessary to make sense of the 
transcription. Subsequently, the first author turned the transcript into a plain account with 
no explicit interpretation other than through selection of the more promising sections. The 
less interesting sections were replaced with discursive descriptions of what happened. At 
third stage, an interpretative account was written by the first author and discussions about 
the validity of those interpretations took place with the second author. In this respect, we 
followed Mason’s (1994) advice to make an account of the data before accounting for the 
activity. At the fourth stage of analysis, issues were extracted and turned into conjectures 
for use in the next and ongoing iteration of the design cycle. 

 

 
Figure 3. With no error set, the graph 
will appear as a single bar. The graphs 
can be rescaled using the button/sliders. 

 
Figure 4. With error set, the green (lighter) bars 
in the histogram indicate the successful throws; 

the red (darker) bars show the remainder. 
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4. FINDINGS 
 
Our analysis suggests that Tom and Chris’s meanings for distribution were co-

ordinated through four distinctive phases, which we use below to structure the story of 
how the relationship between causality and variation shifted as they moved through these 
phases. 

 
4.1. PHASE 1: DETERMINING A SUCCESSFUL THROW 

 
Tom and Chris were introduced in the microworld to a single basketball player who 

was clearly failing to throw the ball successfully into the net. However, they were shown 
that his throws could be changed using the various sliders. They were challenged to 
improve the player’s throws. 

They began to vary the sliders for release speed and angle as well as height and 
position. They demonstrated sophisticated intuitions for altering speed and angle in such 
a way that the path of the ball was gradually moving nearer to the basket. Within two 
minutes, they had successfully set the sliders to throw the ball into the net (Figure 5). 
Tom and Chris continued to explore other successful throwing positions by moving the 
player and finding the corresponding successful release speed and angles. Although Tom 
and Chris had found an initial successful throw quickly, they appeared to enjoy exploring 
other values of the parameters that also resulted in a successful throw. It turned out later 
that it was important that as researchers we allowed Tom and Chris this space to become 
comfortable with the software, moving the sliders in a playful and exploratory way. 

 

 
Meanwhile, the data for all throws was being continuously collected by the computer 

since at no stage did Tom and Chris reset the data collection process by stopping the 
experiment. On two occasions during this phase, the researchers asked the boys to look at 
the histograms. Although no errors had been introduced, the graphs showed variation. 
This variation had been created by the manual changing of the parameters during the play 
(Figure 6). In fact, Tom and Chris did not comment on this variation and the researchers 

 
Figure 5. Within two minutes, Tom and Chris had 
managed to find values for the parameters that caused 
the player to throw the ball directly into the basket. 

 
Figure 6. The graph of the release 
speed, based on 77 throws, shows 
variation caused by the two boys 
changing the parameters during the 
data collection.  
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did not probe into the boys’ understanding of this aspect. Nevertheless, we suspect that, 
in the light of the later developments, their own role as agents of variation was an 
important feature of how they later understood variation in which they were not the 
agents.  

 
4.2. PHASE 2: EXPLORING THE ARROWS 

  
After 24 minutes, the researchers began to introduce the notion of error. It was 

suggested to Tom and Chris that the previous simulation was not very realistic since, 
once the correct values had been discovered, the player was successful every time. The 
boys were introduced to the error buttons. They observed how, when the error button was 
pressed, two arrows appeared either side of the handle on the corresponding slider. They 
began to explore the effect of moving these arrows but found it difficult to make sense of 
what the arrows were doing. (In the transcript, Res refers to the researchers.) 

 

 
 

Figure 7. Tom noticed that the path was slightly different 
even though they had made no changes. 

 
(1) Tom: They (referring to the arrows) might help our decision.  
(2) Tom and Chris spent three minutes moving the arrows around whilst the player threw 

the ball continuously. 
(3) Chris: It doesn’t really make it any easier. 
(4) Res: Why? 
(5) Chris: I can’t see how it is improving our chances.  
(6) Res: What do you think (looking at Tom)? 
(7) Tom: Same. 
(8) Chris: Still… I’m trying to work out what these arrows are. 

 
 At first the boys appeared to associate error with something being wrong, probably 

associating the word itself and the cross on screen with marking of their work in class. 
Although confused, the boys continued to try to make sense of the role of the arrows and 
we did not seek to clarify. After allowing the simulation to run for about two more 
minutes, Tom noticed that the path of the ball changed. 
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(9) Tom: It’s like… when it’s throwing the ball, it’s changing occasionally… yeah, like 
then (as he was talking the ball took a different path, as in Figure 7)… it just 
went differently.  

(10) Chris:  Could that be to do with the arrows?  
 
A few seconds later, the researchers suggested that they look once more at the graphs. 

 
(11) Res: Can you understand these graphs?  
(12) Tom: Quite a lot of angles… spread out. 
(13) Chris: We tried a lot of angles. We kept adjusting the angles. 
(14) Res: Why? 
(15) Chris:  I don’t know. We were just playing with it.  

 
Tom and Chris were right in that they had indeed been adjusting the sliders during the 

simulation and that some of the variation in the angles was caused directly by them. 
However, at the same time, the angles were being chosen randomly by the computer and 
so some of the variation was due to randomness. It would appear that Tom and Chris 
recognised variation in this setting where they personally were the agents (lines 13-15) 
and were possibly entertaining the idea that the arrows may also somehow be involved 
(line 10).  

 
4.3. PHASE 3: ARROWS AS AGENTS 

 
Half an hour into the session, the researchers suggested that Tom and Chris might 

begin a new experiment in order to explore more systematically the role of the arrows. 
They began with error set for release angle but soon introduced error for speed as well 
(Figure 8). 

 

 
 

Figure 8. Tom and Chris explored the arrows further  
by introducing error to angle and then speed. 

 
(16) Chris: The arrows do change it. (They moved the two arrows closer together)  
(17) Tom: May be… might be between the two arrows… might be…  
(18) Res: What might be?  
(19) Chris: The release speed... might just be like random.  
(20) Tom: It seems to be a bit inconsistent.  
(21) Res: Why?  
(22) Tom: The shots are like changing… even though that’s not changing.  
(23) Res: Even though what’s not changing?  
(24) Tom: The shots are… like that missed (referring to the simulation in which the 

throw missed the basket)… that missed, that one went in (referring to the 
following throw)… but we are not changing them from there (pointing to the 
sliders).  

(25) Res: Not changing the slider. Is that what you’re saying? 
(26) Tom: Yeah. 
(27) Res: But even so sometimes it’s missing.  
(28) Tom: Yeah. 
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Our interpretation of this incident is that for the first time, Tom and Chris explicitly 
recognized that variation could occur without them acting as the agents of change (lines 
22-28) and that this insight was accompanied by the preceding recognition that the angles 
or speeds might be chosen randomly from values between the two arrows (lines 17-20). 
These two ideas were themselves preceded by an acknowledgement that the arrows did in 
fact seem to be changing something (line 16). Perhaps such ideas had been gradually 
growing (line 10). A causal link between the arrows, randomness and scoring or missing 
seemed now to be postulated. However, such a link was not as yet explicitly established 
in their minds. Tom and Chris continued to explore, setting errors on and off and moving 
the arrows around for all of the variables, often simultaneously. 

 
(29) Res:  So what conclusions have you got so far about these arrows?  
(30) Tom: A bit troublesome. 
(31) Chris: Like a random number between the two arrows. 

 
The two boys admitted that they were not yet confident about the idea that the arrows 

demarcated a region from which a random number would be chosen and so they 
continued to explore. There was now another intense period of exploration in which they 
moved the arrows around, sometimes close together, sometimes wide apart, sometimes 
symmetrically around the handle, sometimes asymmetrically. There did not appear to be 
much systematicity about this exploration. However, they constantly reviewed the 
continuing action in the simulation as they tried to make sense of the arrows. Eventually 
they made a breakthrough. 

 
(32) Tom: If it’s close, it’s more chance of going in. 
(33) Res: What do you mean? 
(34) Tom: When the arrows are close together, it’s got more of a chance of going into 

the net. 
 
In lines 32-34, Tom and Chris seemed to have spotted this pattern of behaviour by 

looking closely at the effect on the animation of moving the arrows. They did not refer to 
any graphs during this period. A few minutes later however (line 35), they did decide to 
look at the graphs. Initially, all the histograms appeared to consist of a single bar (Figure 
9). 

Line 35 is a revealing remark. Chris was content that the graphs apparently revealed 
no variation since he was still relating variation to changes that they personally had 
generated (line 35). The causal link relating the arrows to changes in the animation had 
not been extended to the distribution in the graphs. 

The researchers however noticed the small bar to the right of the main bar in the 
speed graph (see bottom left graph in Figure 9). They helped the boys to rescale the 
histogram of release speed, at the same time changing the block width (Figure 10). 

 
(35)  Chris There’s only one because we haven’t altered it. 
(36) Res: So what does that graph tell you? 
(37) Tom: Lines in the middle (referring to the green (lighter) success bars).  
(38) Res: What about the reds and greens? 
(39) Tom: There’s an area which is green.  
(40) Chris When we get the release speed to… whatever value that is (pointing to the 

start of the green area)… about 11… they’re all successes… and when we 
change it, it’s going to miss.  

(41) Res: Did you change it? 
(42) Chris Did you (looking at Tom)?  
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Figure 9. Tom and Chris supposed that the graphs were single bars because they had not 
made any alterations. They had not yet linked variation in the graphs to variation caused 

by the arrows. Careful inspection of the speed histogram would have revealed a tiny 
amount of variation. 

 

 
 

Figure 10. Tom and Chris needed to explain the variation in the  
histogram even when they had not themselves changed the speed slider. 

 
(43) Tom: Which one? 
(44) Chris Speed. 
(45) Tom: That was the one with the arrows, wasn’t it? 
(46) Res: Why have we got different speeds on here?  
(47) Tom: Because the arrows change it.  
(48) Res: Explain that to him. I’m not sure he understands it yet. 
(49) Tom: The arrows make it, like, random. So it’s a random number between the two, 

I think. 
 

It now seemed that Tom had abstracted a causal link between the variation in the 
histogram and the arrows (lines 47-49). Variation could occur even when they had not 
acted as agents. Instead the arrows acted as agents through some sort of unknown random 
mechanism. 

One of the difficulties with design experiments is that the researchers are often unable 
to anticipate activity. Indeed, it is these unexpected outcomes that are often the most 
influential in shaping the design in the subsequent iteration. Our probing in lines 35-49 
was certainly unplanned and as such leaves much unanswered. The precise manner by 
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which Tom and Chris arrived at their conclusion remains a little mysterious. Of course, 
the strength of design research is that it allows, indeed encourages, such unexpected 
behaviour and is able to respond later by building such issues into the next design. 

 
4.4. PHASE 4: MODELLING WITH THE ARROWS  
 

Tom and Chris returned to their earlier notion that when the arrows were closer 
together, the chance of a successful throw was increased. They sought to create a realistic 
simulation of a player who, perhaps, was not professional but was pretty skilful. They 
only allowed error on release speed and placed the arrows close together (Figure 11).  

 

 
Figure 11. Tom and Chris began to model a skilful but not professional player. 

 They used these values for their parameters. 
 

After 93 throws, they looked at the graphs (Figure 12). The researchers were interested in 
how the two boys interpreted the histogram of release speed.  

 
(50) Res: When he missed, why did he miss? 
(51) Chris Because the speed wasn’t enough. 
(52) Tom: Most of the reds are at the lower side.  

 
 

 
 

Figure 12. Tom and Chris produced this 
graph after 93 throws. 

  
 

Figure 13. Tom and Chris were 
surprised to see two green (lighter) 

areas. 
 

The researchers asked what would have happened if the player had been less skilful. 
Tom and Chris predicted that the red (darker) and green (lighter) areas would be 
swapped. It is difficult to understand what they meant by this but we think they meant 
that the red bars would be higher since there would be more misses (near to the height of 
the green bars in Figure 12) and the green bars would be lower (near to the height of the 
red bars in Figure 12). They did not refer to the spread of the graph. 

They set the experiment up so that the arrows on the speed slider were wider apart 
than in Figure 11. After 225 throws, they looked at the graphs. Tom and Chris admitted 
some surprise at the speed histogram (Figure 13). 
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(53) Res: Is that what you expected?  
(54) Tom: Not really… though there’s lots of reds. It’s kind of what I expected. I don’t 

know… I don’t know… it is kind of what I expected. There’s a green there. I 
don’t know why.  

 
The green bar on the leftmost part of the histogram was a surprise to the boys though they were 
not surprised to see much more red than green since they knew that this player was less skilful. 
The researchers probed further. 

 
(55) Chris: I think that green area bit will be where he hit off the side (referring to the 

more central green area) and that (referring to the single green bar) will be 
where he got it in straight away.  

(56) Res: Ah, so that’s why there are two separate areas of green, and why do you think 
the higher one is where he hit the backboard?  

(57) Chris: Because there’s more of it to hit… more area. 
 

 

 
Figure 14. Did Chris’s prediction that the results would be more to  

the left fit the speed histogram shown here? 
 

Chris was able to explain the bimodal green distribution in terms of what he had 
witnessed in the simulation. The larger spread had in fact allowed the possibility of two 
distinctive ranges of value of speed that would generate successful throws. (Since then 
the researchers have found that it is possible to create situations in which there are four 
distinctive success regions since occasionally it is possible to score after the ball has 
bounced on the floor!) 

 
5. DISCUSSION 

 
5.1. SUMMARY 

  
We should like to begin by summarising the four phases described above. In phase 1, 

Tom and Chris worked in an entirely deterministic fashion. They were comfortable with 
the idea that the path of the ball would be affected by the velocity and position of the 
throw. They were at ease in changing those parameters in order to determine a path in 
which the ball moved directly into the basket. This is evidenced by the brief time (about 
two minutes) needed to generate successful scores. Subsequently during this phase, Tom 
and Chris observed variation in the graphs though this was not randomly generated but 
the result of they themselves changing the values of the variables during the running of 
the simulation. We believe this appreciation enabled them to create a connexion between 
the variation in the histogram and causal actions in the simulation. During this phase, the 
agent of change was, of course, the boys themselves. 
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In phase 2, we used realism as an excuse to introduce the notion of error. As reported 
above, there was in fact some confusion over our use of this term as the boys initially 
expected that the computer would report an error, perhaps the ball would be somehow 
thrown incorrectly. This confusion though was transient. What was less transient was the 
sense-making process involved in gaining mastery over the arrows. Tom and Chris 
explored the arrows non-systematically, changing values of the parameters for variables, 
which also had error set as on. When they looked at the graphs, they believed that the 
variation was due to the changes that they had made. In this phase, they did not tend to 
attribute variation to randomness. 

Phase 3 was marked by three key insights. First, they recognised that the throws were 
being chosen randomly from values between the two arrows. Though this is not exactly 
correct, since the arrows represent values roughly two standard deviations above and 
below the mean if the arrows are symmetrically placed around the handle, it is a 
reasonable understanding of the situation. Secondly and almost simultaneously they saw 
the arrows as agents of the variation in how the player threw the ball in the simulation. 
Indeed, they articulated this relationship rather concisely, “When the arrows are close 
together, it’s got more of a chance of going into the net.” We see this statement as a fine 
example of what Noss and Hoyles (1996) have called a situated abstraction, a heuristic 
that characterises the general behaviour of certain phenomena within a specific system. 
Thirdly, Tom and Chris were able to connect that relationship to the histograms. They 
were able to discuss how the variation in the histograms was itself caused by the arrows, 
thus co-ordinating the causal relationships between the simulation, the arrows and the 
graphs. 

In phase 4, Tom and Chris began to use the co-ordinated understanding of the causal 
role of the arrows to model distributions. They saw this in a situated way. Their aim was 
to simulate a professional level player or one who was rather less skilful, and they set 
about that task by moving the arrows nearer or further away from each other. To their 
surprise, they encountered a bimodal distribution but were able to explain this in terms of 
the distinctive ways in which a player might throw the ball into the basket, namely 
directly or off the backboard. 

 
5.2. CAUSALITY AND THE TWO PERSPECTIVES ON DISTRIBUTION 

 
We began with the conjecture that we would be able to build an environment that 

enables the student to appreciate the limited explanatory power of causality to capture the 
essence of local variation. At the same time, we ventured that this environment would 
allow students to use causality to articulate features of distribution. 

In fact, we have demonstrated, in Phases 1 and 2, the potential to use notions of skill-
related error in a simulated sports context to perturb thinking away from a deterministic 
mindset towards one of randomly occurring events. Furthermore, in Phases 3 and 4, we 
have demonstrated how the sliders and arrows can become agents of change, in effect 
replacing the human agent. Moving the slider changes the position of the distribution. 
Moving the arrows changes the spread of the distribution. These ideas are articulated in 
situated ways such as “when the arrows are close together, it’s got more of a chance of 
going into the net.” We note the deterministic nature of this situated abstraction. While at 
the micro-level, causality is shown to have limited explanatory power, at the global level, 
causality can be harnessed to articulate the relationship between the parameters in the 
model (average, spread) and the shape of the distribution. 

We regard this paradox of seeing the limitations of causality at one level while 
recognising its power at another level is at the heart of co-ordinating the two perspectives 
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on distribution. We asked whether and how do students co-ordinate the data-centric and 
modelling perspectives on distribution. We are not able at this stage of our research to 
elaborate this aim to our complete satisfaction but we believe that insights into the role of 
causality are significant. We conjecture that as students pay attention to the sliders and 
arrows they are considering the modelling perspective on distribution, though of course 
they would not articulate it in that way. The aphorism “without distribution, there is no 
variation” regards distribution as the agent of variation and in effect comments on the 
ontology of distribution. We have tried to instantiate that perspective on distribution in 
the virtual world by offering students direct manipulation over the generational powers of 
distribution through instantiations of average and spread. In contrast, when students pay 
attention to the emerging data, they are considering the data-centric perspective on 
distribution. 

In this sense, we find support in this study for the model proposed by Bakker and 
Gravemeijer (2004) in which distributions can be read from or towards the collection of 
data. However, whereas Baker and Gravemeijer refer to the student moving bi-
directionally between the collection of data and a conceptual entity, we portray the 
journey as between a modelling and data-centric perspective. For us, the conceptual lies 
in the co-ordination of these two perspectives. Indeed, we wish to emphasise the equal 
status of those two perspectives. 

Nor is this difference in emphasis merely playing with words. We believe it has 
teaching implications. There is much excitement about EDA as a modern method for 
exploring statistics. We share much of that excitement. However, the approach places 
emphasis upon a data-centric perspective and so far has not offered a coherent statement 
about how students might abstract from that perspective a rich concept of distribution, 
which co-ordinates both modelling and data-centric perspectives. Our studies are 
suggesting that the modelling perspective may need to be given equal status if such a co-
ordination is to be encouraged. 

Our data so far suggest that causality may be acting as the co-ordinating agent since, 
not only is it an idea that feels comfortable to students, but it also plays a critical role in 
helping them to make sense of the relationship between the parameters of the model and 
the shape of the data. If our ongoing design research continues to support this finding 
(which in the spirit of design research now becomes a conjecture to be tested in the next 
iteration), it throws new light on earlier research. The claims that centre around the role 
of causality in making sense of the stochastic are to some extent out of line with common 
thinking, which tends to make clear and distinct separations between the two. For 
example, Piaget and Inhelder (1975) portray randomness as inconceivable within 
operational thinking, at least until resolved by the invention of probability at a later stage 
of development. One of consequences of phenomenalisation (Pratt, 1998), turning 
mathematical ideas into quasi-concrete objects (Papert, 1996), is that mathematical 
concepts can be expressed in causal terms through the use of situated abstractions, as we 
have seen in this study. Even it seems statistical ideas, apparently separated from the 
deterministic world, are accessible to some extent through causal meanings. 

We believe the role of causality in bridging the two perspectives on distribution may 
also have teaching implications. Fischbein (1975) has proposed that some of the difficulty 
that students have with probabilistic ideas is at least reinforced by a curriculum that 
emphasizes the deterministic. Indeed, commenting on this assertion by Fischbein, 
Langrall and Mooney (2005) state, “Children (as well as adults) need to recognize that 
situations involving chance can be examined and described logically and rationally” (p. 
115). If it is true that causality plays the role we are suggesting, the key may lie not so 
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much in reducing the emphasis on determinism as harnessing the power of causality 
towards the teaching of probability, perhaps through the use of technology. 

 
5.3. LIMITATIONS 

 
The reader must consider the limitations of this research to elaborate the conjectures 

and research questions. We have reported in some detail only on one pair of students, the 
clearest illustration of the emerging ideas. Even had it been possible to elaborate the 
activity of all three pairs, the findings must be regarded as tentative and in a sense 
interim. We may have, of course, further evidence after the following iteration but design 
research does not always follow such a smooth path. 

It is quite feasible that the role of causality is directly linked to the virtual nature of 
the setting for this study. Perhaps it is only possible, or at least far simpler, to instantiate 
these ideas in a technological environment where it is possible to phenomenalise 
mathematical notions. It is reasonable then to suppose that access to the ideas is 
understood through the manipulation of the mathematical concepts as articulated through 
situated abstractions that link causally the inputs and outputs on screen. This is a 
limitation in so far as we can no more claim that our findings relate to the co-ordination 
of the two perspectives on distribution in other settings than can other researchers, who 
unavoidably work in particular settings, though sometimes ill-advisedly in our opinion, 
ignore the critical role of setting in abstracting. (See Pratt & Noss, 2002, for detailed 
elaboration of this issue.) 

 
5.4. IMPLICATIONS FOR FURTHER RESEARCH 

  
We have discussed data from a fairly early stage of our work-in-progress. Although 

we have moved through two previous iterations in order to reach this design, we 
recognise there are some further design changes to be made. Nevertheless, we believe our 
results so far indicate support for our conjecture that it is possible to design an 
environment in which students’ well-established causal meanings can be exploited to co-
ordinate data-centric and modelling aspects of distribution. Tom and Chris began to 
appreciate how not only might they themselves be agents of variation, but also how 
randomness, instantiated in the form of the quasi-concrete arrows, can create histograms 
in which variation is apparent. In this sense, randomness might become understood as 
reality once removed. What we have called “letting go of determinism” might be seen as 
delegating control to a quasi-concrete object that exercises that power through random 
effects. 

It is in the nature of design research that the researchers gradually become sensitised 
to the ecology of the domain being investigated. We now feel that we have gained a 
handle on how to support the use of causal meanings in understanding distribution. In that 
respect we are close to having a design which can be used systematically to test out that 
conjecture. 

• We shall remove the confusion introduced by the term, error. In the next iteration 
we shall simply refer to the arrows and explore what the students make of their 
role. 

• We shall explore in more detail the notion of agency. We expect that agency will 
become an analytical category varying at least across human, slider and arrows. 

• We intend to introduce a graphical representation of the modelling distribution 
accessed by clicking on the relevant variable such as release angle or speed. We 
conjecture that access to both the modelling distribution and the data-centric 
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distribution will enable us to explore more systematically some of the issues 
described above that still appear relatively mysterious. 

• The introduction of a graphical representation of the modelling distribution 
allows us to introduce a new form of agency. We will hope to allow the students 
the facility to edit the modelling distribution as a means of transforming the 
modelling distribution directly but the data-centric distribution indirectly. We ask 
how will students articulate the chains of agency and how will that impact their 
co-ordination of the two perspectives on distribution. 

Thus, the above outlines our own research programme for the near future. There are 
however important research questions which our programme will not address. In raising 
the idea that causality may be a significant agent in constructing a bridge between the 
data-centric and modelling perspectives, we acknowledge at the same time the possibility 
that technology is playing a key role in this process. There is fascinating research to be 
done in exploring the role of causality when other materially-based methods of 
supporting the co-ordination of the two perspectives on distribution are deployed. 

There is much current interest (for example, Pfannkuch, 2005) in researching 
informal inference. (Informal inference is to be the focus of the fifth conference on 
Statistical Reasoning Thinking and Literacy to be held at the University of Warwick, 
August 2007.) EDA is developing interesting pedagogic approaches towards informal 
inference but we ask whether students can develop an appreciation of the robustness or 
power of their inferences without constructing a modelling perspective alongside their 
data-centric perspective. We see this question as one that should tax researchers of 
informal inference. 
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