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EDITORIAL1 
 
I have recently returned from the second biennial United States Conference on 

Teaching Statistics (USCOTS 2), held in Columbus, Ohio. At the conference Joan 
Garfield, a member of the SERJ Editorial Board, received the CAUSE/USCOTS Lifetime 
Achievement award. In a special presentation at the conference, Joan reflected on the 
statistics education research collaborations in her past and present. It is clear that the field 
of statistics education research has developed because of Joan’s curiosity, motivation, and 
perseverance in locating research spread among many and varied disciplines including 
mathematics, psychology, education and statistics. From 1987 through 1999 Joan 
published the Newsletter of the International Study Group for Research on Learning 
Probability and Statistics, which later evolved into the Statistical Education Research 
Newsletter (2000 through 2001) and finally into what SERJ is today. Thank you, Joan, 
and congratulations on your well-deserved recognition. 

A healthy strand of statistics education research sessions ran through the program at 
USCOTS 2. Some presenter names familiar to SERJ readers included Beth Chance, Bob 
delMas, Marsha Lovett, and Mike Shaughnessy, in addition to Joan. We were also given 
a glimpse into the future of research in our area when Joan acknowledged her current 
Statistics Education Doctoral students at the University of Minnesota. I hope that the 
success of Joan’s program will inspire others to sprout up around the world. 

Iddo Gal and I have been working behind the scenes to disseminate awareness of 
SERJ, and I am pleased to report that SERJ is now listed in two indexing services. One is 
“Cabell’s Directory of Publishing Opportunities” (www.cabells.com) and the second is 
PsycINFO, which is managed by the American Psychological Association (see 
www.apa.org/psycinfo/about/covlist.html). We are working out the details of also listing 
SERJ abstracts in EBSCOhost (see www.epnet.com), and will continue to seek other 
opportunities to abstract SERJ in indices so that researchers will be able to easily find the 
work we publish.  

Iddo and I have also been monitoring the acceptance rate for manuscripts submitted to 
SERJ. We received 30 manuscripts in 2006, and four of them have so far been accepted 
for publication in SERJ. A few more of these are still in revision and may eventually be 
accepted and published. The acceptance rate indicates the selectivity and high standards 
we maintain for SERJ, but it also suggests that there is plenty of room for more high 
quality manuscripts from statistics education researchers. 

As Iddo’s term as SERJ co-editor comes to an end, we will be announcing a new co-
editor later this year. Thanks to Iddo for his leadership, creativity, and attention to detail 
during his term. 

Please enjoy the articles and announcements in this new issue of SERJ, and note the 
Call for Papers for a Special Issue on Reasoning about Informal Statistical Inference. 
Thank you for reading the journal, and please consider sending the results of your own 
research to us! 
 

TOM SHORT, for IDDO GAL 
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CALL FOR PAPERS: REASONING ABOUT 
INFORMAL STATISTICAL INFERENCE2 

 
The Statistics Education Research Journal (SERJ), a journal of the International 

Association for Statistical Education (IASE), is planning a special issue for November 
2008, focused on research on Reasoning about Informal Statistical Inference. 
Submission deadlines: Letters of intent by Sept. 15, 2007; Full papers by Nov. 1, 
2007. Guest Editors will be Dave Pratt (University of London, UK, <d.pratt@ioe.ac.uk>), 
and Janet Ainley (University of Leicester, UK, <jma30@le.ac.uk>). 

  
1. ABOUT INFORMAL STATISTICAL INFERENCE  

 
The aim of the special issue is to advance the current state of research-based 

knowledge about the development, learning, and teaching of statistical inference, a 
foundational area in statistics education. For the special issue we seek articles focused on 
a critical subset of issues in this broad area, describing research related to the 
understanding, learning, or teaching of informal aspects of inferential statistical 
reasoning, and demonstrating a contribution to research-based educational practice in this 
area.  

It is recognized at the outset that the definition of what counts as “informal statistical 
inference” may at times be slippery, that is, what is informal could depend on the nature 
of the inferential tasks being studied, on the complexity of the statistical or probabilistic 
concepts involved, on the educational stage, and on other factors. The editors will select 
papers for the special issue that focus on learners’ informal ideas about statistical 
inference or on learners’ intuitive ways of reasoning about statistical inference in diverse 
contexts (see possible research topics below), not on mastery of formal procedures or on 
the learning/teaching of formal methods of statistical estimation, significance tests, etc. 
The papers being sought will be based on empirical research of a quantitative and/or 
qualitative nature on individuals or groups involved in all stages of education, including 
all levels of schooling, teacher education, professional development, and workplace and 
adult education. Papers on informal inferential reasoning invoked when people face 
everyday statistical tasks may also be considered, provided that they discuss clear 
educational implications.  

 
2. POSSIBLE RESEARCH TOPICS 

 
Key examples of relevant topics for papers that may fit under the general heading of 

Reasoning about Informal Statistical Inference include:  
a. How does reasoning about statistical inference develop from simple forms 

towards more complex ones? What stages exist in the acquisition of informal 
knowledge about statistical inference, or in learning to communicate information 
or interpret displays about statistical inference, and how do students develop and 
understand the concepts and language that can be used in this regard (e.g., 
sampling, significance, confidence)? 

b.  What technological tools can be used to promote the understanding of statistical 
inference? How are such tools utilized by learners to help in understanding the 
building blocks or intermediate steps in statistical inference?   
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c.  What tasks or sequences of instructional activities can help learners develop a 
conceptual understanding of some aspect of statistical inference? How does the 
design of tools and/or tasks shape students’ informal inferential reasoning? 

d.  What types of barriers to students’ informal reasoning about statistical inference 
are found, and how can they be avoided or overcome? 

e.  What types of foundational knowledge (statistical, general) or thinking processes 
are needed for or used by learners to informally understand and reason about 
statistical inference? How does an informal understanding of statistical inference 
connect with or depend on understanding of other statistical concepts? 

f.  What assessment approaches and research methodologies can be used to 
effectively assess understanding, reasoning or learning of informal statistical 
inference? 

 
3. OTHER TOPICS RELATED TO FORMAL STATISTICAL INFERENCE 
 
SERJ is also inviting research-based papers on learning, reasoning or understanding 

of formal aspects of statistical inference, that is, papers that fall outside the scope of the 
notion of “informal statistical inference” as described above, but that otherwise fit the 
general aims of the Journal. Such papers would be processed by SERJ as regular papers 
and if accepted will be published in a regular issue. Should enough such papers be 
accepted for publication, they will be grouped together in a special section and prefaced 
with an introductory paper by a member of the SERJ Editorial Board.  

 
4. SUBMISSION GUIDELINES 

 
Authors are advised to aim for papers in the range of 4000-6000 words of body text 

(not counting abstract, tables and graphs, references, appendices). Manuscripts for the 
special issue will be limited to a maximum of 7500 words of body text, but shorter, 
concise papers are encouraged. All manuscripts will be refereed following SERJ’s regular 
double-blind peer-review process. Manuscripts should be submitted in accordance with 
SERJ’s standard Author Guidelines and using the Template file found on the Journal’s 
website: www.stat.auckland.ac.nz/serj. 

 
5. DEADLINES AND CONTACT INFORMATION 

 
Interested authors should send a letter of intent by Sept. 15, 2007, but preferably 

earlier, with a 150-250 word abstract describing key aspects of the research. This letter 
should be sent by e-mail to SERJ co-editor Iddo Gal: <iddo@research.haifa.ac.il>, and 
authors can expect to get a quick response within 10 days. Authors wishing to send 
informal queries regarding the suitability of a planned paper can also contact Iddo Gal. 

Full manuscripts must be submitted by Nov. 1st, 2007 at the latest to Iddo Gal at the 
address above, in accordance with the submission guidelines listed earlier.  

Decisions about the suitability of proposed papers and the allocation of accepted 
papers to the special issue or to a regular SERJ issue will be made jointly by the SERJ 
Editors and Guest Editors. 
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ABSTRACT 

 
The present study focuses on motivational constructs and their effect on students’ 
academic achievement within an existing statistics course. First-year Health Sciences 
students completed a questionnaire that measures several motivational constructs: 
dimensions of causal attributions, outcome expectancy, affect, and study behaviour, 
all with respect to statistics. The results showed that when the cause of negative 
events was perceived as uncontrollable, outcome expectancy was negative. When the 
cause of negative events was perceived as stable, affect toward statistics was 
negative. Furthermore, negative affect toward statistics and limited study behaviour 
led to unsatisfactory achievements. Path analysis (Lisrel) largely confirmed the 
causal relations in a model that was based on attributional and learned helplessness 
theories. The consequences of these findings for statistics education are discussed. 

 
Keywords:  Statistics education research; Motivation; Conceptual understanding; 
Study behaviour 
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1. INTRODUCTION 
 
Motivation influences the scope and the quality of study behaviour of students (see 

e.g., Bruning, Schraw, & Ronning, 1999; Deci & Ryan, 1985; Graham & Weiner, 1987; 
Pintrich, 2000). High-quality study behaviour involves active knowledge construction. 
Active knowledge construction is known to enhance understanding of the material in 
many courses (see e.g., Chi, de Leeuw, Chiu, & LaVancher, 1994; Phye, 1997; Steffe & 
Gale, 1995), including statistics courses (see e.g., Garfield, 1993; Giraud, 1997; Keeler & 
Steinhorst, 1995; Magel, 1998). Therefore, in attempts to improve statistics education, it 
is fundamental to stimulate motivation. 

Research on motivation is quite extensive and covers heterogeneous constructs (see 
e.g., Ames, 1992; Boekaerts, 1997; Volet, 1997; Weiner, 1992). Some of these constructs 
involve phenomena that are difficult to change, because they are to a large extent 
determined by traits of the individual that is involved, such as goal orientation, self-
determination, and competence. Our aim is not to focus on such phenomena, but rather to 
focus on constructs that have practical implications for statistics education, that is, 
constructs that can be manipulated and acted upon while trying to improve statistics 
education. 

For that reason we have focused on two motivational theories that offer opportunities 
to intervene in motivational processes. Both theories take the starting-point of the 
explanations people perceive for events they experience. These so called causal 
explanations have cognitive, affective, and behavioural consequences. Examples of 
cognitive consequences in a statistics educational context are expected outcomes of 
attending lectures or studying a course book; examples of affective consequences are 
enjoyment, pleasure, and interest; and examples of behavioural consequences are effort 
and persistence. The influence of causal explanations on cognition, affect, and behaviour 
might be manipulated and driven toward outcomes that are more positive, in terms of 
motivation. As a consequence, these causal explanations have practical implications for 
statistics education, because the obtained improvement of motivation might result in 
study behaviour that enhances understanding. The goal of the study was to investigate 
these phenomena in the context of statistics education. 
 

2. MOTIVATIONAL MODEL 
 
In statistics education one can sometimes encounter students who think that there is a 

stable cause for failing an exam (e.g., statistics is a difficult subject). These students may 
no longer expect to benefit from studying statistics; they may start to dislike it and will 
not spend much study time on this subject. Other students may think that they have no 
control over the outcomes of their actions. For example, “no matter how hard I study, I 
will not be able to understand it.” These students may in advance expect to fail on the 
exam, will also start to dislike statistics, and will not spend much time studying the 
material. These examples show the influence of causal attributions (stability of causes, 
non-controllability of causes) on cognitions such as outcome expectancies (no benefit 
from studying statistics, expectancy to fail on the exam) and consequently on emotions 
(affective reactions of starting to dislike statistics) and behaviour (disregarding statistics), 
which will finally have an effect on achievement. This chain effect, which is 
consequential for statistics education, is reflected in a model that was developed and 
tested in this study. 

The model as a whole stands for motivation (see Figure 1). Motivation is not a 
separate entity in our model for two reasons. Firstly, it is difficult to insert it separately 
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into a model, because it is an abstract, complex (Weiner, 1992), and ill-defined (Murphy 
& Alexander, 2000) construct, which is frequently used in colloquial language and 
consequently has several connotations. Moreover, motivation is studied in different 
domains and from different perspectives, which has led to distinct and changing 
conceptualisations and approaches. Various motivational constructs are studied, such as 
self-efficacy, goal orientation, metacognitive strategies, value, strategy use, causal 
perceptions, autonomy, social relatedness, as so forth. (See e.g., Ames, 1992; Boekaerts, 
1997; Dweck, 2000; Pintrich & Schunk, 1996; Volet, 1997; Weiner, 1986.) In these 
studies it is often left implicit whether these constructs are part of motivation or are 
merely related to motivation (Murphy & Alexander, 2000). Our model as a whole reflects 
our perspective on motivation. 

 
 

 

       

       

 

                         

 

         
Figure 1. Statistics motivational model based on the attributional  

and the learned helplessness theory 
 

Secondly, it is in our view not necessary to integrate motivation as a separate 
construct in the model. Traditionally, motivation was seen as an isolated latent construct 
that drives behaviour, cognition, and affect. We think that motivation merely is the sum 
of behaviour, cognition, and affect. Our opinion is in accordance with the remark of 
Weiner (1992), referring to Kelly (1958), that motivation as a model construct might be 
redundant; it is sufficient to represent only those variables that make up motivation. This 
view is also compatible with the fact that most motivational models do not explicitly 
contain motivation as a construct (see e.g., Bruning, Schraw & Ronning, 1999; Deci & 
Ryan, 1985; Pintrich, 2000; Pintrich & Schunk, 1996; Weiner, 1992). Therefore, the 
model that we developed contains only manifest variables that together stand for 
motivation, and does not contain motivation as a separate latent entity.  

Two specific motivational theories were used for our model; namely the attributional 
and the learned helplessness theory, because they both use the starting-point of perceived 
causes for aversive events. The attribution-based theory of motivation (Graham & 
Weiner, 1987; Pintrich & Schunk, 1996; Weiner, 1986, 1992) commences with perceived 
causes for failure, unexpected outcomes, unusual events, and important situations. 
Perceived causes are the way people explain to themselves such outcomes, events, and 
situations. The connotations of the explanations are determined by underlying properties. 
In attribution-based theory these underlying properties of such explanations are divided 
into three dimensions: stability, control, and locus. Pintrich and Schunk (1996) propose, 

Control Stable Explanation

Outcome Expectancy

Affect PersistenceEffort 

Achievement
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however, that the stability dimension is most closely linked to beliefs regarding future 
success (outcome expectancy) and subsequently to affect and actual achievement 
behaviour. Therefore, we integrated stable explanation in our model in Figure 1. It can be 
defined as the invariability over time of such perceived causes, namely causal 
explanations. 

Peterson, Maier, and Seligman (1993) present a motivational theory, which originally 
emanates from the learned helplessness paradigm. In this paradigm, individuals are 
thought to become passive and to develop affective deficits if they cannot control and 
avoid the causes of aversive stimuli. They claim therefore, in contrast to Pintrich and 
Schunk (1996), that controllability is the major factor contributing to a negative outcome 
expectancy. Uncontrollable events will, according to Peterson et al., lead to a perceived 
non-contingency between people’s actions and the outcomes of their actions. This 
negative outcome expectancy will lead to pessimistic thoughts, negative emotions 
(affect), and passivity (behaviour). This is what is called learned helplessness. We 
integrated control influencing outcome expectation as a separate construct in our model. 
Control is defined as the ability to avoid the causes of aversive stimuli. 

Although the two presented theories slightly differ in the emphasis of the causal 
dimensions control and stability, they both reflect the way these properties of negative 
causal explanations contribute to a negative outcome expectancy, and how this will act 
upon affect and on behaviour, such as effort and persistence, which will finally result in 
an effect on achievement. The causal relations among these constructs are symbolised by 
arrows in our model that is presented in Figure 1. 

This model was examined within the domain of statistics education. This means that 
all the constructs were measured with respect to statistical events and phenomena. It is 
known that perceived causal explanations via expectancy, affect, and behaviour 
determine future achievements in mathematics (see e.g., Seegers & Boekaerts, 1993; 
Vålas & Søvik, 1994). Our question was whether this is also true for statistics education 
and if the results would provide useful information for the reformation of statistics 
education. 

The following research questions were addressed: 
1. How do students causally explain statistics related events? Do they think that 

they have control over, for example, the mastery of the material, the amount of 
time they can spend on studying statistics, and the result on the tests? We also 
wanted to know whether or not the causes that the students reported for these 
events were stable.  

2. We further measured the outcome expectancies, that is, whether students 
experience a contingency between studying statistics and their understanding of 
the topics and the grades they receive on statistics tests. We also investigated the 
influence of outcome expectancy on effort, persistence and affect. 

3. Finally, we investigated the relations between these motivational constructs and 
achievement. The potential causal relations among these constructs were tested 
with structural equation modelling via Lisrel (Jöreskog & Sörbom, 1989).  
 

3. METHOD 
 
3.1.  PARTICIPANTS 
 

Two hundred (n = 200) first-year students of the faculty of Health Sciences 
participated in a pilot study to establish the reliability of a questionnaire that was 
developed to measure the motivational constructs. In the subsequent year n = 94 first-year 
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students of the faculty of Health Sciences participated in the main study; 79 of these 
participants were female, 15 were male. The ages ranged from 19 to 26 years. 
Approximately 75 percent of the first-year Health Sciences student body is female. The 
participants were recruited during educational activities before the start of the 
introductory statistics course in which this study was executed. During recruitment they 
were told that they had to answer questions about statistics education and that they would 
be paid 10 euro. This payment was given to avoid attracting only motivated students who 
were particularly interested in statistics. All participants took the introductory statistics 
course. 

 
3.2.  MEASUREMENT INSTRUMENTS AND PROCEDURE 
 

A questionnaire to measure the motivational constructs that are relevant for our model 
was developed. This Motivation toward Statistics Questionnaire (MSQ) consisted of 38 
items, divided into six subscales. The items were phrased as statements and participants 
responded on a 7-point Likert scale. The questionnaire is partly a Dutch translation of the 
Survey of Attitudes Toward Statistics (SATS) (Gal, Ginsburg, & Schau, 1997). 
Additional items with regard to causal explanations were formulated using the same 
principles as the Attributional Style Questionnaire (ASQ) (Peterson et al., 1993), in 
particular for two attributional dimensions: stability and control. Finally, items were 
added to measure the two aspects of study behaviour: effort and persistence. All MSQ 
items concentrated on statistics related events. Because the MSQ was for the greater part 
based on existing surveys that have been proven to be valid (Peterson et al., 1993; Schau, 
Stevens, Dauphinee, & Del Vecchio, 1995), it can be considered an adequate 
measurement instrument regarding the relevant motivational constructs. Example 
questions are presented in Table 1. Based on content the items were divided into six 
subscales. To establish the reliability of the MSQ, it was administered to 200 first-year 
Health Sciences students and Cronbach’s alpha was computed for each subscale. Six 
questions that did not fit in the subscale were identified. Four questions were removed; 
two were rephrased. The MSQ was used the subsequent year for collecting data for the 
main study. It was administered to the students at the beginning of the introductory 
statistics course. Students received written instructions before they completed the MSQ. 
The whole procedure took approximately half an hour.  

A second instrument was used to assess participants on effort and persistence, 
because it is well known that self reports and students’ responses to questionnaires may 
not always adequately reveal mental processes and behaviour (Biggs, 1993; Nisbett & 
Wilson, 1977; Schwartz, 1999; Watkins, 1996). The goal was to obtain more reliable data 
on study behaviour. The instrument consisted of two rating scales ranging from zero to 
ten. It was distributed to the tutors of tutorial group meetings. These are weekly two hour 
sessions supervised by a tutor, in which the students discuss the subject matter. The 
sessions are an essential part of the course. The tutors were given instructions on how to 
infer students’ effort and persistence. They were told what was meant by effort and 
persistence, examples were given, and they were told how to use the rating scale (grades 
ranging from zero to ten are customary in our education). This came down to instructing 
them to ask and register whether students attended the lectures, whether students were 
prepared for the tutorial group meetings, and whether students were actively involved in 
the discussion during the obligatory meetings. The tutors had to convert their impression 
concerning these aspects into a grade called effort. Persistence was analogously a grade 
based on the tutors’ judgement concerning whether students continued asking questions 
during the meetings until they really understood the subject matter, whether students at 
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home persisted in trying to solve their assignments by using lecture notes and/or their 
books, or whether they consulted their teacher when they were not able to solve an 
assignment. The participants were evaluated by their tutors in the week before the end of 
the course. Finally, the scores on the exam at the end of the course were used as an 
indicator for participants’ achievements. The exam consisted of 30 multiple choice 
questions and grades could range from zero to ten. Example questions of the exam are 
presented in the appendix. 
 
3.3.  ANALYSIS 
 

Sum scores of the responses to the questionnaire were computed for each subscale by 
summing the scores of individual items. Some items were positively phrased, others 
negatively. Responses on the negatively phrased items were mirrored so that all answers 
were in the same direction. The sum scores were called: Stable Explanation, Control, 
Outcome Expectancy, Affect, Effort, and Persistence. To reflect the facts that people seek 
causes especially for failure (Graham & Weiner, 1987) and that motivation to study 
statistics is usually modest, the coding on the variables Stable Explanation and Control 
was done in such a way that high scores corresponded with respectively a stable negative 
explanation and lack of control. Cronbach’s α was computed for each subscale. The exam 
grades (Achievement) and the tutor ratings Effort(T) and Persistence(T) consisted of 
grades ranging from zero to ten. They were included into the analyses as raw data. 

Four analyses were done. First, several t tests were done to test for possible selection 
biases. A comparison was done between the male and female participants on 
Achievement, Stable Explanation, Control, Outcome Expectancy, Affect, Effort(T), and 
Persistence(T). Moreover, achievement was compared between the participants in our 
study and the rest of the cohort that took the introductory course. Second, bivariate 
correlations between all variables were calculated to inspect the correlation patterns. The 
covariance structure modelling was, because of the rather small sample size, done in two 
separate steps (Scott Long, 1983), resulting in the third and fourth analysis. The third 
analysis was a robust maximum likelihood confirmative factor analysis (the simultaneous 
analysis of the covariance and the asymptotic covariance matrix; Jöreskog & Sörbom, 
1989), which was done to confirm the measurement structure. Fourth, a path analysis (a 
robust maximum likelihood structural equation modelling) was done with Lisrel. Due to 
the sample size it was necessary to disregard the measurement structure in this analysis. 
Hence, the analysis was done without latent variables and the sum scores of the separate 
items of the MSQ served as manifest variables. With this path analysis the model 
presented in Figure 1 was tested. 

 
4. RESULTS 

 
From the pilot study, Cronbach’s α for each subscale (after the removal of the four 

items) and some example questions are presented in Table 1.  
A robust maximum likelihood confirmatory factor analysis was executed on those 

data of the MSQ that were also used in the path analysis of the main study (n = 94). The 
content based classification of the items on the subscales Control, Stable Explanation, 
Outcome Expectancy, and Affect was supported by the results of this confirmatory factor 
analysis; indices showed a proper fit. The Satorra-Bentler chi-square was used. It is 
considered to be more robust against a small sample size and violations of distributional 
assumptions (Hu, Bentler, & Kano, 1992; Satorra & Bentler, 1994). 
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Table 1. Subscales of the MSQ (n = 200) 
 

Subscales and example questions Number of items Cronbachs’s α 
Stable explanation: 
Statistics is just a difficult subject. 
I have always had difficulties with statistics. 

4 items .8427 

Control: 
The result on the statistics exam is determined by my own 
endeavour. 
Whenever I don’t understand a statistical topic, I know 
what to do. 

5 items .7797 

Outcome Expectancy: 
It pays off to study statistics. 
The time I spend on statistics is wasted. 

6 items .6048 

Affect: 
To study statistics is enjoyable. 
I think statistics is interesting. 

8 items .7813 

Effort: 
I spend a lot of time on statistics. 
I never prepare myself for the statistics tutorial group 
meeting. 

8 items .8058 

Persistence: 
Whenever I don’t understand something from statistics, I 
quit. 
When I cannot complete a statistics assignment, I go 
through the book once again. 

7 items .7405 

 
The Lisrel program provides several additional indices for how well the model fits the 

data (Jöreskog & Sörbom, 1988). A goodness of fit index (GFI) is given for the whole 
model. It compares the tested model with a so called null-model, that is, all parameters 
are fixed on zero. A second index is the normed fit index (NFI), which compares the 
tested model with an independence model (variances are set free, covariances are fixed on 
zero). This index, however, continues to improve when paths are added and therefore 
does not appraise parsimonious models adequately. The most meaningful index is the 
non-normed fit index (NNFI). In this index the degrees of freedom are taken into account 
and consequently it appraises not only the best fitting, but also the most parsimonious 
model. All three fit indices should be close to one. Finally the root mean square residual 
(RMR) is given. This index, as the residuals, is ideally close to zero. The indices 
presented in Table 2 show a proper fit for this model; that is, the items adequately fit into 
their subscales. 

 
Table 2. Fit indices for the confirmatory factor analysis on Control,  

Stable Explanation, Outcome Expectancy, and Affect 
 

Satorra-Bentler chi-square 
(df = 224, n = 94) 

277.18;  p = .04* GFI .86 Standardised RMR .22 

 
 

 NFI .89   

 
 

 NNFI .93    

  CFI .94   
* p < 0.05 



 

 

12

 

In Table 3 descriptive statistics of all the variables as measured by the MSQ, as well 
as the tutor ratings and the exam grades are given. 

 
Table 3. Descriptives of the motivational variables and achievement 

 
 Mean SD Items Scale 

 min 
Scale 
 max 

Min 
 score 

Max 
score 

Skewness Kurtosis 

Stable Explanation 16.39 5.61   4 4.00 28.00    4.00 28.00     .100    -.459 
Control 16.22 4.84   5 5.00 35.00   5.00 31.00     .697      .637 
Outcome Expect   29.13 5.13   6 6.00 42.00 14.00 40.00    -.562      .826 
Affect 26.66 7.60   8 8.00 56.00 12.00 51.00     .196      .174 
Effort 37.88 7.62   8 8.00 56.00 16.00 54.00    -.477      .347 
Persistence 31.93 6.48   7 7.00 49.00 11.00 46.00    -.207      .293 
Effort(T)   7.11 1.55   4 0.00 10.00   2.00 10.00    -.803    1.212 
Persistence(T)   6.64 1.73   4 0.00 10.00   1.00 10.00  -1.028    1.862 
Achievement   7.05 1.90 30 0.00 10.00   1.60   9.40    -.780     -.133 

 
The results of the t tests showed no significant differences between female and male 

participants. This might partly be because of the restricted power of the tests, so 
additionally the effect sizes (Cohen’s d) were computed. The results are respectively for 
Achievement (d = .13; p = .65), Control (d = .17; p = .51), Stable Explanation (d = .53;    
p = .08), Outcome Expectancy (d = .22; p = .49), Affect (d = .008; p = .97), Effort(T)       
(d = .02; p = .94), and Persistence(T) (d = .20; p = .52). Combined, these results indicate 
no substantial differences between male and female participants. An additional t test was 
done to test for another possible selection bias. In this t test the achievement of the 
students who participated in our study was compared to the rest of the cohort (n = 122). 
No significant difference was found, nor a consequential effect size (p = .82; d = .06). 

A correlation matrix of all variables was computed and is presented in Table 4. The 
significance level was adjusted with a Bonferroni correction. Both dimensions of 
attribution (Stable Explanation and Control) were significantly correlated to Outcome 
Expectation. The notion of having no control was most strongly correlated to Outcome 
Expectation. Outcome Expectation was significantly correlated with Affect toward 
statistics. 

Affect was significantly correlated to Achievement, but as expected not to the self-
reported behavioural constructs (Effort and Persistence), which were also not correlated 
to Achievement. The tutor ratings Effort(T) and Persistence(T) on the other hand were 
much better predictors for Achievement and were more highly correlated to Affect. This is 
consistent with research that established the inaccuracy of self-reports and research that 
showed that students’ responses to questionnaires may not always adequately reveal their 
own learning (Biggs, 1993; Glenberg, Sanocki, Epstein, & Morris, 1987; Nisbett & 
Wilson, 1977; Schwartz, 1999; Watkins, 1996). 

A path analysis with Lisrel was conducted, because of this above-mentioned 
inaccuracy of self-reports, on a model where the tutor ratings Effort(T) and Persistence(T) 
were inserted instead of the self-reported study behaviour (Effort and Persistence). We 
started with our model that was presented in Figure 1. The relation between Stable 
Explanation and Outcome Expectancy based on attributional theories was not significant 
(Standardised Path coefficient β = .06; p = .31). We did find a strong negative relation 
between the notion of having no control (Control) and Outcome Expectancy (β = -.68; p < 
.001). Apparently, if a student thinks that there is no contingency between, for example, 
his study activities and the result on an exam, he will not expect a positive outcome of his 
actions.
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Table 4. Correlations between the motivational variables and achievement. 
 Stable Explanation Control Outcome Expectancy Affect Effort Persistence Effort(T) Persistence(T) Achievement 

Stable Explanation 1 .584* 
p < .001 

 

-.336* 
p = .001 

-.550* 
p < .001 

.156 
p = .067 

-.052 
p = .310 

-.116 
p = .132 

-.138 
p = .093 

   -.392* 
  p < .001 

Control  1 -.647* 
p < .001 

    -.306 
p = .003 

.152 
p = .072 

-.099 
p = .172 

-.020 
p = .423 

 .016 
p = .439 

-.121 
  p = .123 

 
Outcome Expectancy   1 .312* 

p = .001 
 

.020 
p = .424 

.157 
p = .065 

.127 
p = .112 

-.006 
p = .479 

  .226 
  p = .015 

Affect    1 .125 
p = .115 

 

 .239 
p = .010 

  .266 
p = .005 

   .216 
p = .018 

    .429* 
  p < .001 

Effort     1   .746* 
p < .001 

 

  .273 
p = .004 

   .263 
p = .005 

  .261 
  p = .006 

Persistence        1    .368* 
p < .001 

 

     .337* 
 p = .001 

  .294 
  p = .002 

Effort(T)         1      .843* 
 p < .001 

 

   .455* 
  p < .001 

Persistence(T)           1    .478* 
  p < .001 

 
Achievement           1 

 
* p ≤ 0.001 (Bonferroni corrected)
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                                 -.68**                  .06 

               

                                 -.58** 
                                               .24**          
 

                         -.08          

         .05                                  

                                .25**   .24** 

                    .33** 

                          .33**             

                    .08                  .34** 

 

 
             theoretical relations that were confirmed 
             theoretical relations that are not confirmed 

           meaningful relations that were not in the theoretical model  
 
  Figure 2. Statistics motivational model, as confirmed by path analysis (Lisrel) 
  Notes: Coefficients are standardised; *p < 0.05; **p < 0.01. 

 
The relations among the motivational constructs as well as the coefficients are 

displayed in Figure 2. The solid arrows in Figure 2 stand for the theoretical relations that 
were confirmed, the dotted arrows stand for the theoretical relations that were not 
confirmed, and the dashed arrows indicate meaningful relations that were not in the 
hypothesised theoretical model, as shown in Figure 1. 

Figure 2 shows a strong direct relation between Stable Explanation and Affect, that is, 
if students think that there are stable causes for negative statistics related events, failing 
their exams for example, they will develop negative feelings toward statistics. In the 
model, as displayed in Figure 1, this relation was mediated by Outcome Expectancy. 

A negative Outcome Expectancy also had an adverse effect on Affect. Affect is related 
to all other constructs except to the notion of no control (Control) (β = .19; p = .08). To 
emphasise the importance of Affect, it has been placed in a more central position in 
Figure 2. It is strongly related to Achievement directly, as well as via Persistence(T). Also 
important is that Achievement is determined by Persistence(T) (β = .34; p < .001) but not 
by Effort(T) (β = .08; p = .36).  

To enhance the fit of the model, the residuals of the behavioural constructs Effort(T) 
and Persistence(T) had been set free to correlate (error covariance = 2.12; t = 5.34) in 

Control Stable Explanation 

Outcome Expectancy 

Affect 

  Persistence(T) Effort(T) 

  Achievement 
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Lisrel. With this relaxation of the model (as presented in Figure 2), all fit indices showed 
a good fit. The values of these indices for our model are provided in Table 5. Again the 
Satorra-Bentler chi-square is presented because of its robustness against a small sample 
size and violations of distributional assumptions (Hu et al., 1992; Satorra & Bentler, 
1994).  

 
Table 5. Fit indices for the model in Figure 2  

 
 Satorra-Bentler chi-square 
(df = 7, n = 94) 

 13.40; p = .063 GFI .96 Standardised RMR .042 

 
 

 NFI .95   

 
 

 NNFI .93    

  CFI .98   
 

5. DISCUSSION 
 
This study was done in an introductory statistics course. It focussed on causal 

explanations of statistics related events, perceived outcome expectancy of students’ 
activities within this statistics course, affect and study behaviour toward statistics, and the 
relation of these constructs to the results on the exam at the end of the course. These 
constructs were chosen because of their practical implications for the teaching of 
statistics. 

Our first findings concern causal explanations. In the two presented motivational 
theories, perceived causes for events have underlying properties that have affective, 
behavioural, and cognitive consequences (Peterson et al., 1993; Pintrich & Schunk, 
1996). In our study we focused on the dimensions of control and stability of causal 
explanations. 

The first result concerns control. The model in Figure 2 indicates that the perception 
of having no control over causes of statistics related events may lead to decreased 
outcome expectancy. For example, a student who thinks that there is nothing he can do 
about the causes for failing the statistics exams, or thinks that he is not able to understand 
statistics anyway, may not expect a positive outcome from attending the lectures or 
studying the material. This mechanism is intuitively appealing.  

The second result indicates that the stability of causal explanations may be more 
directly related to affect. As is seen in Figure 2 we found a significant path from Stable 
Explanation of such causes to Affect. The path that we found may be interpreted as 
follows. The perception of stable causes for aversive events related to statistics may lead 
to displeasure and frustration. If students perceive that failing statistics exams is not 
easily changeable, students may start to dislike statistics. This was reflected in responses 
like: I dislike statistics; I do not have a positive perception of statistics; and so forth. 

In sum, these two findings indicate that students who think that they lack control may 
not expect to profit from studying statistics, and students who do invest time but think 
that there are stable causes for failing in spite of that, may start to dislike statistics. 

The last path from Stable Explanation to Affect, though intuitively appealing, was not 
anticipated. The model in Figure 1 contained a relation between Stable Explanations and 
Outcome Expectancy. This relation was based on the general attributional position that 
the stability of a cause has the most influence on shifts in expectancy (Pintrich, 2000; 
Pintrich & Schunk, 1996; Weiner, 1986, 1992). Our findings are more consistent with the 
basic assumption from Peterson et al. (1993) that controllability is the major factor 
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influencing outcome expectancy. Yet, the direct influence of Stable Explanation on Affect 
may also have important practical implications for statistics education. 

The implication for education from our findings may be that when students discover  
the material is comprehensible to them and they experience success, they will be 
stimulated to study the material. This means that in constructing a learning environment, 
there should be tasks built in that are feasible for students. In that way the sequence of 
events that may lead to diminished motivation (Weiner, 1986) may be interrupted. 
Students will gradually sense that they can master the topics, they will discover they can 
control their learning outcomes, they will experience success, and they will abandon the 
idea that there are stable causes for failure. Control over learning outcomes may foster the 
positive expectation of future study activities. This positive expectation, together with the 
reduction of the perception of stable negative causes for failure, may even promote 
students to enjoy studying statistics. Only then should more difficult tasks be 
administered. 

A second finding of interest in our study seems to be the central position of Affect in 
our model in Figure 2. Students who appreciate the value and relevance of statistics, who 
think it is interesting, challenging, and who like statistics, appear to study statistics more 
and qualitatively better, and perform better on the exams. In attributional theories 
(Pintrich, 2000; Pintrich & Schunk, 1996; Weiner, 1986, 1992) as well as in the learned 
helplessness theory of Peterson et al. (1993), affect is on the same level as behaviour and 
cognition. In the model in Figure 1 Affect was therefore put on par with behavioural 
consequences of Outcome Expectancy. However, affect seems to have a more prominent 
role in motivational processes in the present statistics education context. In our study we 
found that Affect directly and positively influenced Achievement. It also influenced study 
behaviour, namely Effort(T) and Persistence(T). Persistence(T) in turn also influenced 
Achievement. Thus, Affect seems to determine achievement directly, as well as indirectly. 
Moreover, we found that Affect functioned as a mediator between Control, Stable 
Explanations, and Outcome Expectancy on the one hand, and the rest of the motivational 
constructs on the other. For this reason Affect holds a more central position in our model 
in Figure 2 than in the model presented in Figure 1.  

The central role of Affect suggests that the students’ feelings toward statistics appear 
to be an important theme for innovating and improving statistics education. Our results 
with respect to Affect are in line with Malone and Lepper (1987), who state that 
implementing features that make learning more appealing, enjoyable, and challenging 
makes learning more intrinsically motivating. Our finding that the feelings toward 
statistics are crucial in reaching satisfactory achievements corroborates the results of Isen, 
Daubman, and Gorgoglione (1987). In their study they found that positive affect may 
foster student’s tendencies to see relations among stimuli, because positive affect leads to 
different ways of information processing, for example using different strategies. More 
relations between concepts are characteristic for richer knowledge networks, which 
indicate better integrated knowledge and deeper understanding (Kintsch, 1988, 1998). 

It seems to be of relevance in the improvement of statistics education to make 
statistics courses more attractive, interesting, and enjoyable. One of the ways this might 
be achieved is by making the courses less theoretical. We think that a small experiment 
may engage students in a more active way, it may be fun to analyse data that are collected 
by the students themselves, and it may foster the notion of relevance of statistics.  

A final result in our study was that Effort(T) had no significant relation with 
Achievement. Both Effort(T) and Persistence(T) were determined by the tutors. Effort(T) 
reflected the amount of time students studied, and whether students prepared themselves, 
attended lectures, or were actively involved in the discussion during group meetings. 
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Effort per se seemed to have a minor effect on achievement. What counts seems to be the 
way students study. In our study, Persistence(T) contributes significantly to exam 
performance. Students who did not quit that easily, who persisted, who turned to their 
lecture notes or their books, or consulted a teacher when they were not able to solve a 
statistical problem, those students did better on the exam. This result suggests that 
persisting is the best way to study statistics. It is in line with research in other subjects 
that established the importance of learning strategies and mastery goals for achievement 
in educational settings. (see e.g., Ames, 1992; Boekaerts; 1997; Pintrich, 2000; Dweck, 
2000). 

This finding may also be important for educational purposes. In the teaching of 
statistics, students should be stimulated to try to solve their problems. They should try to 
persist instead of quitting all too easily. This can be done by guiding them through the 
topics and by pointing them in the correct direction, instead of giving the solution to a 
problem promptly. Persisting and learning from mastering their own difficulties may be 
the most valuable way of learning. 

The student population from which we recruited our participants consists largely of 
female students. Consequently, most of our participants were female (79 female versus 
15 male). This could have affected our results. However, t tests on all the core variables 
(Control, Stable Explanation, Outcome Expectancy, Affect, Effort(T), Persistence(T), and 
Achievement) in our models showed no significant differences between the female and 
male students. Therefore, the fact that the majority of our participants was female seems 
not to affect the motivational processes that were studied. 

The tutor ratings that we used to measure effort and persistence are another limitation 
of our study. We instructed the tutors in great detail and asked them to record students’ 
activities that we hold indicative for effort and persistence. We are confident that the 
ratings of the tutors are a quite valid and reliable measurement of the relevant behaviour. 
Still these ratings only reflect observable, external behaviour. Consequently we cannot 
discuss internal processes of reflection and mental activity. Our results only pertain to 
self-reported cognitions, affect, and observed behaviour.  

In the present study only first-year students were studied. In future research second- 
and third-year students could be studied. Secondly, our results could be corroborated in 
studies with a larger sample. In our study a rather small sample was used (n = 94). It 
could also be investigated how in a practical educational context we can determine 
whether students persist during studying statistics. How can students optimally be guided 
to the correct solution of the problems? Will this reduce the perception of stable negative 
causes for failure and enhance the notion of control? Will such a reduction lead to a 
positive expectation of future study activities and to more enjoyment? Will all this 
eventually lead to more persistence and better results on the exam? Finally, further 
research is needed to investigate additional ways statistics education can be made more 
enjoyable. In the past, our department spent most attention on how to make lectures more 
informative, to select the best instruction books, and to develop assignments that are 
mainly educational. Now our attention has somewhat shifted toward making the courses 
more attractive, interesting, and enjoyable. We have tried to make the courses less 
theoretical by introducing a small experiment. Even so, future research may include 
investigating the most effective ways of making statistics education more enjoyable.  
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APPENDIX 
 
Example questions from the exam at the end of course (used for the measurement of 
achievement). 
 
1. In a sample of 101 newborn babies, the mean birth weight is 3.8 kg and the standard 

deviation is 0.85. The null hypothesis is H0: μ = 4 kg. 
If this null hypothesis holds, then: 

a. The probability that we will find a sample mean smaller than or equal to 3.8 kg is 50% 
b. The probability that we will find a sample mean smaller than or equal to 3.8 kg is 80% 
c. The probability that we will find a sample mean smaller than or equal to 3.8 kg is less than 

50% 
d. The probability that we will find a sample mean smaller than or equal to 3.8 kg is greater 

than 50% 
 
2. Given the same sample as in question 1, we are testing H0: μ = 4 kg against H1: μ ≠ 4 

kg. The p-value of the sample mean of 3.8 kg is: 
a.  p ≤ .01 
b. .01 < p ≤ .02 
c. .02 < p ≤ .05 
d.  p > .05 
 
3. Given the same sample as in question 1, we are again testing H0: μ = 4 kg against H1: 

μ ≠ 4 kg. Suppose the null hypothesis is rejected at α = .10. What is the implication of 
this α = .10? 

a. In 10 % we will wrongfully conclude that H0: μ = 4 kg holds. 
b. In 10 % we will wrongfully conclude that H1: μ ≠ 4 kg holds. 
c. In 5 % we will wrongfully conclude that H0: μ = 4 kg holds. 
d. In 5 % we will wrongfully conclude that H1: μ ≠ 4 kg holds. 
 
4. The effects of 3 instructional methods on comprehensibility of the information 

(SCORE) were investigated. The 3 methods were: a standard method and 2 
experimental methods (experimental method 1 and experimental method 2). The 
coding of the dummy variables was as follows: 

 
       D_EXP1    D_EXP2     
Standard method   0   0 
Experimental method 1 1   0 
Experimental method 2 0   1     
 
It is tested whether the comprehensibility of the information (SCORE) for all methods is 
equal (H0), or if at least one of the three methods is different (H1). 
Part of the output of the SPSS analysis is presented below: 
 
ANOVA 

Model Sum of Squares df Mean Square F Sig. 
1 Regression 3341.722 2 1670.861 6.317 .005 

Residual 8727.917 33 264.482  
Total 12069.639 35  
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Predictors: (Constant), D_EXP2, D_EXP1 
Dependent Variable: SCORE 
 
Coefficients 

Unstandardized
Coefficients

Standardized 
Coefficients

t Sig.

Model B Std. Error Beta 
1 (Constant) 37.750 4.695 8.041 .000

D_EXP1 14.250 6.639 .367 2.146 .039
D_EXP2 23.417 6.639 .603 3.527 .001

Dependent Variable: SCORE 
 
Question: What conclusion can be drawn? Assume α = 0.05. 
a. There is a difference between the instructional methods because the p-value of F is 

smaller than 0.05.  
b. There is a difference between the instructional methods because the p-value of F is 

smaller than 0.05/2 =0.025. 
c. There is no difference between the instructional methods because the p-value of F is 

smaller than 0.05/2 =0.025. 
d. There is no difference between the instructional methods because the p-value of F is 

smaller than 0.05. 
 
Given the same research and the same results as in question 4, suppose that the F-test 
indicates a difference between the three methods. Which groups differ significantly? 
Assume α = 0.01. 
a. Each method differs significantly from the others. 
b. The standard method differs significantly from experimental method 1. 
c. The standard method differs significantly from experimental method 2. 
d.  The experimental method 1 differs significantly from experimental method 2. 
 
5. Given the same research and the same results as in question 4, what is the proportion 
of explained variance in the SCORE variable? 
a. 0.28 
b. 0.72 
c. 0.38 
d. 0.86 
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ABSTRACT 

 
We investigate the use of external visual representations in probability problem 
solving. Twenty-six students enrolled in an introductory statistics course for social 
sciences graduate students (post-baccalaureate) solved eight probability problems in 
a structured interview format. Results show that students spontaneously use self-
generated external visual representations while solving probability problems. The 
types of visual representations used include: reorganization of the given information, 
pictures, novel schematic representations, trees, outcome listings, contingency tables, 
and Venn diagrams. The frequency of use of each of these different external visual 
representations depended on the type of probability problem being solved. We 
interpret these findings as showing that problem solvers attempt to select 
representations appropriate to the problem structure, and that the appropriateness of 
the representation is determined by the problem’s underlying schema.  
 
Keywords: Statistics education research; Probability problem solving; Visual 
representations; Trees; Outcome listings; Venn diagrams 
 

1. INTRODUCTION 
 
Consider the following probability problem: 
 
An apartment building has four parking spaces in front (call them A, B, C, and D). 
There are four apartments in the building (#1, #2, #3, and #4), and each apartment has 
a single occupant with a single car. Every evening, all four occupants come home and 
park in a randomly chosen space. What is the probability that this evening they park 
so that the occupant of Apt #1 is in space A, the occupant of #2 is in space B, the 
occupant of #3 in space C, and the occupant of #4 in space D? 
 
How would you go about solving this problem? Many people report visualizing the 

cars and parking spaces. After that, strategies for solving the problem tend to diverge (as 
do success rates). One of our points in presenting this problem (used in the present study) 
is that probability word problems are often simple to pose, yet difficult for many students 
to solve. Another point is that visualization and visual solution methods, such as self-
generated external pictures and diagrams, can be very helpful in solving some probability 
problems. 
                                                      
Statistics Education Research Journal, 6(1), 22-50, http://www.stat.auckland.ac.nz/serj 
© International Association for Statistical Education (IASE/ISI), May, 2007 
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Probability problem solving (PPS) can be quite difficult for students (Garfield & 
Ahlgren, 1988; Konold, 1989; O’Connell, 1993; Pollatsek, Well, Konold, Hardiman & 
Cobb, 1987), even when the mathematics involved is simple. Of course, other types of 
mathematics word problems are also difficult for many students, perhaps because solving 
them requires the problem solver to think abstractly about situations, and then model 
these situations using mathematical concepts. However, some researchers (Garfield & 
Ahlgren, 1988; Konold, 1989) have suggested that probability problem solving may be 
especially difficult because people have natural misconceptions about probabilistic 
concepts (e.g., Kahneman, Slovic, & Tversky, 1982).  

Recommendations have been made for how to teach concepts in probability (e.g., 
Bantanero, Godino, & Roa, 2004; Gelman & Nolan, 2002; Gigerenzer, 1994; Keeler & 
Steinhorst, 2001; Konold, 1995, 1996; Sedlmeier & Gigerenzer, 2001). However, as 
pointed out by Garfield and Ahlgren (1988), only a few articles have tried to gather 
empirical evidence on the processes by which students solve probability problems. In one 
such study, O’Connell (1999; O’Connell & Corter, 1993) described a pedagogical model 
of recommended process steps by which students should solve probability problems. 
O’Connell (1993, 1999) classified student errors in probability problem solving, showing 
that they could be grouped into several categories: text comprehension errors, conceptual 
errors, procedural errors, and computational errors. Konold, Pollatsek, Well, and 
Lohmeier, and Lipson (1993) documented inconsistencies in probabilistic reasoning and 
discussed implications for probability problem solving. Due to this paucity of research on 
PPS, Chance and Garfield (2002) call for more research on the cognitive processes of 
probability problem solvers using innovative methods such as videotaped clinical 
interviews. The present study is intended as a step in that direction. 
 
1.1.  IS THERE A SPECIAL ROLE FOR VISUALIZATION IN PROBABILITY 

PROBLEM SOLVING? 
 
In studying the cognitive processes of probability problem solvers, one issue that 

deserves special attention is the role of visualization. After all, anecdotal evidence 
suggests that visualization plays an important role in how experts solve probability 
problems (and mathematics problems generally). Also, informal observations of how 
students in statistics courses solve probability problems provide ample evidence that they 
sometimes spontaneously use visual devices (e.g., outcome trees) in their written work. 
Finally, Sedlmeier (2000) has suggested that common cognitive “fallacies” in reasoning 
about conditional probabilities may be ameliorated by graphical representations. 
Visualization may be especially important for probabilistic reasoning and probability 
problem solving because of the inherently abstract nature of the concepts introduced in 
probability. 

To better understand the literature on visualization in mathematics problem solving, it 
is important to distinguish between internal visual representations (i.e., “mental 
imagery”) and external visual representations (e.g., graphs, charts, pictures, etc.). Another 
distinction about the way external representations may be used in problem solving 
concerns whether the external representations are provided to the student by an instructor 
or experimenter, or are spontaneously generated by the student in the course of solving 
the problem. Although there is an extensive literature on how instructor-provided 
graphics can aid in scientific problem solving (summarized below), there has been little 
or no research on students’ spontaneous creation and use of pictures, graphics and other 
visual devices in the course of mathematics problem-solving activities. In the present 
study, we use written and think-aloud protocols to study when and why probability 
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problem solvers spontaneously produce external visual representations in their written 
work (when not required to do so), and what types of visual representations they employ.  

 
1.2.  PREVIOUS RESEARCH ON EXTERNAL VISUAL REPRESENTATIONS 

AND PROBLEM SOLVING 
 
Results from previous research on scientific problem solving by schoolchildren (e.g., 

Lehrer & Schauble, 1998; Penner, Giles, Lehrer, & Schauble, 1996) and by high school 
and college students (e.g., Hall, Bailey, & Tillman, 1997; Hegarty & Just, 1993; 
Kaufmann, 1990; Mayer, 1989; Mayer & Anderson, 1991, 1992; Mayer & Gallini, 1990; 
Mayer, Mautone, & Prothero, 2002; Molitor, Ballstaedt, & Mandl, 1989; Santos-Trigo, 
1996; B. Tversky, 2001) suggest that experimenter-provided external visual 
representations can aid scientific problem solving. The visual representations investigated 
in these studies ranged from diagrams that accompanied text (Hall, Bailey, & Tillman, 
1997; Mayer, 1989; Mayer & Anderson, 1991, 1992; Mayer & Gallini, 1990; Mayer, 
Mautone, & Prothero, 2002) to actual physical models of scientific systems (Lehrer & 
Schauble, 1998; Penner, Giles, Lehrer, & Schauble, 1996). In spite of the wide range of 
external visual representations used in these studies, a common finding was that 
experimenter-provided external visuals often facilitate problem-solving success. Many of 
the studies also conclude that such external visual representations can aid in the 
development of student understanding of physical systems and mechanisms. 

Incidentally, it is likely that individuals vary in the extent to which they use and 
benefit from visual representations. Some researchers in this area (e.g., Hegarty & 
Kozhevnikov, 1999; Kozhevnikov, Hegarty, & Mayer, 2002) have taken an individual 
differences perspective, grouping problem solvers into one of several types: those who 
tend to use verbal representations, and those who primarily use visual/spatial 
representations. Kozhevnikov et al. (2002) suggest that the visualizer group can be 
further split into object visualizers and spatial visualizers, with spatial visualizers 
showing some advantages in scientific and mathematical tasks. 

Research conducted specifically in the domain of mathematics has also shown that 
experimenter-provided external visual representations can be useful in mathematics 
problem solving (e.g., Sedlmeier & Gigerenzer, 2001; Koedinger & Anderson, 1997; 
Nemirovsky, 1994). In particular, a number of studies (e.g., Hollebrands, 2003; Hannafin, 
Burruss, & Little, 2001; Hannafin & Scott, 1998) have found that the use of Geometer’s 
Sketchpad®, a geometry graphing computer program, can be helpful in developing 
students’ concepts and problem solving in geometry. Schwartz and Martin (2004) 
investigated the use of graphical tools in statistics instruction and found that 
experimenter-prompted graphical “invention activities” by students led to significant 
gains in understanding of statistical concepts. 

Previous work (e.g., Russell, 2000; Zahner & Corter, 2002) in our own lab has shown 
that most probability problem solvers choose to use external visual representations while 
solving problems (after being taught the use of such visuals in an introductory statistics 
course), and that a wide variety of such external visual devices are used. External visual 
representations used by probability problem solvers include at least these types: graphs, 
tree diagrams, contingency tables, Venn diagrams, and pictures. Arguably, formulas and 
mathematical symbols could be included in this list, because they incorporate visuospatial 
relationships (cf. Presmeg, 1986). However, their usefulness in solving probability 
problems is not in question. 
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1.3.  WHY ARE EXTERNAL VISUAL REPRESENTATIONS USEFUL IN 
PROBLEM SOLVING? 

 
In order to use research results on visualization and problem solving to improve 

mathematics teaching and learning, it is important to ask why external visual 
representations are useful in mathematics problem solving. One possible answer to this 
question is that external visual representations help to augment cognitive capabilities in 
certain ways (e.g., Lowrie & Kay, 2001; Novick, 2001; Qin & Simon, 1995), for example 
by aiding memory. Tversky (2001) lists a number of possible functions of external 
diagrams and visual devices, including attracting attention, recording information and 
supporting memory, communication, providing models, and facilitating inference and 
discovery. Another possibility is that using multiple representations of a problem 
(including visual ones) leads to a fuller understanding of the problem and an increased 
“depth of processing” (Logie & Baddeley, 1990; Mayer, 1989, 2001; Mayer & Gallini, 
1990). Other potential explanations for the use of external visual representations include 
the possibility that such representations can help problem solvers build a mental model of 
the described problem situation (Schwartz & Black, 1996). Finally, for certain problems 
the graphical devices may be used as a solution tool in a more specific way: for example, 
reading a value from a graph, or counting outcomes in an outcome tree. Alternatively, it 
might be that there is no benefit in using external visual representations, rather their use is 
just an epiphenomenon, a reaction to training from classroom instruction.  

Of course, these accounts of why visualizations might be useful are not all mutually 
exclusive or contradictory. But only fragmentary data exist that might support or discredit 
any of these explanations. Some hints might come from studies examining when problem 
solvers choose to use external visual representations. For example, there is some evidence 
that both internal (Hampson & Morris, 1990) and external (Lowrie & Kay, 2001; Zahner 
& Corter, 2002) visual representations tend to be used more for unfamiliar or more 
difficult problems. This observation seems to support certain explanations (e.g., visuals as 
supporting memory, or facilitating inference and discovery) more than others.  

 
1.4.  THE PRESENT STUDY 

 
This study focuses on the use of external visual representations in probability problem 

solving (PPS). We are interested in what types of problems tend to elicit use of visual 
representations, how and when external visual representations are used in PPS, and 
finally, if external visual representations facilitate correct solution of the problems. We 
used a variety of problem types, in order to investigate if the usefulness of visuals and the 
type of visual device chosen by the problem solver depends on specific aspects of the 
problem being solved. Specifically, we ask: Are particular types of representations used 
with particular problem topics (for example, problems dealing with permutations)? Also, 
we investigate if external visual representations are used more often with unfamiliar types 
of problems, because the student may have a higher cognitive load in these cases, or 
because the elicitation of a familiar problem-solving schema may be less likely.  

As background to the present work, we assume that the process of solving a 
probability word problem can be broken down into roughly sequential stages (cf. Kintsch 
& Greeno, 1985; Mayer, 1992; O’Connell, 1993, 1999; O’Connell & Corter, 1993; 
Reusser, 1996). These stages are assumed to be: 

i) initial problem understanding (text comprehension), 
ii) formulating the mathematical problem, 
iii) finding a solution method or schema, 
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iv) computing the answer. 
Novick and Hmelo (1994) make a more gross distinction between problem 

representation and solution procedure phases of problem solving. Consistent with this 
simpler classification, our coding scheme for written protocols of students did not attempt 
to code use of visuals separately for stages i-iii, because we do not believe this can be 
done reliably with the present data. Rather, our scheme coded two types of uses of graphs 
or other external visual representations: a) for problem understanding, mathematical 
formulation, or for selection of a solution schema (i.e., any such use in the first three 
stages above), and b) for any use in the final stage, that of actually computing a numerical 
answer. We refer to the latter type of use of visual devices under the term “computational 
method.” As an example of the first type of use, consider the use of a picture of a spinner 
or a Venn diagram to depict aspects of the probability word problem. An example of the 
second type of use of external visualizations, using them to compute an answer, would be 
counting the number of outcomes (leaves) in an outcome tree to find the denominator for 
a probability calculation.  

  Finally, we are interested in knowing if the use of external visual representations 
is associated with solution success for these probability problems. If external visual 
devices are used because they are helpful, then we ought to be able to find evidence of 
that. However, there are several factors that complicate this relationship, including the 
student’s prior knowledge of the visual devices used, student spatial and mathematical 
ability, student cognitive style and the difficulty of the problem. Alternatively, it might be 
that the use of external visual representations is associated with solution failure, because 
participants might be more likely to use visual representations when they find a problem 
confusing or difficult (cf. Hegarty & Kozhevnikov, 1999; Lowrie & Kay, 2001). 
 

2. METHOD 
 

2.1.  PARTICIPANTS  
 
Twenty-six students were recruited from introductory probability and statistical 

inference classes during the Fall semester of 2002 from an urban college of education and 
psychology in the U.S.A. All participants were graduate students (post-baccalaureate) in 
education and social sciences, with widely varying math backgrounds. Participants were 
each paid ten dollars. They were informed that they were going to participate in a study 
of probability problem solving, and that the primary focus of the study was on the 
methods by which students solve problems. Because all the participants were enrolled in 
the same introductory statistics class at the college, their recent curricular background in 
probability problem solving was well-controlled and known, though the degree to which 
each participant mastered the material in that course was not measured. This course 
included approximately six lectures in probability. Topics included: events and outcome 
spaces, definition of probability for equally-likely and unequally-likely events, 
combinatorics, compound events, conditional probability, independence of events, and 
Bayes’ Rule. 
 
2.2.  MATERIALS  

 
Each respondent was asked to solve eight probability problems. This set of eight 

problems (see Appendix) was designed to include four different probability topics 
(“problem types”) each represented at two different levels of typicality for that topic. The 
four different problem types were labeled: “Combinations,” “Sequential,” 
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“Permutations,” and “Conditional probability.” The problems representing each of these 
four topics were thought to have distinct “deep structures” corresponding to four distinct 
problem schemas, tapping somewhat different sets of knowledge and solution skills. This 
factor will be referred to as “problem type.” As an example, consider Problem P1, an 
example of a Combinations problem: 

P1. There are 10 books on Mary’s bookcase. She randomly grabs 2 books to read on 
the bus. What is the probability that the 2 books are “Little Women” and “War & 
Peace”? (Both these books are on her bookshelf.) 

In the curriculum to which these participants had recently been exposed, this problem 
typically would have been solved using the formula for the number of combinations of n 
objects selected k at a time. That formula gives the number of possible outcomes in the 
sample space: 
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Then the probability of Mary selecting one particular combination (two specific 
books) can easily be calculated to be 1/45. Any problem requiring use of this formula (or 
a variant of it) is therefore assumed to share the same problem schema, and is said to be 
of the same basic Problem Type (Combinations in this case). 

 For each problem type, there was one typical variant and one atypical variant. The 
typical version was a problem that could be solved using a straightforward application of 
a standard probability formula known to have been taught in the participants’ 
introductory statistics class. The atypical version was a problem that was very unlikely to 
be isomorphic to any problem encountered in their course, and that could not be solved 
using a single application of a standard probability formula. This manipulation of 
typicality may be clarified by Table 1, which presents summaries of what we judge to be 
appropriate formula-based solutions for the typical and atypical variants of each problem 
type. These solutions are presented to show the basic underlying structure of each 
problem type, without reference to surface content, and to illustrate how each problem 
might be solved by application of one or more standard probability formulas. 

Table 1 also makes clear the types of specific problem manipulations that were used 
to create the atypical variant of each problem type. For the Combinations problem, the 
predicted solution for the typical version requires the problem solver to use the standard 
formula for the number of combinations of n things selected k at a time to calculate the 
number of possible outcomes. Our predicted solution for the atypical Combinations 
problem requires using this formula twice, once in the numerator and once in the 
denominator. For the Sequential problems, problem solvers must use the formula for 
calculating the probability of three independent events. In the typical variant the three 
events are identical, whereas in the atypical variant they are different events with 
differing probabilities. The typical variant of the Permutations problem asks how many 
different ways four items can be matched up with four “slots.” The atypical version of 
this problem asks the same question, but orders the objects only with respect to the first 
two slots. We consider this an atypical problem because the computational method does 
not correspond to straightforward application of the formula for number of permutations 
of n objects, which is known to have been taught in the participants’ introductory 
statistics course. Note that this atypical variant is actually simpler computationally than 
its typical version. For the Conditional Probability problems, the typical version closely 
resembles examples used in the students’ introductory statistics course, and requires the 
problem solver to use the formula for conditional probability (twice). The atypical variant 
adds a final step, in which the formula must be used a third time.  
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Table 1. Example formula-based solutions for typical and 
 atypical variants of each problem type  

 
Across two different forms (A and B) of the test booklet, each of the eight problems 

was formulated with two different cover stories, or surface content. Surface content was 
counterbalanced with problem typicality across test forms. For example, the typical 
Combinations problem P1 given above involved books on a bookshelf, so a participant 
who saw that problem would see an atypical Combinations problem involving cookies in 
a cookie jar. For another participant who saw the second test form, the atypical 
Combinations problem would involve books on a bookshelf, and the typical version 
would involve cookies in a cookie jar. The Appendix shows only test form A. 
 
2.3.  PROCEDURE  

 
A structured interviewing protocol (cf. Ginsburg, 1997) was developed for use in the 

interviews, and was designed mainly to elicit a reasonable level of detail in the participant 
protocols. The same interviewer worked with all of the participants, interviewing only 
one participant at a time. Participants were asked to think aloud while solving the 
problems, and also to show their written work with provided pen and paper. The task was 
not timed. However, most participants finished in less than an hour. A probability 
formula sheet was available to them at all times (but left face down), though no 
participant was observed to use it. A videotape recorder was used to capture the 
participants’ work and student/interviewer comments. The present analyses mainly focus 
on the participants’ written work, though the verbal transcripts were analyzed as well. 

The interviewer stepped in with verbal prompts in any of four circumstances, to elicit 
continuation of the work or more detail about the participant’s solution process. The first 

Problem Type Typical Atypical 

Combinations 
)!(!

!
knk

nCkn −
=  

 
where n = total number of books 
           k = number selected 

)!(!
!

)!(!
!

)(

knk
n

kmk
m

C
C

AP
kn

km

−

−
==  

where n = total number of books  
           m = number of novels 
           k = number selected       
 

Sequential )()()()( 321 APAPAPAAAP =∩∩  
),()()()( 321321 APAPAPAAAP =∩∩  

A1, A2, A3 not necessarily equal 
 

Permutations # outcomes = n! = (n)(n-1)…(2)(1) 
where n = number of objects 

 
# outcomes = (n)(n-1) 
where n = number of objects 
 

Conditional 
Probability 

)()|()(
)()|()(

)()()(

ccc

c

APABPBAP
APABPBAP

BAPBAPBP

×=∩
×=∩

∩+∩=
 )()|()(

)()|()(
)()()(

ccc

c

APABPBAP
APABPBAP

BAPBAPBP

×=∩
×=∩

∩+∩=

)(
)()|(

BP
BAPBAP ∩

=  



 29 

 

 

circumstance was if the participant could not see any way to begin solving the problem. 
In this situation the script called for the interviewer to ask, “In general, what would be a 
good first step in solving this problem?” with other follow-up questions (“How would 
you apply it in this case?”) if the first prompt did not elicit useful work. The second type 
of circumstance in which the interviewer stepped in was when the participant paused for 
a long time (more than 30 seconds) without thinking aloud or writing. This could indicate 
either that the participant was thinking silently or was at an impasse, and was responded 
to with “What are you thinking?” and other follow-up prompts (“Let’s back up and look 
at this again. How else could you solve this?”). The third situation in which prompting 
occurred was when the participant’s verbal or written process explanations lacked 
sufficient detail, for example, consisting of only a few calculations with no explanation 
(“Can you explain how you arrived at this?”). The fourth situation eliciting interviewer 
intervention was when the participant indicated that he or she was finished with the 
problem. In most cases, this occurred when the participant had arrived at what he or she 
believed was the correct answer. In other cases, this was because the participant gave up 
on solving the problem. In either case, the interviewer then asked the participant to 
explain in detail all of the steps used in the solution attempt.  
 

Coding of the written protocols The focus of the present study is on use of external 
visual representations in problem solving and on the methods used to solve problems. 
Thus, the analyses reported in the present study focus mainly on coding of the 
participants’ written work. Three particular aspects of the written problem solutions were 
coded, based upon a scheme developed in previous research (Russell, 2000). The first 
coded aspect was whether or not the participant gave the correct answer to the problem. 
The second aspect coded, described in more detail below, was the type of external visual 
representation used (if any) by the participant. The third aspect coded, also described in 
more detail in the next section, was the type of general computational method used to 
solve the problem. Here the identified types were: formula, graphical, or procedural.  

 
External visual representations Written protocols for each problem solution were 

coded for use of different types of external visual representations. The coded types of 
external visual representation included pictures, outcome listings, trees, contingency 
tables, Venn diagrams, novel schematic representations, and spatial reorganization of the 
given information.  

An external visual representation was coded as a picture if it attempted to represent 
the real-world situation conveyed in the problem in a non-symbolic, pictorial way. For 
example, in a problem about use of a spinner with separate areas marked “red,” “blue,” 
and so on, any picture of a spinner type device would count as a picture (see Figure 1 for 
an example). A visual device was coded as an outcome listing if it gave a list of outcomes 
in some relevant outcome space, for example: {HH, HT, TH, TT} as the outcomes space 
for the experiment of flipping a coin twice. A visual representation was coded as a tree 
diagram if the participant attempted to organize the information from the problem in 
either a complete or a partial outcome tree. An example of the use of a tree diagram is 
shown in Figure 2. A visual representation was coded as a contingency table if the 
participant presented the information from the problem as probabilities or frequencies in 
a two-way table. A visual representation was coded as a Venn diagram if the participant 
used a Venn diagram to represent set relationships.  
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Figure 1. A participant’s written work for the typical version of the Sequential problem, 

illustrating use of a picture 
 

 
 

 
 
Figure 2. A participant’s written work for the typical version of the Sequential problem, 

illustrating use of an outcome tree (and a picture) 
 
Besides these standard pictorial and schematic representations used in previous 

studies (Russell, 2000; Zahner & Corter, 2002), we created two additional coding 
categories to cover cases not handled by the above classes. The first is a code indicating 
any attempt to invent and use what we termed a “novel schematic representation.” Use of 
the term “novel” is meant to denote a schematic visual device that was not taught in the 
introductory class the participants were taking or had taken, nor used in standard 
probability texts. It is not meant to imply that the student invented and used a previously 
unknown type of visual device. An example of this category is a graphic used by several 
subjects for the Permutations problems: a list of four names whose elements are 
connected by lines or arrows to elements in a list of four numbers (see Figure 3). This 
type of representation (that we would classify as a directed graph) is apparently an 
attempt to develop or discover the correct outcome space for the problem. This type of 
representation uses spatial information and schematic elements (lines or arcs) to represent 
relational aspects of the problem, and is thus different from a simple outcome listing. The 
second additional coding category was defined to include any spatial reorganization of 
the given information. Use of a spatial organization scheme for information is not a 
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formal graphical representation nor a purely pictorial representation. However, we have 
included this coding category because we have observed frequent use of spatially-
organized rewriting of information to aid in problem solving. In the present study, many 
participants were observed to line up corresponding given probabilities or conditional 
probabilities (see Figure 4). This practice may make it easier for novice problem solvers 
to check for needed or missing information, to break down problem solution into 
subparts, or to make visual associations to relevant formulas.  

 

 
 

Figure 3. A participant’s written work for typical version of the Permutation problem, 
illustrating use of a novel schematic representation 

 

 
 

Figure 4. A participant’s written work for the atypical version of the Conditional 
problem, illustrating use of spatial reorganization of given information 

 
Computational method We also coded the computational method used by the 

problem solver, that is, the means by which the problem solver actually computes the 
answer required by the problem. We did this because in the course of coding the student 
protocols, we noticed that sometimes visual representations were used very early in the 
problem solving process, for example while the problem solver seemed to be still trying 
to understand the given problem information or to classify the problem, and sometimes 
later in the solution process, for example when the subject was trying to compute the 
actual numerical answer. In an effort to begin to understand what specific role or function 
external visual representations are serving in probability problem solving, we decided to 
separately code the method by which the problem solver actually computed the numerical 
answer required in each of these problems. We classified this later stage of each problem-
solving protocol into three broad classes of computational method: formula, procedural, 
and graphical. 
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The computational method was characterized as formula-based problem solving if the 
participant wrote down an explicit (standard) formula, then substituted in quantities and 
solved the problem. An example of a formula-based computational method would be the 
use of the combinations formula followed by the necessary calculations: 5C2 = 5!/(2!)(3!) 
= (5)(4)/(2)(1) = 10. This complete and rather formal method was distinguished from a 
procedural approach, which was used to code solutions carrying out a calculation 
involving only numbers without reference to any general formula or underlying principle. 
An example of a procedural approach would be if the participant calculated the 
probability of getting three heads in three flips of a coin by simply multiplying 
(1/2)(1/2)(1/2) = 1/8 without indicating any rationale for that procedure. A computational 
method was considered graphical if the subject used an external visual device to solve 
the problem, but only if the graphical device was judged to be instrumental to the method 
by which the student arrived at the actual numerical solution. An example of a graphical 
computational method would be if the subject multiplied two conditional probabilities 
that were taken from branches of a tree diagram.  

No computational method was coded if the participant did not attempt to solve the 
problem. Occasionally, multiple computational methods were coded for a single problem. 
This occurred only when a participant attempted the problem, then abandoned that 
attempt, and attempted another computational method.  

In order to assess reliability of the coding of the written protocols for external 
representations and computation method, a second rater coded all student solutions. 
Initial percent agreement between the two raters was over 90% for both external 
representation and computation method. Discrepancies were discussed by the two raters 
and the resulting consensus was used in all analyses reported.  
 

Coding of audio protocols In order to better understand how the external visual 
representations are being used by problem solvers, we also transcribed and examined the 
audio portion of the videotapes capturing the participants’ think-aloud protocols. Each 
utterance in a participant’s audio transcript was coded to indicate if the participant was 
engaged in either of two broad phases or stages of problem solution: 1) a problem-
representation phase that involves understanding the problem text and reformulating the 
problem in mathematical form; or 2) a solution phase, that involves selecting a solution 
strategy and implementing it. The video track of the tapes focused on participants’ 
written inscriptions, including use of external representations. The video tapes were used 
to match uses of external visual devices with verbal statements by the participants about 
their thoughts and actions and the general phase of problem solving that they were 
engaged in: either problem representation or strategy selection and solution. 
 
2.4.  RESULTS  

 
Preliminary analyses showed that individual problems and problem types varied 

considerably in difficulty. The rightmost column in the Appendix shows the proportion of 
subjects who correctly solved each problem. These proportions vary from a low of .08 for 
Problem P8 (Conditional probability, atypical) to .73 (for Problems P3 and P4, the 
typical and atypical Sequential problems). Regarding problem type, it was found that 
participants were most successful at solving the Sequential problems (.73 correct overall), 
followed by the Permutations problems (.48), then the Combinations problems (.29), and 
finally the Conditional probability problems (.25). These differences in solution rate 
among problem types were significant: in a log-linear analysis with factors Problem 
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Type, Typicality, and Correctness (the dependent variable), the Problem Type × 
Correctness association was significant (χ2(3) = 31.56, p < .05). 

We were also interested in whether the atypical variant of each problem type was 
more difficult for problem solvers than the typical variant. Results indicated that typical 
and atypical variants did not differ in mean difficulty across all four problem types: mean 
proportion correct for the four typical problems encountered by each subject was .43, 
whereas for the four atypical problems it was .44. However, it is clear from the solution 
rate for individual problems (see Appendix) that the typical-atypical difference in 
solution rates varies across problem types. This interaction was tested by the three-way 
association of Problem Type × Typicality × Correctness in the loglinear analysis 
described above. This association was significant, (χ2(3) = 17.00, p <.05). Consequently, 
it is necessary to examine the effects of typicality separately for each problem type.  

In particular, a difference in the expected direction was found for the Conditional 
Probability problems, with 42% of participants correctly solving the typical version of 
the problem versus only 8% for the atypical version. Unexpectedly, for the Combinations 
problem the solution rate for the atypical variant of the problem was much higher (at 
73%) than for the typical variant (at 12%). In order to understand this unexpected result, 
we analyzed participants’ written protocols to identify the specific solution methods used 
by participants for these problems. We found that most participants did not use the 
combinations formula at all to solve the atypical variant of the Combinations problem; 
rather they tended to solve this problem by treating it as a “sequential” problem involving 
sampling without replacement. For example, the problem can be solved using the 
formula: )|()()( 12121 AAPAPAAP =∩ . 

Inspection of the individual student protocols revealed that 92% (24 out of 26) of the 
participants selected this alternate method to solve the atypical Combinations problems. 
This probably occurred because the atypical problem is extremely difficult using the 
Combinations approach: the only two participants who tried this approach both failed to 
solve it. In contrast, exactly half of the 24 participants who adopted the sequential-events 
approach for the atypical variant succeeded in solving it. Note that many participants 
(73%) also tried to solve the typical Combinations problem using a sequential-events 
approach. However, all of these subjects failed to solve the problem, contributing to the 
overall low solution rate for the typical version. The difference in apparent difficulty of 
the sequential approach to these two problems probably involves that fact that in the 
typical Combinations problem, order is not important (but the use of the sequential 
solution method tends to elicit a solution attempt involving ordered pairs). Thus, many 
participants gave the answer 1/90 for this problem using the sequential approach, whereas 
the correct answer is 1/45. In the atypical variant, in contrast, there is a symmetry to the 
outcomes in the outcome space such that order is irrelevant.  

 
What kinds of external visual representations are used? For each specific form of 

external visual representation, we calculated the percentage of participants who used that 
representation at least once. As shown in Table 2, we found that participants most often 
used reorganization of the given information (used at least once by 96.2% of the 
participants), followed by use of pictures (by 84.6% of the participants), novel schematic 
representations (65.4% of the participants), trees (53.8%), outcome listings (38.5%), 
contingency tables (7.7%) and finally Venn diagrams (3.8%).  
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Table 2. Frequency and percentage of participants using each type of external visual 
representation at least once, with frequency and percentage use of each representation 

across all problem solutions 

 
Are different types of external visual representations used with different types of 

problems? We investigated the relationship between the type or topic of the probability 
problem (Combinations, Sequential, Permutations, and Conditional) and the type of 
representation that participants chose to use for it. In this analysis no distinction was 
made between the typical and atypical versions of each problem type. Table 3 
summarizes how often each type of external representation was used for each type of 
problem. Because there were two problems of each type, each entry in this table is 
calculated across a total of 52 problem solutions.  
 

Table 3. Frequency and percentage of problems of each type for which a given type of 
external representation was used (out of N=52 problem solutions), with 2χ goodness-of 
fit tests evaluating differences in the frequencies of use of each representation across the 

four problem types 

*p < .05 
 
For each row of the table, we used a chi-square goodness-of-fit test to test if each 

visual representation was used with unequal frequencies across problem types (i.e. 
columns). The chi-square goodness-of-fit test revealed that the frequency of use of 
reorganization of given information differed significantly across problem types (χ2(3)= 
47.6, p < .05). This representation was used most often for the Conditional Probability 
problems (73.1% of the time) and the Combinations problems (50%). Usage was also 
distributed unequally across problem type for outcome listings (χ2(3) = 9.2, p < .05), with 
the most frequent use being for Combinations (17.3%) and Sequential (13.5%) problems. 
Use of Novel schematic representations was also distributed unequally across problem 
type (χ2(3) = 72.0, p < .05), because these representations were used only for the 
Permutations problems (46.2% of the time). Novel schematic devices may be tried 
especially often for the specific permutations problems used here because these problems 

 By participant (N=26) By problem solution (N=208) 
Representation Frequency % Frequency % 
Reorganize 25 96.2 72 34.6 
Outcome Listings 10 38.5 20 9.6 
Contingency Tables 2 7.7 6 2.9 
Venn Diagrams 1 3.8 1 0.5 
Trees 14 53.8 27 13.0 
Novel Schematic 17 65.4 24 11.5 
Pictures 22 84.6 64 30.8 

Representation Combinations Sequential Permutations Conditional χ2(3) 
 Freq % Freq % Freq % Freq %  
Reorganize 26 50.0 4 7.7 4 7.7 38 73.1 47.6* 
Outcome Listings 9 17.3 7 13.5 4 7.7 0 0.0 9.2* 
Contingency Tables 0 0.0 0 0.0 4 7.7 2 3.8 --- 
Venn Diagrams 0 0.0 0 0.0 0 0.0 1 1.9 --- 
Trees 5 9.6 6 11.5 5 9.6 11 21.2 3.7 
Novel Schematic 0 0.0 0 0.0 24 46.2 0 0.0 72.0* 
Pictures 16 30.8 31 59.6 15 28.8 2 3.8 26.4* 



 35 

 

 

are difficult for novices to recognize as permutation problems. That is because the cover 
stories for these particular permutation problems involve matching two sets of entities 
(e.g., tutors with students) rather than simply ordering one set of objects. This situation 
does not plug neatly into any formula or solution schema that students had been taught. 
This situation apparently spurred participants to try to understand these relatively unusual 
problems by inventing or adapting “novel” graphical representations.  

Also, the use of pictures was distributed unequally across problem type (χ2(3) = 26.4, 
p < .05), due to very frequent use of pictures for the Sequential problems (in 59.6% of 
problem solutions), Combinations (30.8%), and Permutations (28.8%) and infrequent use 
(3.8%) for the Conditional Probability problems. The use of trees did not vary 
significantly across problem type (χ2(3) = 3.7, p < .05). Inspection of Table 3 reveals that 
trees were used about 10% of the time or more for all four problem types. This result 
seems to show that at least for these types of probability problems, trees were perceived 
by study participants as widely applicable. The use of Contingency tables and Venn 
diagrams was too infrequent to be tested in the manner. 

Sometimes problem solvers used more than one form of external visual representation 
in a single problem solution. Figure 5 shows the percentage of use of single and multiple 
representations across all problem solutions, separately by problem and problem type. 
Across the eight problems, multiple external visual representations were used in 23.6% of 
the problem solutions. The most common combinations of multiple representations were 
pictures with reorganization (used in 13% of the problem solutions), and pictures with 
trees (used in 6%; see Figure 2 for an example). All other instances of multiple external 
representations occurred less than 2% of the time. Multiple representations were used 
most often for Combinations and Sequential problems. This may simply reflect the fact 
that pictures were used quite often for these problem types, as shown in Table 3. 
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Figure 5. Percentage of use of single and multiple external representations in the 
problem solutions (N=208), by problem and problem type  

 
The above results showing differences in frequency of use of specific representations 

across the four problem types demonstrate that participants are selecting representations 
based on the type of problem they are trying to solve, presumably reacting to differences 
in the problem schema for the four problem types. This suggests that participants’ 
solution methods (at least, their use of external visual representations) vary depending on 
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the problem’s underlying schema or “deep structure.” We return to this issue in the 
Discussion section. 
 

Is solution success associated with use of external representations? If external 
visual devices do indeed serve some purpose for problem solvers, then we might expect 
an association between solution success and the specific external representation used (if 
any). We explored this idea by estimating the conditional probability of solution success 
given use of each type of external visual representation. The results, shown in Table 4, 
show that use of particular external visual representations was associated with higher 
rates of solution correctness for some problem types (compared to baseline performance 
for that problem type), and with lower rates of success for others. For example, the use of 
reorganization is associated with a higher rate of solution success for Combinations 
problems (.32 versus .29), but with a lower rate of success for Sequential (.50 versus .73), 
Permutations (.00 versus .48), and Conditional (.15 versus .25) problems.  

 
Table 4. Proportion of correct solutions, given the use of a particular representation, 

separately by problem type. Dashed lines indicate a cell with fewer than four uses of that 
representation (i.e., n ≤ 3). 

 
Representation Combinations Sequential Permutations Conditional 
Reorganize .32 .50 .00 .15 
Outcome Listings .43 .42 -- -- 
Contingency Tables -- -- .00 -- 
Venn Diagrams -- -- -- -- 
Trees .60 .67 .25 .25 
Novel Schematic -- -- .44 -- 
Pictures .23 .63 .59 -- 
Mean P(correct) .29 .73 .48 .25 

 
Table 4 shows that for the Combinations problems, use of reorganization, outcome 

listings, or trees were all associated with higher rates of solution success, whereas use of 
pictures was associated with a lower rate of success. Presumably, the first three types of 
representations are useful here because the essence of such combinatorics problems is to 
identify the number of outcomes in the outcome space. However, trees are not usually 
useful for problems involving simultaneous sampling of multiple objects (where order is 
not important). We therefore reexamined participants’ solutions to try to understand this 
association. We found that trees were used in only five solutions for the Combinations 
problems, and all of these were cases where the problem solver was treating the problem 
as a sequential problem rather than using the combinations formula.  

For the Sequential problems, use of any external visual representation was associated 
with a lower rate of solution success. Sequential problems were the easiest type of 
problem overall, with P(correct) = .73, so it may be that participants did not feel any need 
to call upon visual representations unless they were among the few who experienced 
difficulty with these problems.  

For the Permutations problems, use of reorganization, contingency tables, and trees 
was associated with lower rates of solution success. Contingency tables in particular do 
not seem appropriate for permutation problems, which involve ordering a single set of 
objects. Trees are rarely used to represent sequential sampling without replacement, 
though in principle they could be applied. However, use of pictures was associated with a 
higher rate of solution success for these Permutations problems. Pictures may be 
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especially useful for these particular (unusual) permutations problems, which are unusual 
in that they describe matching two sets of objects rather than ordering a single set. It may 
be that pictures facilitated the realization that the ordering of one of these sets is arbitrary.  

Finally, for the Conditional probability problem, external visual representations were 
not often used. Use of reorganization was associated with slightly lower rates of solution 
success. It is surprising that trees were not often used for these problems because their 
use for such problems was explicitly described in the course. 

Thus, this table seems to offer mixed evidence concerning the usefulness of external 
visual representations in probability problem solving. The positive associations found 
seem easily explainable. We argue that the few observed negative associations between 
external visual representations and solution success do not prove that use of external 
representations is harmful in probability problem solving. Rather, the negative 
associations may arise because external visual representations are more often called upon 
when the problem is especially difficult for the problem solver (cf. Hegarty & 
Kozhevnikov, 1999; Lowrie & Kay, 2001). 

In addition to the analysis of solution correctness given the use of a particular external 
visual representation, we correlated the number of times a participant used any external 
visual representation (which ranged from 2 to 18 for participants) and the participant’s 
overall solution success (defined as number of problems correct out of 8 for a 
participant). Results from this analysis show that there is a significant negative overall 
correlation between the use of an external visual representation and solution success (r = 
-.40, p < .05). We also found marginally significant negative correlations between use of 
certain specific representations and solution success. Specifically, the use of 
reorganization of the given information was negatively correlated with solution success (r 
= -.37, p = .06), as was the use of outcome listings (r = -.37, p = .06).  

 
What computation methods are used in PPS? Are external visual devices used in 

computing problem solutions? We calculated how often each of the three computational 
methods (formula, procedural, graphical) was used for each problem. Results showed that 
students used the procedural computational method most often (on average in 5.5 out of 8 
problems) followed by formula-based computational methods (1.19 out of 8 problems) 
and finally, graphical solutions (0.42 problems out of 8.) Thus, external visual 
representations were rarely used to compute solution. For 13.5% of problems overall, 
subjects did not complete the problem to the point of computing a solution. Multiple 
computation methods (coded only when the participant made multiple solution attempts) 
were observed only 2.4% of the time. 

 
Are different computation methods used with different problem types? We 

calculated frequency and percentage of use of each of the three types of computation 
method across problem types. Note that more than one type of solution method could be 
coded for a given solution, and that if the problem solver did not attempt to compute a 
numeric solution no computation method was coded. Results showed that formulas were 
used most often for the Conditional problems (21.2% of the time) and Combinations 
(21.2%). A procedural computation method was used most often for Sequential problems 
(84.6%), Combinations (75.0%), and Permutations (75.0%). Finally, a graphical 
computational method was used most often with the Conditional Probability problems 
(9.6%). Note that for the Conditional Probability problems the observed student solutions 
were not purely graphical; rather the tree graphs were typically used in conjunction with 
procedural calculations. We also performed a chi-square goodness-of-fit test to determine 
if each computational method was used equally often across all four problem types. The 
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results (Table 5) show differential use of the procedural computation method across 
problem types (χ2(3) = 8.57, p < .05). Frequency of use did not differ significantly across 
problem types for the procedural computation method (χ2(3) = 6.05, p > .05), nor for the 
graphical computation method (χ2(3) = 5.21, p > .05). The pattern of results in Table 5 
suggests that a procedural solution method is used relatively less often for the 
Conditional Probability problems.  
 
Table 5. Frequency and percentage of problem solutions (n = 52) of each type for which 
a given computational method was used, with 2χ goodness-of-fit tests of differences in 

frequency of use of each method across the four problem types 
 
Computational method Combinations Sequential Permutations Conditional χ2(3)  
 Freq % Freq % Freq % Freq %  
 Formulas 11 21.2 3 5.8 6 11.5 11 21.2 6.05  
 Procedural 39 75.0 44 84.6 39 75.0 21 40.4 8.57*  
 Graphical 3 5.8 3 3.8 0 0.0 5 9.6 5.21  
*p < .05 

 
Is solution success associated with computational method? We also checked for 

associations between solution success and computational method, separately by problem 
type (Table 6). Use of a formula-based computation method was associated with a higher 
rate of solution success only for Combinations problems. This makes sense, because the 
combinations problems are arguably best solved via formulas. Use of a procedural 
method was associated with the highest rates of solution success for the other three 
problem types. This is probably because if it is intuitively clear to a student how to solve 
a problem, only the computations need be written down (and the solution would be coded 
as a procedural one). Using a graphical method to aid in computing the solution was 
observed infrequently, except for the Conditional probability problems. For these 
problems, the tree can be used to organize the procedural calculations. 
 

Table 6. Proportions of correct solutions given the use of a particular computation 
method, separately by problem type. Dashed lines indicate a cell with fewer than four 

uses of that representation (i.e., n ≤ 3). 
 

Computational method Combinations Sequential Permutations Conditional 
Formula .38 -- -- .11 
Procedural .30 .77 .57 .46 
Graphical -- -- -- .30 
Mean .29 .73 .48 .25 

 
Are there differences between typical and atypical problems in the use of external 

visual representations or computational method? We investigated whether there is a 
difference in the rates of use of visual representations for the typical and atypical 
problems. To test this, for each type of representation we compared the summed 
frequency of its use for the four problems presented in their typical versions to the 
summed frequency of its use for the four problems presented in their atypical versions. 
The results show that the only significant difference in use of an external representation 
between typical and atypical problems was for pictures (paired-sample t(25) = -3.86, p < 
.05). Specifically, pictures were used more often for atypical problems (for 38.5% of 
problems) than for typical problems (23.0%), as shown in Table 7. This result is not at all 
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surprising – pictures may be used especially often to try to better understand or structure 
a difficult problem, especially one that does not plug in easily to a familiar solution 
schema. On the other hand, if the solution method is obvious, nothing is gained (and time 
and effort are expended) in drawing a picture. The only other representation used more 
often for atypical problems (though the difference is not significant) is reorganization. As 
for pictures, it can be argued that this is a general-purpose method that is often useful 
when the problem text itself is difficult to understand. 

 
Table 7. Frequency and percentage use of each type of external representation, 
separately for the four typical and four atypical problems experienced by each 

participant. (* = significant difference between the total number of uses for typical and 
atypical using a dependent samples t test, df = 25) 

 
Representation Typical Atypical 
 Freq % Freq % 
Reorganize 34 32.8 38 36.5 
Outcome Listings 12 11.5 8 7.8 
Contingency Tables 4 3.8 2 2.0 
Venn Diagrams 1 1.0 0 0.0 
 Trees 15 14.5 12 11.5 
Novel Schematic 13 12.5 11 10.5 
Pictures* 24 23.0 40 38.5 

*p < .05 
 
Table 8 reports the rates of use of different computation methods for typical versus 

atypical problems. There were no significant differences in the use of different 
computation methods for typical and atypical problems.  

 
Table 8. Percentage use of each type of computational method, summed across problems, 

separately for the four typical and four atypical problems experienced by each 
participant 

 
Computational Method Typical Atypical 
 Freq % Freq % 
Formula 15 14.5 16 15.5 
Procedural 73 70.3 70 67.3 
Graphical 6 5.8 10 10.0 

 
  
2.5.  ANALYSIS OF AUDIO PROTOCOLS 

 
As described in the Methods section, each utterance in the audio track of the session 

videotapes was coded as relevant to either the problem solvers’ problem-representation 
phase or as part of the solution execution phase (cf. Novick & Hmelo, 1994). We also 
matched any use of an external visual representation in a solution (as captured in the 
video track) to any utterances made simultaneously. This enabled us to classify uses of 
external visual representations as being associated with either or both of these broad 
temporal stages of problem solving. 

Of the 2,756 utterances in the audio transcripts, approximately 63% of them were 
coded as part of the Problem Representation phase (1,734 utterances) and approximately 
32% of the utterances were coded as Solution Execution (881 utterances). The remaining 
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utterances were not coded as part of either phase. This occurred if the utterance was a 
meta-comment or irrelevant, for example concerning how difficult the problem was or the 
temperature of the room in which the study was being conducted.  

Of the 1,734 utterances that were coded as part of the Problem Representation phase, 
417 (24.08%) of them were matched with the use of an external visual representation. Of 
the 881 utterances that were coded as involving the Solution Execution phase, 31 
utterances (3.68%) were matched with the use of an external visual representation. 
Although participants did use external visual representations during both phases of 
problem solving, they tended to use them more often during the Problem Representation 
phase than during the Solution Execution phase.  

These associations were broken down by type of representation used (Table 9). 
Results indicated that participants more often tended to use the external visual 
representations to help understand and organize the problem text (i.e., in problem 
understanding) than to select or execute solutions. This trend was especially strong for 
pictures, reorganization of the given information, and novel schematic representations. 
For example, pictures were used significantly more often during the problem 
representation phase because participants claimed that they helped them visualize the 
problem more clearly. One subject explained, “I drew the ten cookies because I needed 
literally to visualize it, and then based on what the information is in this problem, there’s 
obviously….there’s ten different types of cookies.” (Subject #16)  
 
Table 9. Total frequency of use of particular representations, by problem solving phase 
 

Representation Problem Representation Strategy & Execution 
Reorganize 169 9 
Outcome Listings 17 3 
Contingency Tables 11 3 
Venn Diagrams 4 0 
Trees 50 13 
Novel Schematic 45 1 
Pictures* 120 4 
Total 417 32 

 *p < .05 
 

3. DISCUSSION 
 

Our results show that students sometimes choose to use self-generated external visual 
representations while solving probability word problems. Presumably, this is because 
problem solvers believe that these representations are useful in solving the problems, 
because in this study they were requested merely to “show their work,” and not explicitly 
requested to produce any diagrams or other visual devices. A skeptical observer might 
worry that the verbal prompts occasionally issued by the experimenter here could have 
served as a general prompt to try alternative representations. However, Russell (2000) 
found similar levels and patterns of use of these types of representations in students’ 
actual answers to course assignments, lending confidence to the conclusions that problem 
solvers choose to use such representations because they are thought to be useful. 

The results also document what types of spatial and graphical devices are used in 
probability problem solving. Using a very broad definition of external visual 
representations, the types we identified included (in decreasing order of frequency of 
use): reorganization of the given information, pictures, novel schematic representations, 
trees, outcome listings, contingency tables, and Venn diagrams (cf. Russell, 2000). Of 
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course, our reported relative frequencies of use for these representations may not 
generalize to other curricula, other specific sets of problems, and other problem solvers. 

We found evidence that the frequency of use of each of these different external visual 
representations depends on the type of probability problem being solved. Type of 
problem refers to the basic problem schema, and not to surface characteristics of the 
problem. The types of probability problems studied here were Conditional Probability, 
Combinations, Permutations, and Sequential problems. Our results showed that pictures 
were used most often for Sequential, Combinations, and Permutations problems; outcome 
listings were used more often for Combinations and Sequential problems; trees were used 
most often for Conditional problems; novel schematic representations were used mainly 
with Permutation problems; and reorganization of given information was used more 
often with Conditional and Combinations problems. One way to interpret these findings 
is that problem solvers attempt to select representations appropriate to the problem’s 
structure, and that the appropriateness of the representation is determined by the 
problem’s solution schema, not by surface characteristics.  

However, any conclusions as to specific associations between the type of visual 
device and the problem type must be tempered by consideration of the particular set of 
problems used here to represent these general types. First, the Permutation problems 
studied here were unusual in that they described situations in which two sets of entities 
(e.g., tutors and students) were to be matched in a one-to-one fashion, but the ordering of 
one set was arbitrary, making the problem isomorphic to an ordering problem. This 
“schema mismatch” may have made these problems particularly difficult for our problem 
solvers, spurring more attempts to use novel schematic representations and pictures. 
Second, problems were experienced with our manipulation of typical and atypical 
problems for the Combinations problems. The atypical Combinations problems were 
most often solved by an alternative method, using a sequential-events approach, that 
resulted in a higher rate of success than for the typical variant of this problem type. Thus, 
although it was our intention to manipulate problem typicality in such a way that the 
atypical problems were at least as difficult as the typical ones, this did not happen for this 
problem type. In future studies, we hope to more fully refine and explore the notions of 
problem typicality and difficulty, and to try to disentangle their effects experimentally by 
careful development and piloting of materials.  

 In future research, we also hope to more fully investigate aspects of the schematic 
devices that play a part in determining the appropriateness of a representation for a given 
problem. We believe that the seven types of external visual representations studied here 
differ in some important ways. Three of the visual representations (reorganization, 
outcome listings, and contingency tables) can be considered forms of tabulation. Another 
three (Venn diagrams, trees, and novel schematic representations) could be classified as 
schematic devices, and the final type (pictures) refers to iconic representations of concrete 
aspects of the problems. We term the second group of representations (Venn diagrams, 
trees, and novel schematic representations) schematic because structural aspects of the 
graphs symbolically represent meaningful aspects of the problem.  

Novick and Hurley (2001) propose that different types of schematic devices (or 
“diagrams”) have structural aspects or properties that determine their range of 
applicability. The associations we have found between use of the different types of 
representations and specific problem types suggest that properties of the diagrams and 
properties of the problem schema are being matched (though not always successfully) by 
participants. For example, trees seem naturally appropriate for sequential problems such 
as the results of multiple coin flips or successive spins of a spinner, whereas contingency 
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tables and Venn diagrams are particularly appropriate for representing joint or compound 
events.  

These seven identified types of external representations also differ in terms of their 
degree of structure. This has implications for how broadly or how narrowly the visual 
representation may apply. Specifically, we argue that reorganization of the given 
information, pictures, and outcome listings are relatively general representations that can 
be applied to a wide variety of problems, whereas trees, contingency tables, and Venn 
diagrams have more inherent structure, thus may be applicable to a more limited set of 
problems. Finally, the category of novel schematic representations is by definition not 
limited to any specific type of structure, thus this category of representation is also widely 
applicable (although any specific novel graph may have limited applicability). However, 
novel schematic representations seem to be used only when the problem solver 
encounters a very atypical or unusual problem that does not seem to plug into any 
familiar schema. 

If we are right that reorganization of the given information, pictures, and outcome 
listings are very general tools, whereas the schematic devices (trees and Venn diagrams) 
and contingency tables are more limited in scope of application because they have more 
constrained structures, then those variations in scope of application ought to show up in 
our data. Calculating the average percentage of problems for which each type of 
representation was used (Table 2), provides some supporting results for this idea. The 
three types of representation argued here to be general ones (reorganization, pictures, and 
outcome listings) were used in 25% of problem solutions on average, whereas the three 
specific types were used in only 6% of problem solutions on average. However, the 
picture given by Table 3 is a bit less clear. Here it can be seen that uses of reorganization 
of the given information and pictures are spread across all four problem types, and 
outcome listings are used for three out of four types, whereas the more constrained types 
of representation Venn diagrams and contingency tables are used for only one or two 
types of problem. However, trees are used across all four problem types. Thus, except for 
trees, the predicted pattern does hold. 

 
3.1.  DO SPONTANEOUSLY SELF-GENERATED VISUAL REPRESENTATIONS 

HELP PROBABILITY PROBLEM SOLVERS? 
 
The present study provides mixed evidence for the idea that external visual devices 

are used by probability problem solvers because they are helpful (i.e., they aid in solving 
the problem). For example, we found higher rates of solution success given use of 
reorganization, outcome listings, and trees for the Combinations problems. The finding 
regarding outcome listings makes sense intuitively because the essence of the 
combinations problems involves determining the number of outcomes in the outcomes 
space. Furthermore, use of trees is associated with a higher success rate (60%) for those 
solving the Combinations problems via a sequential approach, and use of trees is a 
relatively successful strategy (67% success rate) for the “true” Sequential problems. This 
finding seems easily interpretable, because these sequential events problems have 
structures that map directly onto tree diagrams. Specifically, the Sequential problems 
used here described a sequence of trials or events, each of which had several possible 
outcomes. Thus the process determining the outcome space can be described by a 
branching set of possibilities. In the corresponding tree, each node of the tree graph 
corresponds to one of the sequential events (e.g., one spin of the spinner), and the 
branches that ensue from that node represent the several possible outcomes of that 
uncertain event.  
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For the Permutations problems, the use of pictures led to a higher success rate. Our 
explanation for this finding is based on the point we have already made, that these 
particular permutation problems were atypical in that their semantic content (i.e., the real-
world situation they described) describes a matching process between two sets of objects 
(e.g., tutors and students). Typical permutation problems the students had seen in their 
course consisted of problems in which a single set of objects is randomly ordered. Thus, 
it is only through a relatively sophisticated symmetry argument (requiring what is 
perhaps a rare or difficult insight) that the student was likely to see that one set of objects 
could be arbitrarily ordered, hence ignored, reducing the problem to one about ordering a 
single set of objects. For this reason we suspect that the increased solution success 
associated with use of pictures for this problem type may indicate a facilitative effect of 
pictures for problem restructuring. Such restructuring seems a necessary insight to deal 
with this relatively novel type of problem.  

Although problem solvers showed relatively frequent use of novel schematic 
representations for the Permutations problems, these novel or invented types of external 
graphical representations were apparently not always useful, because their use did not 
lead to increased solution success.  

Why are positive correlations between specific types of visual representations and 
specific problem types relatively rare in our data? As Novick and Hmelo (1994) observe, 
having an appropriate problem representation does not guarantee that the problem can be 
solved, because computational or other issues may intrude, lowering correlations between 
initial problem representations and solution success. Furthermore, even if graphics could 
be helpful, prior research shows that students are not always successful in finding correct 
representations for problems (Novick, 1990). Our data provide additional evidence that 
this is true. Additionally, some evidence from our study suggests that choosing an 
inappropriate representation might be harmful to a student’s chance of successfully 
solving a problem. For example, for the Permutations problems solution success was 
negatively associated with use of contingency tables and with use of reorganization of the 
given information. The former finding can be explained because contingency tables are 
not appropriate for representing problems involving the ordered selection of a single set 
of objects. The latter finding can be explained by viewing the reorganization strategy as a 
response commonly chosen when the problem solver is confused. Thus, the negative 
association may indicate that when a student is stymied by a problem, rewriting the given 
information might be seen as a general-purpose strategy, to be tried if the student is 
merely casting about for any approach that might help.  

We also found lower rates of success associated with use of outcome listings for the 
Sequential problems. Here, we suspect that the choice of representation could be based on 
a wrong understanding of the problem situation, or might just be an unfortunate (being 
potentially misleading) choice. For the Sequential problems used here, the listings seem 
to be appropriate, but they may cue (incorrect) approaches based on treating the outcome 
space as consisting of equally-likely outcomes. 

In addition to lower rates of solution success associated with particular external visual 
representations, we also found a significant negative correlation (r = -.4, p < .05) between 
solution success and the overall use of external visual representation, suggesting that our 
participants were often using the external visual representations in futile solution 
attempts. Looking more closely at the correlations, we found that reorganization of the 
given information and outcome listings were marginally significantly correlated with 
solution failure. These two types of representations are very general tools for problem 
solving and participants may use these types of representations mainly when they are 
having trouble solving the problems. This tendency could produce such correlation with 
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solution failure. A related possibility is that participants who are adept at solving 
probability problems may not need to use or report the use of a visual representation; 
whereas weaker problem solvers may choose very general external visual representations 
in the absence of insights that might allow them to select a more specific representation, 
leading to a lower rate of success overall for these lower-ability participants who needed 
to resort to external representations.  

Prior research by Hegarty and Kozhevnikov (1999) suggests that there are two main 
types of external visual representations, schematic and pictorial. They found that the use 
of schematic representations was positively correlated with solution success and the use 
of pictorial representations was negatively correlated with success. In our data, solution 
success was negatively (but non-significantly) correlated with use of all types of external 
visuals, but the correlations were more negative with the use of pictures, reorganization, 
and outcome listings than with contingency tables and with the schematic representations 
(Venn diagrams, trees, and novel schematic representations), lending tentative support to 
the importance of this distinction. 

In summary, appropriate use of a correct external visual representation may generally 
be helpful in problem solving, but this effect is difficult to measure in the present type of 
study, in which the student only generates an external representation if he or she so 
chooses. First, there is evidence (Lowrie & Kay, 2001; Table 7) that self-generated 
external visuals may be tried more often for difficult or novel problems, which have a 
lower solution rate in general. It should be easier to demonstrate facilitative effects of 
external visuals in less naturalistic studies in which the visual representations are 
provided to the student, or the student is explicitly asked to generate an appropriate 
representation before attempting to compute the answer. That type of study has been 
common in the literature on uses of visual representations in (non-mathematical) problem 
solving. However, the present data showing which types of graphical representations are 
spontaneously used for which types of problems may aid in designing such experimental 
studies and educational interventions. 

Finally, facilitative effects of using visual representations may not be easy to detect in 
the present type of experiment because choosing the correct representation is a non-trivial 
task, and may require a certain level of problem understanding to accomplish (Novick, 
1990; 2001; Novick & Hmelo, 1994; Novick & Hurley, 2001). With novice problem 
solvers, knowledge of why one representation is more appropriate than another may still 
be incomplete, because they have not yet mastered the appropriate schemas. Riley, 
Greeno and Heller (1983) found that failure to solve word problems might be caused 
more often by a lack of appropriate schemas than by poor arithmetic skills. They 
observed that problem solvers often carried out correct arithmetic procedures on incorrect 
representations of the problems. The negative associations we found between certain 
types of (presumably inappropriate) representations and solution success seem consistent 
with their conclusions. Interestingly, De Bock, Verschaffel, Janssens, Van Dooren, and 
Claes (2003) also found negative effects on solution success of asking students to 
generate specified diagrams for geometry problems, showing that not all experimenter-
selected representations are useful as well (cf. Tversky, 2001; Mayer & Gallini, 1990; 
Scaife & Rogers, 1996), or perhaps merely indicating that not all student-generated visual 
representations are produced correctly, even when appropriately cued. 

 
3.2.  SOME FINAL ISSUES 

 
One potential limitation of the present study is the question of how well the results 

will generalize to other populations of students. Participants in the present study were 
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graduate students in social sciences and education, who were finishing or had recently 
finished an introductory course in probability and statistics. However, the participants 
were actually quite diverse in terms of mathematics background, including people who 
had not taken any mathematics in college and those who had taken a number of 
undergraduate or graduate mathematics and statistics courses. Thus, we believe that our 
results would generalize to other populations, such as high school students who had 
completed a similar probability course. But this question, and the question of how well 
the results would generalize to a wider set of probability problems, should be addressed 
by future research.  

Another factor possibly affecting the generalizability of these results is that 
participants were taught probability problem solving using external visual 
representations, and associations between specific problem types and specific types of 
external graphical devices may have been implicitly or explicitly taught. Thus, the results 
of our study may just be a reflection of the instruction. However, the use of “novel” 
graphical representations by some participants indicates that although the participants 
were taught to use visual devices when solving probability problems, they do not always 
use the specific representations they were taught to use in class. This finding suggests that 
students believe that visual representations are useful, and try to use even representations 
that they have not been explicitly taught. 

Studying how students solve probability problems (or any type of mathematics word 
problem) is a complex endeavor. One reason is that students can use any of several 
solution methods or strategies for many problems. Even worse, an individual student may 
switch approaches across similar problems, or even during the solution of a single 
problem. As an example of how multiple solution strategies can complicate the research 
process, we designed each of our probability problems with a particular formula or 
problem-solving schema in mind. However, in producing atypical problems for a given 
method, in at least one case (the atypical Combinations problem) we produced a problem 
that could easily be solved by another method entirely (treating the problem as involving 
sequential events), with a different appropriate external representation.  

Thus, another limitation to the present study is that our manipulation of problem 
“typicality” was not fully successful, due to the use of alternative solution strategies by 
many participants. In a well-controlled experimental study with novice probability 
problem solvers, this problem could be avoided by introducing only one solution method 
or probability principle at a time. However, in a naturalistic study like the present one, 
where participants have been taught an array of probability problem-solving techniques, 
the problem of alternate strategy choice is difficult to avoid. Certainly such effects could 
be minimized by more careful piloting of materials in future studies. 

Another issue deserving of future study is to more closely investigate the temporal 
process of probability problem solving. In the present study we have used a coding 
scheme that separates uses of external visuals for problem understanding and 
representation from the type of method used to compute the problem solution, but we still 
do not have a clear picture of the temporal stages of probability problem solving. We plan 
future studies that will use think-aloud protocols and structured interviews to try to 
distinguish sequential stages of probability problem solving, and that will examine 
specifically when and how external visual representations are used in the temporal 
process of PPS. We also plan to investigate the coordination of external visual 
representations with internal visualizations (cf. Scaife & Rogers, 1996). Results of these 
studies may bring us to a more complete understanding of the role played by visual 
representations and visualization skills in probability problem solving.  
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Results from the present study might be useful in improving instruction in the domain 
of probability problem solving. The very general types of external representations 
considered here (pictures, reorganization, and outcome listing) might be taught to 
students as general methods that can help them restructure particularly difficult problems. 
In contrast, the schematic representations studied here (Venn diagrams and outcome 
trees) and contingency tables could be taught as applicable to particular problem types. In 
line with the work of Novick and colleagues (e.g., Novick, 1990; Novick & Hmelo, 
1994), abstract aspects or “features” of problems and of specific graphical representations 
could be taught to students, and it could be emphasized that a given representation will 
most likely be useful when these structural aspects of the problem and the visual device 
match. To some extent such principles may already be employed by instructors of 
probability courses, but future research should explore and better document the success of 
such practices. 
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APPENDIX: PROBABILITY PROBLEMS 
 

The eight probability problems (test form A) classified by topic (problem type) and level 
of typicality, with observed proportion correct for each item. Test form B 
counterbalanced surface content of the text and level of typicality for each problem. 
 
Topic Typicality Problem Text Proportion 

of correct 
responses 

Typical 

There are 10 books on Mary’s bookcase. She randomly grabs 2 
books to read on the bus. What is the probability that the 2 books 
are Little Women and War & Peace? (Both these books are on her 
bookshelf.) 

 0.115 

Combinations 

Atypical 

There are 10 cookies in a cookie jar. Three of the cookies are 
chocolate chip, seven are sugar. A child blindly picks 2 cookies 
from the cookie jar. What is the probability that both cookies are 
chocolate chip?  

0.731 

Typical 

There are three balls in an urn. One is red, one is white, and one is 
blue. Jane randomly draws a ball from the urn, then replaces it, 
three times in all. What is the probability that she draws a red ball 
on all three turns?  

0.462 

Sequential 

Atypical 

Three spinners are constructed. The first spinner has 2 equal areas 
(colored red and blue), the second has three equal areas (red, blue, 
and white), and the third again has two equal areas (red and white). 
All three spinners are spun and the result of each spin is recorded. 
What is the probability of getting ‘red’ on all three spins?  

0.423 

Typical 

An apartment building has four parking spaces in front (call them 
A, B, C, and D). There are four apartments in the building (#1, #2, 
#3, and #4), and each apartment has a single occupant with a single 
car. Every evening, all four occupants come home and park in a 
randomly chosen space. What is the probability that this evening 
they park so that the occupant of Apt #1 is in space A, the occupant 
of #2 is in space B, the occupant of #3 in space C, and the occupant 
of #4 in space D?  

0.462 

Permutations 

Atypical 

There are four math students (Ed, Fred, Mary, Pia) waiting to be 
randomly matched with four math tutors (#1, #2, #3, and #4). Each 
tutor works one-on-one with a student. What is the probability that 
Ed will be matched with tutor #1, and Fred will be matched with 
tutor #2?  

 0.731 

Typical 

Joe applies for a state-subsidized mixed-income housing project 
being built in his neighborhood. If he is classified as a low-income 
applicant, he has a 70% chance of getting an apartment. Applicants 
not classified as low-income have only a 10% chance of getting an 
apartment. Joe believes that on the basis of the records he is 
submitting that he has a 40% chance of being classified as low 
income. What is the probability that he gets an apartment? 

 0.500 

Conditional 
Probability 

Atypical 

Assume that in the city of Metropolis, if a criminal defendant in 
fact committed the crime, he has a 70% chance of being found 
guilty by the jury. A defendant who is in fact innocent has a 10% 
chance of being found guilty by the jury. Assume that 40% of 
defendants who are tried in Metropolis in fact committed the crime. 
We meet a Metropolis defendant in prison. What is the probability 
that he is fact committed the crime, given that we know he was 
found guilty by the jury?  

 0.077 
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ABSTRACT 

 
The purpose of this phenomenological study was to talk to students about their 
experiences taking introductory statistics. The author met with eleven students 
individually for four interviews throughout the semester, followed by a member-
checking focus group during the last week of classes. One of the most salient themes 
to emerge was the students’ reliance on their instructor for feedback about 
performance, directions on taking notes, and the creation of a classroom environment 
that motivated them to study. As part of the phenomenological tradition, the author 
presents his own reflections based on these students’ comments. Conclusions include 
the encouragement of instructors to be more mindful of students’ reactions to course 
content, and suggestions for developing a more learner-centered learning 
environment. 
 
Keywords: Statistics education research; Teaching statistics; Statistics classroom; 
Learning environment; Phenomenology 
 

1. INTRODUCTION 
 
The current statistics reform paradigm stresses instructors teaching and students 

learning statistical concepts over mechanics (Chance & Garfield, 2002). One goal of this 
model is to help students develop relational or structural knowledge in addition to 
declarative and mechanical knowledge (Earley, 2001; Schau & Mattern, 1997). With 
relational knowledge, students go beyond just “knowing that” standard deviation is the 
square root of variance as well as “knowing how” to compute a standard deviation. How 
students connect standard deviation with concepts they already know demonstrates their 
relational or structural knowledge. The shift away from mechanics and toward 
understanding is one attempt to decrease students’ anxiety levels, under the assumption 
that reducing the mathematical content and rote memorization of definitions and formulae 
reduces students’ worries about course performance (Onwuegbuzie, DaRos, & Ryan, 
1997). The most frequently cited implication is the need to develop class activities and 
assessment tools that are more concept-based and less calculation-based (Gal & Garfield, 
1997). Carpenter and Lehrer (1999) discuss understanding in mathematics courses as a 
“mental activity” as well as something “emerging or developing rather than presuming 
that someone either does or does not understand a given topic, idea, or process” 
(emphasis added, p. 20). Garfield (1995) warns instructors, “no [teaching] method is 
perfect and will work with all students” (p. 32) and “teachers often overestimate how well 
their students understand basic concepts” (p. 31). These statements imply researchers and 
classroom teachers would be wise to invest time listening to individual students to get a 
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sense of how well their own teaching methods help students develop conceptual 
understandings of introductory statistics concepts. 

What we are not seeing in the literature are discussions of how students’ 
understandings are impacted by the classroom environment. What is also not heavily 
discussed in the literature is how students respond to more conceptually-based classrooms 
(Batanero, Garfield, Ottaviani, & Truran, 2000). Of course, this does not include 
references to the well known statistics anxiety phenomenon. Few researchers have 
explored any of our students’ experiences in statistics courses – there is a more consistent 
focus on achievement outcomes (Becker, 1996). Gordon stated that “as in other fields, a 
major challenge currently facing researchers in statistics education is to improve our 
understanding of learning” (1995, para. 6) and “in order to teach statistics effectively, we 
must first understand the learners” (2000, p. 16). Gordon’s work focuses on activity 
theory and the social, historical, and cultural aspects of classroom environments to help 
understand statistics learners (1995, 2000, 2004). Through this perspective, she 
concluded in a 1995 study that statistics classrooms must be supportive, instructors must 
provide guidance to students, and teaching must “build on the personal experience of the 
learner” (para. 47). Nine years later, Gordon (2004) indicated there is still a need for 
statistics education researchers and statistics educators to understand our learners. To this 
end, her interview work done for a 2004 report led to five categories of meanings 
students attach to statistics: statistics as having no meaning, statistics as processes, 
statistics as mastery, statistics as a tool, and statistics as critical thinking. 

These meaning categories parallel those described by Reid and Petocz (2002), in 
which students described statistics as having (a) a focus on techniques, (b) a focus on 
using data, and (c) a focus on meaning. In a later report they redefined these conceptions 
as (a) doing, (b) collecting, (c) applying, (d) linking, (e) expanding, and (f) changing 
(Petocz & Reid, 2003). In both cases, the authors describe these conceptions as a 
continuum from limited to expansive. More limited conceptions, according to Gordon 
(2004), have the potential to limit students’ study strategies and motivation for learning 
statistics. All of these studies suggest understanding students’ descriptions of what 
“statistics” means is an important precursor for improving students’ learning and 
ultimately their experiences in our courses. One question to address is how students 
create these meanings: Do they come in to class with them, do specific aspects of the 
classroom environment change initial meanings or create new ones (as Gordon suggests), 
and do these meanings change over the course of the instruction? In other words, what 
kind of impact does the learning environment created by instructors have on students’ 
meaning-making? 

Petocz and Reid (2002, 2003) have addressed some of these questions by connecting 
students’ conceptions of statistics with expectations students have of statistics instructors. 
Again, the authors describe these conceptions as most limited to most expansive: 

Conception 1: Providing materials, motivation, and structure  
Conception 2: Explaining material and helping with student work 
Conception 3: Linking statistical concepts and guiding learning 
Conception 4: Anticipating student learning needs 
Conception 5: Being a catalyst for ‘open-mindedness’ 

The important addition in this work is the blending of students’ conceptions of statistics 
and their expectations of instructors. As an example, Petocz and Reid (2004) describe one 
mix as students’ conceptions of “doing” and “collecting” along with students’ 
expectations of their instructors to provide materials, motivation, and structure 
(Conception 1). This would be the most limited blend of both sets. Although her 
interviews did not directly ask about students’ expectations of their instructors, Gordon 
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(2004) did interview two instructors and also discusses their impression of the 
interactions between how students attach meaning to statistics and what goes on in the 
classroom. 

One important aspect of these studies is their reliance on interviews and open-ended 
survey responses at one point in time. Any discussion of how classroom environments 
and instructors impact students’ conceptions should incorporate a more longitudinal data 
collection strategy. For example, Murtonen and Lehtinen (2003) conducted a study with 
Finnish students in which they asked participants to write in “learning diaries” throughout 
the entire term. Students were to record difficult concepts they encountered as well as 
what they thought led to the difficulties. Students’ reasons for difficulties fell into five 
categories: (a) superficial teaching, (b) difficulty linking the theory of quantitative 
methods with the doing, (c) unfamiliarity and difficulty with content (e.g., too many 
concepts to absorb), (d) lack of connections across bits of information, and (e) negative 
attitudes toward quantitative methods. Similar to the typologies of Gordon (2004) and 
Petocz and Reid (2003), Murtonen and Lehtinen’s categories begin to blend students’ 
understandings of quantitative material with how it is taught. Interestingly, they conclude 
“the experience of difficulty did not occur because of the major subject or any specific 
teacher, but because of some more general reason” (p. 182), indicating again that 
understanding students’ backgrounds could be an important precursor to developing more 
effective classroom environments. What is also important from this work is its 
longitudinal design. Ultimately, the authors chose to combine responses from throughout 
the term, however, so we still have no presentation of how individual students’ 
experiences change (if at all) as the course progresses. Petocz and Reid (2003) posit that 
students “would develop their approach to learning, and maybe change their conceptions 
of teaching from time to time” (p. 41), suggesting that rather than exploring class marks 
on assessments, an additional approach to data collection that also explores individual 
students’ experiences would help statistics educators understand further what students 
take away from the course. 

This expectation, along with Carpenter and Lehrer’s (1999) assertion that 
mathematical learning is developmental, suggests that expanding this body of work 
through more longitudinal explorations of students’ experiences throughout their course 
would be useful. Talking to students more frequently allows researchers to gather more 
information about students’ experiences, such as: What do students do to prepare for 
class? What do students do while in class? What goes through students’ minds during 
class? What aspects of class time help or hinder students’ understandings of the material? 
What do students do when they leave class? For these reasons, the general purpose of the 
current phenomenological study was to begin this exploration with one very broad 
guiding question: “How do students describe their statistics course at different points 
during the term in which they are taking the course?” 

 
2. METHODS 

 
2.1.  THE PHENOMENOLOGICAL TRADITION 

 
The use of phenomenology allows us to understand student experiences differently 

than through surveys or other qualitatively-oriented traditions. Rather than “averaging” or 
grouping students’ experiences together, phenomenology seeks to present “the 
qualitatively different ways in which a phenomenon is experienced” (Pietersen, 2002, 
para. 14). Van Manen (1990) stresses phenomenology as “human scientific study” with 
an emphasis on “explicat[ing] the meanings as we live them in our everyday experience, 
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our lifeworld” (p. 11). Phenomenological research incorporates the researcher as 
someone learning about a phenomenon by “borrow[ing] other people’s experiences and 
their reflections on their experiences” (Van Manen, 1990, p. 62). In phenomenology, it is 
the actual doing and living that constitutes knowledge – “a kind of knowing that can only 
be obtained through active engagement” (Ladkin, 2005, p. 116). Ultimately, 
phenomenological research attempts to present the unique lived experience of others so 
that the reader also develops a new understanding of the experience. 

An essential first step in conducting phenomenological research is for the researcher 
to first understand his or her own experience with the phenomenon under investigation 
(commonly referred to as bracketing or époche) (Ladkin, 2005; Laverty, 2003). As one 
reads different descriptions of phenomenology, this process is part of what distinguishes 
the various approaches (Kerry & Armour, 2000; Laverty, 2003). Rather than completely 
“suspend” our own understandings, as Edmund Husserl’s description of époche would 
have us do (Creswell, 1998), hermeneutic phenomenology, most commonly attributed to 
Hans-Georg Gadamer, (Kerry & Armour, 2000; Ladkin, 2005), incorporates these 
understandings as essential to the interpretive process to follow. In other words, because 
the researcher will interpret participants’ experiences while developing a description of 
the phenomenon, an understanding of the researcher’s own experiences is necessary so 
the reader has an idea of the researcher’s interpretive lens. Van Manen (1990) describes 
this as the “intersubjective” nature of phenomenological research: “the human science 
researcher needs the other (for example, the reader) in order to develop a dialogic relation 
with the phenomenon” (p. 11). 

This also means the researcher’s own understanding develops during the research 
process – in his description of the phenomenological data collection process, van Manen 
refers to this as the “reflective data” (2002; see also Laverty, 2003) researchers collect 
alongside the “empirical data” (i.e., interview data) from our participants. van Manen 
(1990) indicates social science researchers “borrow” participants’ experiences in order to 
develop a complete description of the experience. In this sense, the researcher is 
developing the description as his or her own developing understanding of the 
phenomenon under study. Kerry and Armour (2000) indicate “these personal histories 
lead to a unique perception of different experiences and that this personal history cannot 
be bracketed out; it is fundamental for interpretation” (p. 6). For example, Finney (2000) 
presents her own experience with success in statistics courses prior to detailing six other 
students’ success experiences. The reader then understands how her interpretation and 
summary of the experience of success is shaped by her own initial perceptions. Mayhew 
(2004) also presents his experiences with spirituality prior to describing the meanings 
eight undergraduate students attribute to spirituality “to give the reader a sense of any 
prejudice or orientation that may have shaped [his] interpretation or approach to the 
study” (p. 656).  

 
2.2.  PARTICIPANT SELECTION 

 
In phenomenological research, the researcher bases participant selection on finding 

and recruiting individuals who have experienced the phenomenon of interest (rather than 
selecting key informants in ethnography, or selecting individuals based on their life 
experiences for a life history) (Creswell, 1998; Laverty, 2003; Moustakas, 1994; van 
Manen, 1990). The quantity and depth of the data to be collected determines how many 
participants the researcher can recruit. In phenomenological inquiry, the primary data 
source is the interview, and depending on the phenomenon of interest, there may be more 
than one interview per participant. The researcher must have each interview transcribed 
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for analysis, creating a large set of data to read through and analyze, so the number of 
participants is generally kept to a minimum (Creswell, 1998). There are no specific 
guidelines on what constitutes this “minimum” – “Boyd (2001) regards two to 10 
participants … as sufficient to reach saturation and Creswell (1998, pp. 65 & 113) 
recommends … 10 people” (as cited in Groenewald, 2004, p. 11). Because I was 
interested in interviewing participants four times during the semester and interviewing all 
participants within a week of each other, a number around ten seemed manageable and 
was my goal.  

Six departments across four colleges at our institution offered 40 sections of 
introductory statistics courses during the spring 2003 term (this includes multiple sections 
of the ten different courses). Students in this study came from multiple sections of four of 
these courses. All of these courses are traditional in scope, covering introductory 
descriptive and inferential statistical analyses in one term. The “Psychology 270” course 
is the required introductory course for psychology majors. The “Statistics 211” is the first 
in a required two-course sequence for all majors in the College of Business 
Administration. The “Math 115” course is offered to students not majoring in 
mathematics; many undergraduates take this course to fulfill the mathematics 
requirement for the university if a different course is not specified by their College. 
Mathematics majors take a different introductory statistics course, so the “Math 115” 
course is not calculus-based. The “EDFI 641” course is a required course for master’s 
level students in the College of Education and Human Development. All of these 
departments offer more advanced courses, but only students in the College of Business 
Administration are required to take a second course. 

My goal for recruiting participants was to get a mix of participants from across all of 
these courses. Eligible students included those over the age of 18 and enrolled in any 
introductory statistics course during the spring 2003 term. In January 2003 I posted flyers 
next to the doors of each classroom in which one of the 40 introductory statistics sections 
met. This method of recruitment does introduce typical volunteer bias, but the advantage 
is that if students are interested in talking about their experiences (whether good or bad), 
they will volunteer (a necessary participant characteristic in phenomenology). The flyer 
asked students to contact me via phone or e-mail if interested in taking part in my study, 
and I set up times to meet with the twelve who did so by the end of the third week of 
classes in order to have a first interview for each participant completed during the third or 
fourth week of the term. At our first interview, I informed participants of a $120 incentive 
to those who completed the study by returning for interviews throughout the semester. 
Although the issue of incentives is still controversial (Adler & Adler, 2002), I do believe 
in giving participants something in appreciation of their time (Weiss, 1994). I do not feel 
this had an impact on the quality of my participants’ contributions because each 
participant was engaged during our conversations and each had much to say about their 
experiences in their statistics class. 

To give the reader a general description of the participants, Table 1 lists demographic 
information for the final set of eleven students I interviewed (one student dropped out of 
the study after the first interview). I did achieve the variety I initially wanted: My group 
includes participants from freshman to senior with one graduate student, a grade point 
average (GPA) range of 2.00 – 4.00 (i.e., students fell across the general academic 
performance spectrum from “average” to “excellent” students), and students from courses 
in four of the six departments offering statistics courses in the spring (no students from 
the Sociology or Criminal Justice courses contacted me). 
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Table 1. Demographic summary 
 
Participant a Gender Course Taken b GPA c Class 
Aileen Female Psychology 270 3.60 Senior 
Alastair Male Statistics 211 2.60 Sophomore 
Brice Male Psychology 270 4.00 Senior 
Brigit Female Math 115 3.77 Sophomore 
Cecily Female EDFI 641 4.00 1st Year Graduate 
Cedric Male Statistics 211 2.92 Freshman 
Dillan Male Math 115 2.90 Sophomore 
Eleyn Female Math 115 4.00 Freshman 
Evan Male Statistics 211 2.50 Sophomore 
Griffin Male Math 115 2.00 Freshman 
Ian Male Statistics 211 3.66 Sophomore 
a All names used in this report are pseudonyms. 
b All courses are introductory-level statistics courses designed for non-statistics majors. 
c GPA = Grade Point Average, calculated as an average of the students’ grades for all of 
their coursework to date after converting the letter grades to “grade points”: A = 4, B = 3, 
C = 2, D = 1, F = 0. 
 
2.3.  DATA COLLECTION 
 

Phenomenological data collection proceeds in two parallel processes: (a) empirical 
data collection, typically in the form of in-depth interviews with participants, and (b) 
reflective data collection, in which the researcher reflects on his or her interactions with 
the empirical data (van Manen, 2002). The power of phenomenological inquiry is this 
interaction, where the researcher first presents his or her own experiences with the 
phenomenon of interest, and then reflects on how his or her experience and 
understanding of the phenomenon changes and develops while listening to the 
participants’ stories (Moustakas, 1994).  

I met with each student four times for one-on-one interviews in my office (the only 
exception was Ian, who started the study late and only met with me three times). We 
spaced interviews approximately 3 to 4 weeks apart depending on the student’s schedule. 
I had an initial list of questions I wanted to discuss, based in part on my interests and in 
part on themes emerging from the previous interviews. Each interview began, however, 
with the general question, “So how is class going for you?” From there, we discussed 
whatever the student brought up as important at that time. Interview times ranged from 15 
to 45 minutes, entirely dependent on how much the student had to say. I audio taped the 
interviews and took fieldnotes during our discussion. I then transcribed audiotapes, taking 
additional fieldnotes as I listened to our discussion again. 

To increase the accuracy and representativeness of the themes I saw emerge 
(Maxwell, 2005), I met with nine of my participants in two member-checking focus 
groups during the last week of classes prior to final exams. “Member-checking” is 
described as a process of going back to the participants to have them review the 
researcher’s interpretations of and conclusions drawn from the data. Through this 
process, participants comment on whether the researcher “got it right” (so to speak) 
(Creswell, 1998; Glesne, 1999; Maxwell, 2005). Due to the scheduling so close to the end 
of the term and final exams, I gave students two options: an afternoon time with lunch, 
selected by two participants, or an evening time with dinner, selected by seven. Two of 
my participants could not make these focus groups due to scheduling conflicts. I 
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presented students with a summary of the major themes on slides, one at a time, and 
solicited group feedback on whether these were actually important to the students. To get 
this feedback, I asked students to think about what they would tell a group of statistics 
instructors about their experiences taking statistics. Students changed the wording on 
some (e.g., the course is “easier when instructors …” not “easy when instructors …,” as I 
had first worded one of the themes), but otherwise agreed these were important ideas to 
them and ideas they would share with statistics instructors as important. 
 
2.4.  DATA ANALYSIS 
 

To come to an understanding of how my participants experienced their statistics 
courses, I analyzed and reflected on the transcribed data throughout the study. After each 
interview, I took time to make notes on ideas the student seemed to stress or return to 
often. I also noted student comments that, for some reason, stood out for me. After each 
round of interviews, I explored major patterns across all 11 participants and developed 
questions for the next round of interviews. After the study ended, I also developed time-
ordered displays (Miles & Huberman, 1994) of students’ main comments from the 
beginning to the end of the term to explore changes in their descriptions of class. Because 
I developed interview protocols based in part on the ongoing analysis of each round of 
interviews (i.e., what did I find important or interesting that I wanted to explore again in 
the next interview?), I include here a list of the major “topics” for each round of 
interviews. I introduced these additional topics into the interview after the opening 
question about how class is going. 

Interview 1: Discuss a general description of the class, what happens during class, 
what student does in between class meetings, other issues student brings up. 
Interview 2: How does student take notes? What does student do with notes during 
and outside of class time? Why does student take notes? Does student only take notes 
in class, or does student read the textbook and take notes as well? 
Interview 3: What would happen if there were no identifiable instructor? What would 
the student miss? 
Interview 4: Summary of student’s thoughts about course, additional comments, and 
comparison of their statistics course with another course they are taking (students 
chose one of their other courses and we discussed similarities and differences 
between that course and their statistics course). 
All participants, after the first interview, came prepared to answer the “How is class 

going?” question – they clearly had topics they wanted to share with me. After this 
discussion, I introduced questions addressing each of the ideas listed above.  

 
3. RESULTS 

 
3.1.  BRIEF REFLECTIONS ON MY OWN EXPERIENCE 

 
My experiences taking statistics courses began with a required course for my (then) 

economics degree. I clearly remember a lot of frustration and confusion as the instructor 
filled blackboard after blackboard with Greek symbols and mathematical formulae. We 
used a computer software package for homework problems, without the benefit of a 
user’s manual or any training on how to use the software (back then, the software 
required writing programs to run analyses as opposed to today’s “point-and-click” 
platforms). My solution to this confusion and lack of understanding was to give in, earn a 
D-, and retake the course the following term. 
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This new instructor was so radically different from my first – primarily because he 
actually made class enjoyable. I wanted to be in class, and worked hard between class 
meetings in order to participate fully each week. We used computer software, but now he 
guided us through the programming during class time before sending us out on our own. I 
recall measuring 100 leaves from trees around campus for one of our early homework 
exercises – data we would analyze and discuss throughout the course. After being in class 
with this instructor (and concurrently taking an advanced economic theory course in 
which I was struggling), I switched my major to mathematical statistics at the beginning 
of my sophomore year and finally felt “at home” with my coursework. 

Although I have had many (many) statistics courses since my start in 1989, I turn 
now to some brief reflections on my observations as an instructor of introductory 
statistics in education courses (note that none of the students in my classes participated in 
this study). Many of these informal observations are what led me to develop an interest in 
finding out what exactly my students experience when they take my course. Have I 
avoided creating a classroom environment similar to that very first environment in which 
I failed? Have I created a motivating and interesting classroom environment similar to my 
second experience (along with many other inspiring instructors and classes along the 
way)? 

No matter what I do or say, students consistently come in to my course with the 
typical fear and anxiety. It seems at times that I am an actor on a stage, begging my 
audience to laugh and enjoy themselves. After careful attention to the textbook I use, the 
way I structure class meetings, the assessment system, and my own concern for students’ 
success, some students still carry that fear and anxiety throughout the term. I hear from 
students that the textbook is confusing and impossible to read. I hear from students how 
they can follow along in class, but seemingly all is lost when they leave the classroom; 
they have no idea what they are looking at when they study at home. Student evaluations 
of the course consistently rate “relevance to my profession/degree program” the lowest of 
all evaluation items. Students come in the first day and announce this is their last course – 
all they want is their grade of “C” so they can graduate and move on. 

The power of phenomenological inquiry is the “connections” researchers and 
participants can make through their shared experiences. Moving into this particular study, 
all of my own experiences, attitudes, beliefs, and values related to introductory statistics 
form the context in which I talk to participants, listen to their words, and try to make 
sense of what we discuss. Rather than considering this a major bias to the study, however, 
this context allows the reader to understand this narrative as my understanding of these 
students’ experiences (as is the case with any naturalistic inquiry process). I have paid 
close attention to verbatim transcripts, and my reflections at the end of this narrative point 
to the “surprises” and discussion topics that made me reflect deeper on my role as 
instructor. The member-checking focus groups conducted with my participants helped 
validate the themes I saw emerge, to which I now turn. 

 
3.2.  THE VOICES OF MY PARTICIPANTS 

 
Even with the variety of students I talked to, as well as the diversity of their 

classroom environments, three common themes emerged across all of our discussions: (a) 
student behaviors and characteristics, (b) instructor behaviors and characteristics, and 
(c) resources students use for studying. This report focuses on the second of these: the 
students’ perceptions of the instructor and his or her behaviors. During the first two sets 
of discussions, this idea came across in a variety of my participants’ responses to 
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questions, regardless of whether I had directly asked about the instructor. Based on this 
preliminary analysis, I asked students the following question during our third discussion:  

 
Imagine you had to take this course entirely online. There is no identified instructor 
now – you read texts and examples online, complete assignments and tests online, 
and receive scores via e-mail. What would that be like? 

 
My intent here was to focus on what students would miss about their instructors, having 
discussed them so much during our first two interviews. 

Responses to this question, along with questions from earlier discussions, fell into 
three major sub-themes: 

(1) The instructor’s use of class time (including pace and teaching style), 
(2) The instructor’s role in the note-taking process, and 
(3) The instructor’s assessment strategies (including homework and exams). 

I present next my interpretations of each of these themes along with representative quotes 
from my participants’ responses. 
 
The instructor’s use of class time One of my early interests in conducting this study was 
to find out what it is like just to be in a statistics class: What are students thinking, what 
kinds of behaviors do they feel are important during and between class meetings, and 
most importantly, why? For most students, the response to what they do in class was “sit 
there and take notes.” What thoughts did they have during class? For some, they were 
random because, as Brigit said,  

 
Brigit: It’s hard to stay focused on it because all she does is write definitions from the book 

onto the board and then just reads them and explains them a little bit. Very rarely 
we go through examples of things but mostly it’s just definitions. 

 
For Brigit and others, instructors organized class time around the traditional “lecture” 

approach with very little interaction among students. There were exceptions, in particular 
Griffin’s instructor, who did no formal instruction but rather assigned group work from 
the text.  

 
Griffin: He gives us problems to do from the book and then sits up front and watches us. 

He is there to answer questions. If we don’t have any questions, we finish our 
exercises and leave. 

Int: Do you like that approach? 
Griffin: Well he seems pretty unmotivated to teach the class and not interested at all. 
Int: What do you think of that? 
Griffin: There is no reason for me to do any work outside of class. Why should I care if he 

doesn’t? 
 

When asked about the online course, only Griffin was excited at the prospect of 
“taking the class while [he stays] in bed.” The remaining ten participants each expressed 
concern that this type of setting, most notably the absence of a live instructor, would 
never work for statistics. Cecily was most vocal (her eyes nearly popped out of her head 
when I asked her that question) in wanting to avoid this type of course. 

 
Cecily: Wow … no way of asking questions? There’s gotta be a way of asking questions … 

yeah I may be able to pass the class but I wouldn’t know it. I wouldn’t be able to use it. 
Int: So you need the instructor there to ask questions to. 
Cecily: Absolutely. I have a math background, I’m pretty good at math. But this is not just a 
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math class … there’s a lot of concepts here that just reading the book [won’t work] … 
 
 Cedric also expressed concern over the “completely online” approach. 
 
Cedric: I don’t think that would work at all. 
Int: Why not? 
Cedric: Because, for example, I’ll hit a stumbling block where I don’t understand it, but then I 

talk to a peer and that sheds a different light on it. It makes it so much easier. Without 
that interaction between students it makes it more difficult, especially because the 
instructor can shed another different light on it. 

Int: So having the different viewpoints are helpful. 
Cedric: Yes. The textbook is good at telling you what to do, but not as good at telling you why 

this happens. 
Int: So is that something the instructor has been helpful for? Presenting the whys? 
Cedric: Yes. 

 
Overall, students who had instructors giving and explaining examples in class were 

more comfortable with their experience – students like Cedric who were not getting these 
examples wished their instructors would do more of “the whys” instead of just “the 
whats.” 

I clearly recall my own desire to skip class meetings the first time I took statistics 
contrasted with my excitement to be in class the second time – student comments about 
how the instructor guided class time resonated strongly with me. As an instructor, I am 
keenly aware of students who do not appear engaged or “with me” – most likely a result 
of my own early experiences. My participants integrated the first four of Petocz and 
Reid’s (2003) conceptions into their expectations of how class time is used: They expect 
instructors to be organized, present more than just an outline of the text, explain concepts 
beyond what the text offers, and be there to address student questions and provide 
alternative explanations when needed. This is different from Petocz and Reid’s analysis, 
in which students could be described by one or two of the conceptions – all 11 of my 
participants discussed all four of these conceptions throughout the term. 

 
The instructor’s role in the note-taking process A natural progression from the first sub-
theme on instructor behaviors and characteristics is how these behaviors influence 
students’ note-taking processes. Students consistently reported relying predominately on 
their notes for studying course material. This is also how they each spent their time in 
class (again with the exception of Griffin noted above) – listening to the instructor and 
writing down whatever he or she wrote on the blackboard or overhead. I asked students 
how they decided what to write down, and most indicated it was “whatever [or 
everything] the instructor writes down.” Only Brice and Cedric mentioned they also jot 
down additional notes to themselves about key formulae or concepts to remember. 

Evan, Ian, and Alastair each had instructors who provided handouts with full or 
partial notes already on them. For these students, this meant they just followed along and 
maybe filled in an example or two – Evan called this “being spoon fed” the information. 

 
Evan: He passes out sheets and he goes over the stuff in class … I remember a lot of it 

from last semester, so I’ll go through and do the stuff that I know. And I’ll just sit 
around and wait for a question that I didn’t know and fill in the answer as he 
explains it. 

Int: So then when you’re in class you’re going through and doing on your own the stuff 
that you remember and then waiting? 

Evan: If I hear something that I didn’t write down or don’t remember from last semester, 
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I’ll write that down. 
Int: Do you take any other notes besides those on the sheet he hands out? 
Evan: No he usually has a lot of space on the side to put extra stuff there. He spoon feeds 

us most of it. 
 
With or without these handouts, students rely very heavily on their notes for studying 

outside of the classroom. Cedric further indicated that he has experienced the “false 
safety net” of feeling as though he is following along in class, not taking any notes as a 
result, and then being lost when he got home to study for the test (having no notes to refer 
to). Here again, students all mentioned either being happy with an instructor who walked 
through examples in class (so these could go into their notes) or being unhappy with an 
instructor who did not do so. 

Three of my participants had sold their books back by the first interview (within a 
month of class starting), another two sold them back later in the term, and five of the 
remaining six students used their books for assigned homework problems only. Only 
Cecily read the textbook in between classes, though she indicated this was difficult to do. 
Brigit and Dillan struggled with this the most because their instructor “lectured” directly 
from the book. 

 
Brigit: This class is different [from my other classes] because instead of having the professor’s 

point of view on the notes, it’s just point blank – I look at my book and I looked at my 
notes and it’s word for word. 

Int So what do you do then? 
Brigit I have random thoughts during class. It’s hard to focus when it’s just like being dictated 

to. Plus I know if I miss anything it’ll be in the book. 
 

Dillan indicated it was almost “stupid” to go to class because he can sit at home and read 
the book – what he and other students want from instructors is explanations and 
“different viewpoints,” not dictation. The textbook was not enough for them to learn the 
concepts, and the instructor in this case was not serving as an extra resource, which 
bothered them. For these students, and students who cannot or do not read the text even 
though they keep it, there is an even greater importance placed on course notes. 
 
The instructor’s assessment strategies There was an overwhelming consensus from all of 
my participants that regular homework and frequent assessment are necessary in order for 
students to know whether or not they are learning anything. As Brice put it: 

 
Brice: Each person in the class was left on their own to make sense of what was being 

presented … maybe it felt like a struggle because if we’d had some more problems … 
we’d have some confirmation of whether or not we understood the material. Maybe it 
was a struggle because we just didn’t know for sure if we understood it or not – we just 
really didn’t have any confirmation of that. 

 
Brice and others were concerned that with no practice, no regular homework, and no 
assignments to work on, preparing for exams was more difficult and led to an increase in 
anxiety prior to exams. Cecily mentioned that “a computer can give you the answer, but it 
doesn’t give you how it got the answer,” and so for her the additional need was for the 
instructor to go over the assessments when returning them to students. 

Students also indicated that “what the instructor told us would be on the test” was 
their study guide, and any deviation from this on tests and quizzes was frustrating for 
students. Although I did not look at individual assessments unless the student asked me a 
question about them, what they perceived to be poor test development clearly impacted 
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their class experiences. A major challenge was tests based on “applications” when 
instructors did not give students application models in class. Even though many students 
called for and recognized the need to understand what it is they were doing, they wanted 
instructors to guide them in this process. Cedric’s first exam experience was particularly 
enlightening: 

 
Cedric: I wasn’t happy with my first test. 
Int: What happened? 
Cedric: Right answer, wrong work, so a lot of points were taken off. The one thing is, she 

doesn’t accept just the answer. Even if you do some work, unless you do the right work 
it will be marked wrong. I can understand that if we’re majors, but we’re general 
business majors. Just getting the right answer is enough. Recognizing wrong answers is 
good, but not exactly knowing step-by-step. 

 
This conflict between Cedric’s realization that understanding is important (from earlier 
conversations) but not being comfortable when tested on this understanding is important 
to me. These data highlight the need for instructors to match more closely their 
instruction and assessment procedures so students do not get these conflicting messages. 
These data also suggest that instructors need to make explicit connections between 
instruction and assessment, as instructors’ intentions are not always clear. 
 

4. DISCUSSION 
 

All of these sub-themes are intimately related to each other, as well as to the two 
other larger themes of student characteristics and behaviors and use of resources. 
Students in this study spoke frequently about the role the instructor plays in their class 
experiences, but for me the surprising aspect of all of our conversations was the extent to 
which students relied on their instructors. What we do in the classroom has far-reaching 
impacts beyond how students feel during class. When on their own, students need 
resources that will help them make sense of class material (Petocz and Reid’s (2003) 
“Conception 3,” p. 46). Those participants most comfortable with their experiences 
indicated they could take their notes home, complete homework assignments by referring 
to their notes as necessary, and received consistent feedback from their instructor as to 
whether they were indeed “getting it.” Oathout’s (1995) participants echoed “strongly 
favor[ing] frequent tests” (p. 50) and a lack of “mapping from lectures and assignments to 
test content and format [as] equally problematic” (p. 48). 

Many students, however, did not do much work outside of class because graded 
assignments were either non-existent or infrequent. This meant their statistics course was 
the lowest priority class when studying during the week, and they rarely did anything 
with their statistics material outside of class time. This changed around exam time, when 
there was a need for notes to be clear and complete, and for these notes (typically 
verbatim from instructor notes in class) to be reflective of what would be assessed on the 
exams (similar to Petocz and Reid’s (2003) “Conception 1” on teaching statistics, p. 44). 
The exams became the focal point for these students – they took notes so they would 
have something to study so they could do well on the exams. As Garfield (1995) states, 
“students learn to value what they know will be assessed” (p. 32) – Petocz and Reid 
(2003) discuss this as “doing” statistics (p. 42). Students in the current study usually 
waited until an exam was coming up to actually go back over their notes, so any 
questions they had could not be addressed and they were sometimes still confused and 
unsure going into the exam. How the instructor conducts class, how the students record 
classroom events and discussions in their notes, how the instructor assesses students in 
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between exams, and how the instructor develops exams all become a single system to 
which instructors need to pay close attention. 

Most importantly, students never talked about “getting it” in terms of understanding 
what they were doing. Although Cedric indicated that knowing why they are doing an 
analysis makes doing the analysis easier, students did not ever indicate they understood 
course material. Rather, they were happy if they could get problems correct and earn all 
of the possible points. Most of the instructors these students spoke of appear to encourage 
the “doing” aspect of statistics – solving problems is a large part of how these students 
spent their time both in and out of class. Students knew their tests would involve solving 
problems (based on what their instructors told them about the tests), so this was how 
students studied. If we want students to hold the more expansive conceptions of statistics 
that include “statistics as critical thinking” (Gordon, 2004) and a “focus on meaning” 
(Petocz & Reid, 2003), we need instructors to hold and espouse these conceptions as 
well. These data suggest that future researchers explore these same conceptions with 
instructors to discern their own conceptions as well as how they create learning 
environments that support students developing the more expansive conceptions. 

 
5. REFLECTING ON MY OWN CLASSROOM 

 
As I reflected on the discussions I engaged in with these students, my thoughts turned 

to my own teaching philosophy and classroom environment. Listening to them talk about 
their instructors and class experiences, I often asked myself, “Do I do that in my 
classroom?” Reflective questions about my own practices that developed because of these 
discussions, questions I believe worthy of further exploration both in my own practice 
and in the larger statistics education community, include: 

(1) How much do I actually stress “doing” statistics over “understanding”? 
(2) What are my expectations of students during and outside of class meetings? Am I 

clear in expressing these expectations to my students? 
(3) What role does the textbook play in my course? 
(4) How can I best assist students in taking complete and accurate notes? 
(5) What is the connection between each class activity and/or discussion and my 

assessment of student understandings? 
I firmly believe as instructors we need to spend more time reflecting on our own 

teaching philosophies and practices, and for me, this reflection requires student feedback. 
We can focus our reflections on each aspect of the classroom, understanding which 
piece(s) are working for our students and which are not. Statistics education researchers 
can also consider these questions, and begin to focus research more on these “emerging 
understandings.” Through these explorations, we can continue to learn how students are 
responding to our desire for them to walk away from the course with some knowledge of 
what and why various concepts were covered, rather than walking away with the feeling 
that all they did was “plug and chug.” 

 
6. CONCLUSION 

 
Although it appears intuitive that students rely on their instructors in any course, 

there are some implications that may not be as intuitive. Based on my own observations 
as an instructor, as well as comments provided by the students in this study, a primary 
motivation for students in introductory statistics (those who are not statistics majors) to 
do anything (take notes, work problems, study outside of class, etc.) is how it will impact 
their final grade (Garfield, 1995). Students further mentioned that they appreciate 
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feedback on graded assignments as a way to make sure they know what the instructor 
wants them to know. Here we see a direct connection between how we assess students, 
the opportunities we provide for assessment (e.g. homework, in-class activities, quizzes, 
tests, projects), and why we even assess them (Chance & Garfield, 2002). 

Assessment systems in any course gauge whether or not the students are meeting 
course objectives. As we work to develop introductory statistics courses oriented more 
toward understanding and less toward mechanics, our assessment systems must change as 
well. As we change our assessments, it is important to remember that our classroom 
environment must also change to encourage students’ development of understanding over 
their mastery of mechanics (Treagust, Jacobowitz, Gallagher, & Parker, 2001). 
Demetrulias (1988) argues that an “opportunity to understand statistics from an integrated 
and flexible viewpoint must go along with a classroom environment that rewards such 
exploration” (emphasis added, p. 169). As students in this study report, what happens in 
class becomes their main resource for any work they do outside of class (Petocz & Reid, 
2003). Spending time in class (and with assessments) on “how to understand” as much as 
“what to understand” becomes critical, and instructors must continue to develop and 
make use of delivery techniques, classroom examples, and homework activities that focus 
on this “how to understand” piece. I also encourage sharing these reflections and 
experiences in the literature, so that others may benefit from what we learn in our own 
classrooms. Results from this study suggest the need for researchers to encourage more 
personal accounts of actual experiences of instructors teaching, and students taking, 
statistics, as opposed to relying only on the more quantitative outcomes currently 
presented (Becker, 1996). Instructors and their students are “in the trenches,” 
experiencing, reflecting on, and ultimately determining whether any particular classroom 
environment is or is not successful in increasing students’ understandings (Batanero, 
Garfield, Ottaviani, & Truran, 2000).  
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 PAST CONFERENCE6 
 

USCOTS 2007  
UNITED STATES CONFERENCE ON TEACHING STATISTICS 

Columbus OH, USA, May 17-19, 2007 
 

The second biennial United States Conference 
on Teaching Statistics (USCOTS 07) was held on 
May 17-19, 2007 at the Ohio State University in 
Columbus, Ohio, hosted by CAUSE, the Consortium 
for the Advancement of Undergraduate Statistics 

Education. The target audience for USCOTS is teachers of undergraduate and AP 
statistics, from any discipline or type of institution. Teachers from two-year colleges are 
particularly encouraged to attend.  

The theme for USCOTS 2007 was Taking Statistics Teaching to the Next Level. 
“Next level” has many interpretations, such as developing a second course, gaining more 
confidence in teaching statistics, moving students beyond statistical literacy to statistical 
thinking, and using the latest technology to improve teaching and learning. USCOTS is a 
“working conference” with many opportunities for hands-on activities, demonstrations, 
networking, idea sharing, and receiving the latest information on research and best 
practices in teaching statistics. Leaders in statistics education gave plenary talks, 
including Jessica Utts, Paul Velleman, Dick DeVeaux, Allan Rossman, and Mike 
Shaughnessy.  

 
For more information, visit the USCOTS web page: http://www.causeweb.org/uscots/ 
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FORTHCOMING IASE CONFERENCES 
 

SRTL-5 
THE FIFTH INTERNATIONAL RESEARCH FORUM ON STATISTICAL 

REASONING, THINKING, AND LITERACY 
Coventry, UK, August 11 - 17, 2007 

 
Reasoning about Statistical Inference: 

Innovative Ways of Connecting Chance and Data 
 

The Forum’s 
focus will be on 
informal ideas of 

inference rather than on formal methods of estimation and tests of significance. This topic 
is emerging from the presentations and discussions at SRTL-3 and 4 and is a topic of 
current interest to many researchers as well as teachers of statistics. As new courses and 
curricula are developed, a greater role for informal types of statistical inference is 
anticipated, introduced early, revisited often, and developed through use of simulation 
and technological tools. Papers will address reasoning about statistical inference at all 
levels of education including the professional development of elementary and secondary 
teachers. 
 
TOPICS 
Submitted research papers address questions such as the following:  

1. What are the simplest forms of statistical inference that students can understand? 
2. How does reasoning about statistical inference develop from the simplest forms 

(informal) to the more complex ones (formal)? 
3. How can instructional tasks and technological tools be used to promote the 

understanding of statistical inference?  
4. What are sequences of activities that can help student develop a conceptual 

understanding of statistical inference? 
5. What types of misconceptions are found in students’ reasoning about statistical 

inference? 
6. What types of foundational knowledge and reasoning are needed for students to 

understand and reason about statistical inference?  
7. How do students develop an understanding of the language used in describing 

statistical inference (e.g., significance, confidence)? 
8. How does an understanding of statistical inference connect and effect 

understanding of other statistical concepts? 
9. What are useful items and questions to use to assess understanding of statistical 

inference? 
 
LOCAL SRTL-5 ORGANIZERS 

Janet Ainley, janet.ainley@warwick.ac.uk 
Dave Pratt, dave.pratt@ioe.ac.uk 

 
For more information visit the SRTL-5 website: http://srtl.stat.auckland.ac.nz/ 
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IASE SATELLITE CONFERENCE ON  
ASSESSING STUDENT LEARNING IN STATISTICS 

Guimaraes, Portugal, August 19-21, 2007 
 

The meeting will be held on 19-21 August 2007 in Guimarães, Portugal, immediately 
prior to ISI 56 in Lisbon. The fascinating historic city of Guimarães is about 50 km from 
Portugal’s second largest city, Oporto. This Satellite will involve papers on many aspects 
of assessing student learning in statistics. Over 40 papers will be presented along with a 
number of posters and discussions of examination questions. Proceedings will be 
available on CD and free at the publication page of IASE. 

Non-participants must register by 31 May 2007. 
 
CONFERENCE COMMITTEE 

Brian Phillips (Australia) (Joint Chair and Joint Chief Editor) bphillips@swin.edu.au 
Beth Chance (USA) (Joint Chair) bchance@calpoly.edu 
Allan Rossman (USA) arossman@calpoly.edu 
Ginger Rowell (USA) rowell@mtsu.edu 
Gilberte Schuyten (Belgium) gilberte.schuyten@UGent.be  
Larry Weldon (Canada) (Joint Chief Editor) weldon@sfu.ca 
Local Organiser: Bruno C. de Sousa (Portugal) bruno@mct.uminho.pt 

 
For more information visit the website: 
http://www.stat.auckland.ac.nz/~iase/conferences.php?show=iasesat07 

 
ISI-56 

THE 2007 SESSION OF THE INTERNATIONAL STATISTICAL INSTITUTE 
Lisboa, Portugal, August 22 – 29, 2007 

 
The 56th Session of the International Statistical 

Institute (ISI) will be held in Lisboa, Portugal. As it does 
at each major ISI conference, IASE will be organizing 
about 10 statistics education sessions for ISI-56. Please 
check the website at http://www.isi2007.com.pt/ for more 
information, and contact the session organizers below if 
you would like to offer to speak in one of the sessions. 
 
 

IASE SPONSORED IPMS (ORGANIZERS, PRESENTERS, DISCUSSANTS) 
 
IPM37 Research on Reasoning about Distribution 

Organizer: Joan Garfield, USA 
Presenters: Rolf Biehler, Germany; Jane Watson, Australia; Chris Reading, 
Australia 
Discussants: Roxy Peck and Beth Chance, USA 

IPM38 How Modern Technologies Have Changed the Curriculum in Introductory 
Courses  
Organizers: Lucette Carter, France; Catherine Pardoux, France 
Presenters: Cecily Peters, Malaysia; Brigitte Chaput, France; Mathilde 
Mougeot, France 
Discussants: Carmen Capilla, Spain; Robert Gould, USA 
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IPM39 Preparing Teachers of Statistics 
Organizer: Allan Rossman, USA 
Presenters: Carmen Batanero, Spain; Penelope Bidgood, UK; Verônica 
Yumi Kataoka, Brazil; Madhuri Mulekar, USA 
Discussant: Jerry Moreno, USA 

IPM40 Research on the Use of Simulation in Teaching Statistics and Probability 
Organizer: Rolf Biehler 
Presenters: Nicolas Christou, Ivo D. Dinov and Juana Sanchez, USA; 
Joachim Engel, Germany; Andrew Zieffler and Joan B. Garfield, USA 
Discussant: Andrej Blejec, Slovenia 

IPM41 Optimizing Internet-Based Resources for Teaching Statistics 
Organizers: Roxy Peck, USA; Ginger Holmes Rowell, USA 
Presenters: Mary Townsend, Canada; Iddo Gal and Dani Ben-Zvi, Israel; 
Dennis Pearl, USA  
Discussant: Irena Ograjensek, Slovenia 

IPM42 Observational Studies, Confounding, and Multivariate Thinking 
Organizer: Milo Schield, USA 
Presenters: Donald Rubin, USA; Nancy Wermuth, Sweden and David Cox, 
UK; James Nicholson, Jim Ridgway, and Sean McCusker, UK; John 
Harraway, New Zealand 

IPM43 Teaching of Official Statistics 
Organizer: Sharleen Forbes, New Zealand 

IPM44 Teaching of Survey Statistics 
Organizer: Steve Heeringa, USA 
Presenters: Don Royce, Canada; James J. Brown, UK; Marie-Christine 
Ponsonnet, France; Giulio Ghellini, Italy 
Discussant: Graham Kalton, USA 

IPM45 Studying Variability Through Sports Phenomena 
Organizer: Brian Phillips, Australia 
Presenters: Tim Swartz, Canada; Stephen Clarke, Australia; Phil Everson, 
USA; Kaznori Yamaguch, Michiko Watanabe, and Fumitake Sakaori, Japan 
Discussant: Larry Weldon, Canada  

IPM46  Use of Symbolic Computing Systems in Teaching Statistics 
Organizer: Zaven Karian, USA 

 
IASE ORGANIZING COMMITTEE 

Allan J. Rossman (USA) arossman@calpoly.edu 
Gilberte Schuyten (Belgium) gilberte.schuyten@UGent.be  
Chris Wild (New Zealand) c.wild@auckland.ac.nz 
 
For more information visit the ISI 56 website at http://www.isi2007.com.pt/ or 

contact members of IASE OC. 
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JOINT ICMI /IASE STUDY 
STATISTICS EDUCATION IN SCHOOL MATHEMATICS:  

CHALLENGES FOR TEACHING AND TEACHER EDUCATION 
Monterrey, Mexico, June 30 to July 4, 2008 

 
The International Commission on Mathematical 

Instruction (ICMI, http://www.mathunion.org/ICMI/) and 
the International Association for Statistical Education 
(IASE, http://www.stat.auckland.ac.nz/~iase/) are pleased 
to announce the Joint ICMI/IASE Study Statistics 
Education in School Mathematics: Challenges for Teaching 
and Teacher Education. The conference is co-sponsored by 
the American Statistical Association and endorsed by the 

Interamerican Statistical Institute, Mexican Statistical Association and the International 
Statistical Literacy Project. 

Following the tradition of ICMI Studies, this Study will comprise two parts: the Joint 
Study Conference and the production of the Joint Study book. The Joint Study 
Conference will be merged with the IASE 2008 Round Table Conference. 

The Joint Study Conference (ICMI Study and IASE Round Table Conference) will 
take place at the Instituto Tecnológico y de Estudios Superiores, Monterrey, Mexico 
(http://www.mty.itesm.mx/), from June 30 to July 4, 2008. Participation in the 
Conference is only by invitation, based on a submitted contribution and a refereeing 
process. Accepted papers will be presented in the Conference and will appear in the 
Proceedings that will be published by ICMI and IASE as a CD-ROM and on the Internet.  

The second part of the Joint Study – the Joint Study book – will be produced after the 
conference and will be published in the ICMI Study Series. Participation in the Joint 
Study Conference does not automatically assure participation in the book, because a 
second selection and rewriting of selected papers will be made after the conference. 

Proposed papers for contributions to the Joint Study Conference should be submitted 
by e-mail no later than October 1, 2007, to the IPC Study Chair (Carmen Batanero, 
batanero@ugr.es). Papers should be relevant to the Joint Study focus and research 
questions, as described in the Discussion Document (which is available at the Joint Study 
Website (http://www.ugr.es/~icmi/iase_study/). Guidelines for preparing and submitting 
the paper are also available in the Discussion Document. Please address questions to 
Carmen Batanero, batanero@ugr.es or Joan Garfield, jbg@umn.edu . 
 
INTERNATIONAL PROGRAMME COMMITTEE  

Carmen Batanero (Spain)  
Bernard Hodgson (Canada, ICMI representative) 
Allan Rossman (USA, IASE representative)  
Armando Albert (México, ITSM representative)  
Dani Ben-Zvi (Israel)  
Gail Burrill (USA)  
Doreen Connor (UK)  
Joachim Engel (Germany)  
Joan Garfield (USA)  
Jun Li (China)  
Maria Gabriella Ottaviani (Italy)  
Maxine Pfannkuch (New Zealand)  
Mokaeane Victor Polaki (Lesotho)  
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Chris Reading (Australia)  
 

LOCAL ORGANISING COMMITTEE  
Blanca Ruiz (Chair)  
Ernesto Sánchez  
Tomás Sánchez 
Armando Albert 

 
More information is available from Carmen Batanero, batanero@ugr.es or from 
http://www.ugr.es/~icmi/iase_study/ 

 
ICOTS-8 

DATA AND CONTEXT IN STATISTICS EDUCATION: 
TOWARDS AN EVIDENCE-BASED SOCIETY 

Ljubljana, Slovenia, 11-16 July 2010 
 

CONFERENCE THEME 
The realization that data is preferable to anecdote or 

intuition as a basis for robust decision making is spreading 
through many professions and sections of society. More and 
more, people want to see “the evidence”. Statistical 
methodology and modelling are increasingly pervading the 
research fabrics of all fields that advance by employing 
empirical enquiry. And because the root purpose of statistics 
is to extract insight and meaning about real contexts using 

data, statistics educators are increasingly realizing that this cannot be modelled by 
teachers without the use of rich, real contexts. It is important that data and contexts 
pervade statistical learning and teaching, to help students understand the nature and value 
of the statistical sciences, and to facilitate their learning. Successful learning processes 
involve data and contexts that are meaningful to students. These can be relevant to 
everyday life or to disciplines as varied as psychology, biology, business, sociology, 
engineering, the health sciences and statistics itself. But many questions remain about the 
myriad ways in which we can exploit context to achieve our educational goals. We also 
must look hard at how well we use the data and contexts that should be guiding our own 
educational practices.  
 
EVIDENCE-BASED PRACTICE IN OTHER DISCIPLINES: SOME EXAMPLES  

Statisticians are often essential contributors in research teams in many disciplines and 
examples drawn from these contexts can enrich and facilitate the teaching of statistics. 
Interaction between statistics educators, statisticians and researchers in a relevant 
specialization can contribute significantly to the rich, real contextual and data resources 
that are of such value in both motivating and assisting statistical learning. Trends in 
medicine and other health sciences are governed by data, and evidence-based medicine is 
taught now in all medical schools. Data from the biological sciences provide information 
for resolving problems on environmental and ecological issues. The six-sigma revolution 
uses statistical quality control methods to monitor and improve industrial and engineering 
processes resulting in evidence-based decision making in industry. National statistics 
offices and international agencies contribute to evidence-based decision making in 
government and on public policy by collecting, collating, analysing and presenting data 
to populations at large and to governments in particular.  
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EVIDENCE-BASED PRACTICE IN STATISTICS EDUCATION  
Evidence-based practice should also be employed in statistics education itself. How 

do we use context when teaching about variability, probability, inference and modelling? 
How do we interpret data from surveys, questionnaires or interviews and how are these 
related to the research hypotheses? To what extent are conclusions valid and reliable? Are 
we dealing with and explaining risk appropriately? Only with the answers to these 
intriguing questions will we be able to make informed decisions as we strive to reach an 
evidence-based society. Education ideas are shared on the web, through international and 
national projects, programmes, workshops and conferences in statistics education where 
diverse innovations are shared. The impact and relevance of new ideas are assessed and 
often adopted by others in their own teaching. Reports on the successes of recent statistics 
education programmes in South Africa and Latin America reflect the impact of the two 
ICOTS conferences and provide helpful ideas for other countries. 
 
THE INTERNATIONAL PROGRAMME COMMITTEE EXECUTIVE  

IPC Chair: John Harraway 
Programme Chair: Roxy Peck 
Information Manager: John Shanks 
Scientific Secretary: Helen MacGillivray 
Editor Proceedings: Alan McLean 
 

LOCAL ORGANISING COMMITTEE 
LOC Chair: Andrej Blejec 
 

 For more information visit the ICOTS-8 website: http://ICOTS8.org 
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OTHER FORTHCOMING CONFERENCES 
 

2007 JOINT STATISTICAL MEETINGS 
Salt Lake City UT, USA, July 29 - August 2, 2007 

 
The 2007 Joint Statistical Meetings will be held July 29 - August 2, 2007 at the Salt 

Palace Convention Center located at 100 South West Temple, Salt Lake City, Utah 
84101.  

JSM (the Joint Statistical Meetings) is the largest gathering of statisticians held in 
North America. It is held jointly with the American Statistical Association, the 
International Biometric Society (ENAR and WNAR), the Institute of Mathematical 
Statistics, and the Statistical Society of Canada. Attended by over 5000 people, activities 
at the meeting include oral presentations, panel sessions, poster presentations, continuing 
education courses, an exhibit hall (with state-of-the-art statistical products and 
opportunities), career placement service, society and section business meetings, 
committee meetings, social activities, and networking opportunities. Salt Lake City is the 
host city for JSM 2007 and offers a wide range of possibilities for sharing time with 
friends and colleagues. For information, contact jsm@amstat.org 

 
Website: http://www.amstat.org/meetings/jsm/2007/ 

 
JOINT SOCR (STATISTICS ONLINE COMPUTATIONAL RESOURCE)  

CAUSEWAY CONTINUING EDUCATION WORKSHOP 2007 
UCLA, Los Angeles CA, USA, 6-8 August 2007 

 
The 2007 joint SOCR/CAUSEway continuing education 

workshop aims at demonstrating the functionality, utilization 
and assessment of the current UCLA, SOCR and CAUSEweb 
resources. This workshop will be of most value to AP teachers 
and college instructors of probability and statistics classes who 
have interests in exploring novel IT-based approaches for 
enhancing statistics education. The workshop will provide an 

interactive forum for the exchange of ideas and recommendations for strategies to 
integrate computers, modern pedagogical approaches, the Internet and new student 
assessment techniques.  

 
For further information: 
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Events_Aug2007/ 

 



 75 

 

 

9TH INTERNATIONAL CONFERENCE OF THE MATHEMATICS 
EDUCATION INTO THE 21ST CENTURY PROJECT 

MATHEMATICS EDUCATION IN A GLOBAL COMMUNITY 
Charlotte NC, USA, September 7 - 13, 2007 

 
The Mathematics Education into the 21st Century Project was 

founded in 1986 and is dedicated to the planning, writing and 
disseminating of innovative ideas and materials in Mathematics and 
Statistics Education. The next conference is planned for September 

7 - 13, 2007 in Charlotte, North Carolina. The chairman of the Local Organising 
Committee is Dr. David K. Pugalee, of the University of North Carolina Charlotte. The 
title of the conference is “Mathematics Education in a Global Community.” Papers are 
invited on all innovative aspects of mathematics education. Our conferences are 
renowned for their friendly and productive working atmosphere. They are attended by 
innovative teachers and mathematics educators from all over the world, 25 countries were 
represented at our last conference for example.  

 
For more information:  
Alan Rogerson, arogerson@inetia.pl 
Website: http://math.unipa.it/~grim/21project.htm 

 


