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ABSTRACT 

 
We investigate the use of external visual representations in probability problem 
solving. Twenty-six students enrolled in an introductory statistics course for social 
sciences graduate students (post-baccalaureate) solved eight probability problems in 
a structured interview format. Results show that students spontaneously use self-
generated external visual representations while solving probability problems. The 
types of visual representations used include: reorganization of the given information, 
pictures, novel schematic representations, trees, outcome listings, contingency tables, 
and Venn diagrams. The frequency of use of each of these different external visual 
representations depended on the type of probability problem being solved. We 
interpret these findings as showing that problem solvers attempt to select 
representations appropriate to the problem structure, and that the appropriateness of 
the representation is determined by the problem’s underlying schema.  
 
Keywords: Statistics education research; Probability problem solving; Visual 
representations; Trees; Outcome listings; Venn diagrams 
 

1. INTRODUCTION 
 
Consider the following probability problem: 
 
An apartment building has four parking spaces in front (call them A, B, C, and D). 
There are four apartments in the building (#1, #2, #3, and #4), and each apartment has 
a single occupant with a single car. Every evening, all four occupants come home and 
park in a randomly chosen space. What is the probability that this evening they park 
so that the occupant of Apt #1 is in space A, the occupant of #2 is in space B, the 
occupant of #3 in space C, and the occupant of #4 in space D? 
 
How would you go about solving this problem? Many people report visualizing the 

cars and parking spaces. After that, strategies for solving the problem tend to diverge (as 
do success rates). One of our points in presenting this problem (used in the present study) 
is that probability word problems are often simple to pose, yet difficult for many students 
to solve. Another point is that visualization and visual solution methods, such as self-
generated external pictures and diagrams, can be very helpful in solving some probability 
problems. 
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Probability problem solving (PPS) can be quite difficult for students (Garfield & 
Ahlgren, 1988; Konold, 1989; O’Connell, 1993; Pollatsek, Well, Konold, Hardiman & 
Cobb, 1987), even when the mathematics involved is simple. Of course, other types of 
mathematics word problems are also difficult for many students, perhaps because solving 
them requires the problem solver to think abstractly about situations, and then model 
these situations using mathematical concepts. However, some researchers (Garfield & 
Ahlgren, 1988; Konold, 1989) have suggested that probability problem solving may be 
especially difficult because people have natural misconceptions about probabilistic 
concepts (e.g., Kahneman, Slovic, & Tversky, 1982).  

Recommendations have been made for how to teach concepts in probability (e.g., 
Bantanero, Godino, & Roa, 2004; Gelman & Nolan, 2002; Gigerenzer, 1994; Keeler & 
Steinhorst, 2001; Konold, 1995, 1996; Sedlmeier & Gigerenzer, 2001). However, as 
pointed out by Garfield and Ahlgren (1988), only a few articles have tried to gather 
empirical evidence on the processes by which students solve probability problems. In one 
such study, O’Connell (1999; O’Connell & Corter, 1993) described a pedagogical model 
of recommended process steps by which students should solve probability problems. 
O’Connell (1993, 1999) classified student errors in probability problem solving, showing 
that they could be grouped into several categories: text comprehension errors, conceptual 
errors, procedural errors, and computational errors. Konold, Pollatsek, Well, and 
Lohmeier, and Lipson (1993) documented inconsistencies in probabilistic reasoning and 
discussed implications for probability problem solving. Due to this paucity of research on 
PPS, Chance and Garfield (2002) call for more research on the cognitive processes of 
probability problem solvers using innovative methods such as videotaped clinical 
interviews. The present study is intended as a step in that direction. 
 
1.1.  IS THERE A SPECIAL ROLE FOR VISUALIZATION IN PROBABILITY 

PROBLEM SOLVING? 
 
In studying the cognitive processes of probability problem solvers, one issue that 

deserves special attention is the role of visualization. After all, anecdotal evidence 
suggests that visualization plays an important role in how experts solve probability 
problems (and mathematics problems generally). Also, informal observations of how 
students in statistics courses solve probability problems provide ample evidence that they 
sometimes spontaneously use visual devices (e.g., outcome trees) in their written work. 
Finally, Sedlmeier (2000) has suggested that common cognitive “fallacies” in reasoning 
about conditional probabilities may be ameliorated by graphical representations. 
Visualization may be especially important for probabilistic reasoning and probability 
problem solving because of the inherently abstract nature of the concepts introduced in 
probability. 

To better understand the literature on visualization in mathematics problem solving, it 
is important to distinguish between internal visual representations (i.e., “mental 
imagery”) and external visual representations (e.g., graphs, charts, pictures, etc.). Another 
distinction about the way external representations may be used in problem solving 
concerns whether the external representations are provided to the student by an instructor 
or experimenter, or are spontaneously generated by the student in the course of solving 
the problem. Although there is an extensive literature on how instructor-provided 
graphics can aid in scientific problem solving (summarized below), there has been little 
or no research on students’ spontaneous creation and use of pictures, graphics and other 
visual devices in the course of mathematics problem-solving activities. In the present 
study, we use written and think-aloud protocols to study when and why probability 
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problem solvers spontaneously produce external visual representations in their written 
work (when not required to do so), and what types of visual representations they employ.  

 
1.2.  PREVIOUS RESEARCH ON EXTERNAL VISUAL REPRESENTATIONS 

AND PROBLEM SOLVING 
 
Results from previous research on scientific problem solving by schoolchildren (e.g., 

Lehrer & Schauble, 1998; Penner, Giles, Lehrer, & Schauble, 1996) and by high school 
and college students (e.g., Hall, Bailey, & Tillman, 1997; Hegarty & Just, 1993; 
Kaufmann, 1990; Mayer, 1989; Mayer & Anderson, 1991, 1992; Mayer & Gallini, 1990; 
Mayer, Mautone, & Prothero, 2002; Molitor, Ballstaedt, & Mandl, 1989; Santos-Trigo, 
1996; B. Tversky, 2001) suggest that experimenter-provided external visual 
representations can aid scientific problem solving. The visual representations investigated 
in these studies ranged from diagrams that accompanied text (Hall, Bailey, & Tillman, 
1997; Mayer, 1989; Mayer & Anderson, 1991, 1992; Mayer & Gallini, 1990; Mayer, 
Mautone, & Prothero, 2002) to actual physical models of scientific systems (Lehrer & 
Schauble, 1998; Penner, Giles, Lehrer, & Schauble, 1996). In spite of the wide range of 
external visual representations used in these studies, a common finding was that 
experimenter-provided external visuals often facilitate problem-solving success. Many of 
the studies also conclude that such external visual representations can aid in the 
development of student understanding of physical systems and mechanisms. 

Incidentally, it is likely that individuals vary in the extent to which they use and 
benefit from visual representations. Some researchers in this area (e.g., Hegarty & 
Kozhevnikov, 1999; Kozhevnikov, Hegarty, & Mayer, 2002) have taken an individual 
differences perspective, grouping problem solvers into one of several types: those who 
tend to use verbal representations, and those who primarily use visual/spatial 
representations. Kozhevnikov et al. (2002) suggest that the visualizer group can be 
further split into object visualizers and spatial visualizers, with spatial visualizers 
showing some advantages in scientific and mathematical tasks. 

Research conducted specifically in the domain of mathematics has also shown that 
experimenter-provided external visual representations can be useful in mathematics 
problem solving (e.g., Sedlmeier & Gigerenzer, 2001; Koedinger & Anderson, 1997; 
Nemirovsky, 1994). In particular, a number of studies (e.g., Hollebrands, 2003; Hannafin, 
Burruss, & Little, 2001; Hannafin & Scott, 1998) have found that the use of Geometer’s 
Sketchpad®, a geometry graphing computer program, can be helpful in developing 
students’ concepts and problem solving in geometry. Schwartz and Martin (2004) 
investigated the use of graphical tools in statistics instruction and found that 
experimenter-prompted graphical “invention activities” by students led to significant 
gains in understanding of statistical concepts. 

Previous work (e.g., Russell, 2000; Zahner & Corter, 2002) in our own lab has shown 
that most probability problem solvers choose to use external visual representations while 
solving problems (after being taught the use of such visuals in an introductory statistics 
course), and that a wide variety of such external visual devices are used. External visual 
representations used by probability problem solvers include at least these types: graphs, 
tree diagrams, contingency tables, Venn diagrams, and pictures. Arguably, formulas and 
mathematical symbols could be included in this list, because they incorporate visuospatial 
relationships (cf. Presmeg, 1986). However, their usefulness in solving probability 
problems is not in question. 
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1.3.  WHY ARE EXTERNAL VISUAL REPRESENTATIONS USEFUL IN 
PROBLEM SOLVING? 

 
In order to use research results on visualization and problem solving to improve 

mathematics teaching and learning, it is important to ask why external visual 
representations are useful in mathematics problem solving. One possible answer to this 
question is that external visual representations help to augment cognitive capabilities in 
certain ways (e.g., Lowrie & Kay, 2001; Novick, 2001; Qin & Simon, 1995), for example 
by aiding memory. Tversky (2001) lists a number of possible functions of external 
diagrams and visual devices, including attracting attention, recording information and 
supporting memory, communication, providing models, and facilitating inference and 
discovery. Another possibility is that using multiple representations of a problem 
(including visual ones) leads to a fuller understanding of the problem and an increased 
“depth of processing” (Logie & Baddeley, 1990; Mayer, 1989, 2001; Mayer & Gallini, 
1990). Other potential explanations for the use of external visual representations include 
the possibility that such representations can help problem solvers build a mental model of 
the described problem situation (Schwartz & Black, 1996). Finally, for certain problems 
the graphical devices may be used as a solution tool in a more specific way: for example, 
reading a value from a graph, or counting outcomes in an outcome tree. Alternatively, it 
might be that there is no benefit in using external visual representations, rather their use is 
just an epiphenomenon, a reaction to training from classroom instruction.  

Of course, these accounts of why visualizations might be useful are not all mutually 
exclusive or contradictory. But only fragmentary data exist that might support or discredit 
any of these explanations. Some hints might come from studies examining when problem 
solvers choose to use external visual representations. For example, there is some evidence 
that both internal (Hampson & Morris, 1990) and external (Lowrie & Kay, 2001; Zahner 
& Corter, 2002) visual representations tend to be used more for unfamiliar or more 
difficult problems. This observation seems to support certain explanations (e.g., visuals as 
supporting memory, or facilitating inference and discovery) more than others.  

 
1.4.  THE PRESENT STUDY 

 
This study focuses on the use of external visual representations in probability problem 

solving (PPS). We are interested in what types of problems tend to elicit use of visual 
representations, how and when external visual representations are used in PPS, and 
finally, if external visual representations facilitate correct solution of the problems. We 
used a variety of problem types, in order to investigate if the usefulness of visuals and the 
type of visual device chosen by the problem solver depends on specific aspects of the 
problem being solved. Specifically, we ask: Are particular types of representations used 
with particular problem topics (for example, problems dealing with permutations)? Also, 
we investigate if external visual representations are used more often with unfamiliar types 
of problems, because the student may have a higher cognitive load in these cases, or 
because the elicitation of a familiar problem-solving schema may be less likely.  

As background to the present work, we assume that the process of solving a 
probability word problem can be broken down into roughly sequential stages (cf. Kintsch 
& Greeno, 1985; Mayer, 1992; O’Connell, 1993, 1999; O’Connell & Corter, 1993; 
Reusser, 1996). These stages are assumed to be: 

i) initial problem understanding (text comprehension), 
ii) formulating the mathematical problem, 
iii) finding a solution method or schema, 
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iv) computing the answer. 
Novick and Hmelo (1994) make a more gross distinction between problem 

representation and solution procedure phases of problem solving. Consistent with this 
simpler classification, our coding scheme for written protocols of students did not attempt 
to code use of visuals separately for stages i-iii, because we do not believe this can be 
done reliably with the present data. Rather, our scheme coded two types of uses of graphs 
or other external visual representations: a) for problem understanding, mathematical 
formulation, or for selection of a solution schema (i.e., any such use in the first three 
stages above), and b) for any use in the final stage, that of actually computing a numerical 
answer. We refer to the latter type of use of visual devices under the term “computational 
method.” As an example of the first type of use, consider the use of a picture of a spinner 
or a Venn diagram to depict aspects of the probability word problem. An example of the 
second type of use of external visualizations, using them to compute an answer, would be 
counting the number of outcomes (leaves) in an outcome tree to find the denominator for 
a probability calculation.  

  Finally, we are interested in knowing if the use of external visual representations 
is associated with solution success for these probability problems. If external visual 
devices are used because they are helpful, then we ought to be able to find evidence of 
that. However, there are several factors that complicate this relationship, including the 
student’s prior knowledge of the visual devices used, student spatial and mathematical 
ability, student cognitive style and the difficulty of the problem. Alternatively, it might be 
that the use of external visual representations is associated with solution failure, because 
participants might be more likely to use visual representations when they find a problem 
confusing or difficult (cf. Hegarty & Kozhevnikov, 1999; Lowrie & Kay, 2001). 
 

2. METHOD 
 

2.1.  PARTICIPANTS  
 
Twenty-six students were recruited from introductory probability and statistical 

inference classes during the Fall semester of 2002 from an urban college of education and 
psychology in the U.S.A. All participants were graduate students (post-baccalaureate) in 
education and social sciences, with widely varying math backgrounds. Participants were 
each paid ten dollars. They were informed that they were going to participate in a study 
of probability problem solving, and that the primary focus of the study was on the 
methods by which students solve problems. Because all the participants were enrolled in 
the same introductory statistics class at the college, their recent curricular background in 
probability problem solving was well-controlled and known, though the degree to which 
each participant mastered the material in that course was not measured. This course 
included approximately six lectures in probability. Topics included: events and outcome 
spaces, definition of probability for equally-likely and unequally-likely events, 
combinatorics, compound events, conditional probability, independence of events, and 
Bayes’ Rule. 
 
2.2.  MATERIALS  

 
Each respondent was asked to solve eight probability problems. This set of eight 

problems (see Appendix) was designed to include four different probability topics 
(“problem types”) each represented at two different levels of typicality for that topic. The 
four different problem types were labeled: “Combinations,” “Sequential,” 
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“Permutations,” and “Conditional probability.” The problems representing each of these 
four topics were thought to have distinct “deep structures” corresponding to four distinct 
problem schemas, tapping somewhat different sets of knowledge and solution skills. This 
factor will be referred to as “problem type.” As an example, consider Problem P1, an 
example of a Combinations problem: 

P1. There are 10 books on Mary’s bookcase. She randomly grabs 2 books to read on 
the bus. What is the probability that the 2 books are “Little Women” and “War & 
Peace”? (Both these books are on her bookshelf.) 

In the curriculum to which these participants had recently been exposed, this problem 
typically would have been solved using the formula for the number of combinations of n 
objects selected k at a time. That formula gives the number of possible outcomes in the 
sample space: 

45
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Then the probability of Mary selecting one particular combination (two specific 
books) can easily be calculated to be 1/45. Any problem requiring use of this formula (or 
a variant of it) is therefore assumed to share the same problem schema, and is said to be 
of the same basic Problem Type (Combinations in this case). 

 For each problem type, there was one typical variant and one atypical variant. The 
typical version was a problem that could be solved using a straightforward application of 
a standard probability formula known to have been taught in the participants’ 
introductory statistics class. The atypical version was a problem that was very unlikely to 
be isomorphic to any problem encountered in their course, and that could not be solved 
using a single application of a standard probability formula. This manipulation of 
typicality may be clarified by Table 1, which presents summaries of what we judge to be 
appropriate formula-based solutions for the typical and atypical variants of each problem 
type. These solutions are presented to show the basic underlying structure of each 
problem type, without reference to surface content, and to illustrate how each problem 
might be solved by application of one or more standard probability formulas. 

Table 1 also makes clear the types of specific problem manipulations that were used 
to create the atypical variant of each problem type. For the Combinations problem, the 
predicted solution for the typical version requires the problem solver to use the standard 
formula for the number of combinations of n things selected k at a time to calculate the 
number of possible outcomes. Our predicted solution for the atypical Combinations 
problem requires using this formula twice, once in the numerator and once in the 
denominator. For the Sequential problems, problem solvers must use the formula for 
calculating the probability of three independent events. In the typical variant the three 
events are identical, whereas in the atypical variant they are different events with 
differing probabilities. The typical variant of the Permutations problem asks how many 
different ways four items can be matched up with four “slots.” The atypical version of 
this problem asks the same question, but orders the objects only with respect to the first 
two slots. We consider this an atypical problem because the computational method does 
not correspond to straightforward application of the formula for number of permutations 
of n objects, which is known to have been taught in the participants’ introductory 
statistics course. Note that this atypical variant is actually simpler computationally than 
its typical version. For the Conditional Probability problems, the typical version closely 
resembles examples used in the students’ introductory statistics course, and requires the 
problem solver to use the formula for conditional probability (twice). The atypical variant 
adds a final step, in which the formula must be used a third time.  
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Table 1. Example formula-based solutions for typical and 
 atypical variants of each problem type  

 
Across two different forms (A and B) of the test booklet, each of the eight problems 

was formulated with two different cover stories, or surface content. Surface content was 
counterbalanced with problem typicality across test forms. For example, the typical 
Combinations problem P1 given above involved books on a bookshelf, so a participant 
who saw that problem would see an atypical Combinations problem involving cookies in 
a cookie jar. For another participant who saw the second test form, the atypical 
Combinations problem would involve books on a bookshelf, and the typical version 
would involve cookies in a cookie jar. The Appendix shows only test form A. 
 
2.3.  PROCEDURE  

 
A structured interviewing protocol (cf. Ginsburg, 1997) was developed for use in the 

interviews, and was designed mainly to elicit a reasonable level of detail in the participant 
protocols. The same interviewer worked with all of the participants, interviewing only 
one participant at a time. Participants were asked to think aloud while solving the 
problems, and also to show their written work with provided pen and paper. The task was 
not timed. However, most participants finished in less than an hour. A probability 
formula sheet was available to them at all times (but left face down), though no 
participant was observed to use it. A videotape recorder was used to capture the 
participants’ work and student/interviewer comments. The present analyses mainly focus 
on the participants’ written work, though the verbal transcripts were analyzed as well. 

The interviewer stepped in with verbal prompts in any of four circumstances, to elicit 
continuation of the work or more detail about the participant’s solution process. The first 

Problem Type Typical Atypical 
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circumstance was if the participant could not see any way to begin solving the problem. 
In this situation the script called for the interviewer to ask, “In general, what would be a 
good first step in solving this problem?” with other follow-up questions (“How would 
you apply it in this case?”) if the first prompt did not elicit useful work. The second type 
of circumstance in which the interviewer stepped in was when the participant paused for 
a long time (more than 30 seconds) without thinking aloud or writing. This could indicate 
either that the participant was thinking silently or was at an impasse, and was responded 
to with “What are you thinking?” and other follow-up prompts (“Let’s back up and look 
at this again. How else could you solve this?”). The third situation in which prompting 
occurred was when the participant’s verbal or written process explanations lacked 
sufficient detail, for example, consisting of only a few calculations with no explanation 
(“Can you explain how you arrived at this?”). The fourth situation eliciting interviewer 
intervention was when the participant indicated that he or she was finished with the 
problem. In most cases, this occurred when the participant had arrived at what he or she 
believed was the correct answer. In other cases, this was because the participant gave up 
on solving the problem. In either case, the interviewer then asked the participant to 
explain in detail all of the steps used in the solution attempt.  
 

Coding of the written protocols The focus of the present study is on use of external 
visual representations in problem solving and on the methods used to solve problems. 
Thus, the analyses reported in the present study focus mainly on coding of the 
participants’ written work. Three particular aspects of the written problem solutions were 
coded, based upon a scheme developed in previous research (Russell, 2000). The first 
coded aspect was whether or not the participant gave the correct answer to the problem. 
The second aspect coded, described in more detail below, was the type of external visual 
representation used (if any) by the participant. The third aspect coded, also described in 
more detail in the next section, was the type of general computational method used to 
solve the problem. Here the identified types were: formula, graphical, or procedural.  

 
External visual representations Written protocols for each problem solution were 

coded for use of different types of external visual representations. The coded types of 
external visual representation included pictures, outcome listings, trees, contingency 
tables, Venn diagrams, novel schematic representations, and spatial reorganization of the 
given information.  

An external visual representation was coded as a picture if it attempted to represent 
the real-world situation conveyed in the problem in a non-symbolic, pictorial way. For 
example, in a problem about use of a spinner with separate areas marked “red,” “blue,” 
and so on, any picture of a spinner type device would count as a picture (see Figure 1 for 
an example). A visual device was coded as an outcome listing if it gave a list of outcomes 
in some relevant outcome space, for example: {HH, HT, TH, TT} as the outcomes space 
for the experiment of flipping a coin twice. A visual representation was coded as a tree 
diagram if the participant attempted to organize the information from the problem in 
either a complete or a partial outcome tree. An example of the use of a tree diagram is 
shown in Figure 2. A visual representation was coded as a contingency table if the 
participant presented the information from the problem as probabilities or frequencies in 
a two-way table. A visual representation was coded as a Venn diagram if the participant 
used a Venn diagram to represent set relationships.  
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Figure 1. A participant’s written work for the typical version of the Sequential problem, 

illustrating use of a picture 
 

 
 

 
 
Figure 2. A participant’s written work for the typical version of the Sequential problem, 

illustrating use of an outcome tree (and a picture) 
 
Besides these standard pictorial and schematic representations used in previous 

studies (Russell, 2000; Zahner & Corter, 2002), we created two additional coding 
categories to cover cases not handled by the above classes. The first is a code indicating 
any attempt to invent and use what we termed a “novel schematic representation.” Use of 
the term “novel” is meant to denote a schematic visual device that was not taught in the 
introductory class the participants were taking or had taken, nor used in standard 
probability texts. It is not meant to imply that the student invented and used a previously 
unknown type of visual device. An example of this category is a graphic used by several 
subjects for the Permutations problems: a list of four names whose elements are 
connected by lines or arrows to elements in a list of four numbers (see Figure 3). This 
type of representation (that we would classify as a directed graph) is apparently an 
attempt to develop or discover the correct outcome space for the problem. This type of 
representation uses spatial information and schematic elements (lines or arcs) to represent 
relational aspects of the problem, and is thus different from a simple outcome listing. The 
second additional coding category was defined to include any spatial reorganization of 
the given information. Use of a spatial organization scheme for information is not a 
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formal graphical representation nor a purely pictorial representation. However, we have 
included this coding category because we have observed frequent use of spatially-
organized rewriting of information to aid in problem solving. In the present study, many 
participants were observed to line up corresponding given probabilities or conditional 
probabilities (see Figure 4). This practice may make it easier for novice problem solvers 
to check for needed or missing information, to break down problem solution into 
subparts, or to make visual associations to relevant formulas.  

 

 
 

Figure 3. A participant’s written work for typical version of the Permutation problem, 
illustrating use of a novel schematic representation 

 

 
 

Figure 4. A participant’s written work for the atypical version of the Conditional 
problem, illustrating use of spatial reorganization of given information 

 
Computational method We also coded the computational method used by the 

problem solver, that is, the means by which the problem solver actually computes the 
answer required by the problem. We did this because in the course of coding the student 
protocols, we noticed that sometimes visual representations were used very early in the 
problem solving process, for example while the problem solver seemed to be still trying 
to understand the given problem information or to classify the problem, and sometimes 
later in the solution process, for example when the subject was trying to compute the 
actual numerical answer. In an effort to begin to understand what specific role or function 
external visual representations are serving in probability problem solving, we decided to 
separately code the method by which the problem solver actually computed the numerical 
answer required in each of these problems. We classified this later stage of each problem-
solving protocol into three broad classes of computational method: formula, procedural, 
and graphical. 
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The computational method was characterized as formula-based problem solving if the 
participant wrote down an explicit (standard) formula, then substituted in quantities and 
solved the problem. An example of a formula-based computational method would be the 
use of the combinations formula followed by the necessary calculations: 5C2 = 5!/(2!)(3!) 
= (5)(4)/(2)(1) = 10. This complete and rather formal method was distinguished from a 
procedural approach, which was used to code solutions carrying out a calculation 
involving only numbers without reference to any general formula or underlying principle. 
An example of a procedural approach would be if the participant calculated the 
probability of getting three heads in three flips of a coin by simply multiplying 
(1/2)(1/2)(1/2) = 1/8 without indicating any rationale for that procedure. A computational 
method was considered graphical if the subject used an external visual device to solve 
the problem, but only if the graphical device was judged to be instrumental to the method 
by which the student arrived at the actual numerical solution. An example of a graphical 
computational method would be if the subject multiplied two conditional probabilities 
that were taken from branches of a tree diagram.  

No computational method was coded if the participant did not attempt to solve the 
problem. Occasionally, multiple computational methods were coded for a single problem. 
This occurred only when a participant attempted the problem, then abandoned that 
attempt, and attempted another computational method.  

In order to assess reliability of the coding of the written protocols for external 
representations and computation method, a second rater coded all student solutions. 
Initial percent agreement between the two raters was over 90% for both external 
representation and computation method. Discrepancies were discussed by the two raters 
and the resulting consensus was used in all analyses reported.  
 

Coding of audio protocols In order to better understand how the external visual 
representations are being used by problem solvers, we also transcribed and examined the 
audio portion of the videotapes capturing the participants’ think-aloud protocols. Each 
utterance in a participant’s audio transcript was coded to indicate if the participant was 
engaged in either of two broad phases or stages of problem solution: 1) a problem-
representation phase that involves understanding the problem text and reformulating the 
problem in mathematical form; or 2) a solution phase, that involves selecting a solution 
strategy and implementing it. The video track of the tapes focused on participants’ 
written inscriptions, including use of external representations. The video tapes were used 
to match uses of external visual devices with verbal statements by the participants about 
their thoughts and actions and the general phase of problem solving that they were 
engaged in: either problem representation or strategy selection and solution. 
 
2.4.  RESULTS  

 
Preliminary analyses showed that individual problems and problem types varied 

considerably in difficulty. The rightmost column in the Appendix shows the proportion of 
subjects who correctly solved each problem. These proportions vary from a low of .08 for 
Problem P8 (Conditional probability, atypical) to .73 (for Problems P3 and P4, the 
typical and atypical Sequential problems). Regarding problem type, it was found that 
participants were most successful at solving the Sequential problems (.73 correct overall), 
followed by the Permutations problems (.48), then the Combinations problems (.29), and 
finally the Conditional probability problems (.25). These differences in solution rate 
among problem types were significant: in a log-linear analysis with factors Problem 
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Type, Typicality, and Correctness (the dependent variable), the Problem Type × 
Correctness association was significant (χ2(3) = 31.56, p < .05). 

We were also interested in whether the atypical variant of each problem type was 
more difficult for problem solvers than the typical variant. Results indicated that typical 
and atypical variants did not differ in mean difficulty across all four problem types: mean 
proportion correct for the four typical problems encountered by each subject was .43, 
whereas for the four atypical problems it was .44. However, it is clear from the solution 
rate for individual problems (see Appendix) that the typical-atypical difference in 
solution rates varies across problem types. This interaction was tested by the three-way 
association of Problem Type × Typicality × Correctness in the loglinear analysis 
described above. This association was significant, (χ2(3) = 17.00, p <.05). Consequently, 
it is necessary to examine the effects of typicality separately for each problem type.  

In particular, a difference in the expected direction was found for the Conditional 
Probability problems, with 42% of participants correctly solving the typical version of 
the problem versus only 8% for the atypical version. Unexpectedly, for the Combinations 
problem the solution rate for the atypical variant of the problem was much higher (at 
73%) than for the typical variant (at 12%). In order to understand this unexpected result, 
we analyzed participants’ written protocols to identify the specific solution methods used 
by participants for these problems. We found that most participants did not use the 
combinations formula at all to solve the atypical variant of the Combinations problem; 
rather they tended to solve this problem by treating it as a “sequential” problem involving 
sampling without replacement. For example, the problem can be solved using the 
formula: )|()()( 12121 AAPAPAAP =∩ . 

Inspection of the individual student protocols revealed that 92% (24 out of 26) of the 
participants selected this alternate method to solve the atypical Combinations problems. 
This probably occurred because the atypical problem is extremely difficult using the 
Combinations approach: the only two participants who tried this approach both failed to 
solve it. In contrast, exactly half of the 24 participants who adopted the sequential-events 
approach for the atypical variant succeeded in solving it. Note that many participants 
(73%) also tried to solve the typical Combinations problem using a sequential-events 
approach. However, all of these subjects failed to solve the problem, contributing to the 
overall low solution rate for the typical version. The difference in apparent difficulty of 
the sequential approach to these two problems probably involves that fact that in the 
typical Combinations problem, order is not important (but the use of the sequential 
solution method tends to elicit a solution attempt involving ordered pairs). Thus, many 
participants gave the answer 1/90 for this problem using the sequential approach, whereas 
the correct answer is 1/45. In the atypical variant, in contrast, there is a symmetry to the 
outcomes in the outcome space such that order is irrelevant.  

 
What kinds of external visual representations are used? For each specific form of 

external visual representation, we calculated the percentage of participants who used that 
representation at least once. As shown in Table 2, we found that participants most often 
used reorganization of the given information (used at least once by 96.2% of the 
participants), followed by use of pictures (by 84.6% of the participants), novel schematic 
representations (65.4% of the participants), trees (53.8%), outcome listings (38.5%), 
contingency tables (7.7%) and finally Venn diagrams (3.8%).  
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Table 2. Frequency and percentage of participants using each type of external visual 
representation at least once, with frequency and percentage use of each representation 

across all problem solutions 

 
Are different types of external visual representations used with different types of 

problems? We investigated the relationship between the type or topic of the probability 
problem (Combinations, Sequential, Permutations, and Conditional) and the type of 
representation that participants chose to use for it. In this analysis no distinction was 
made between the typical and atypical versions of each problem type. Table 3 
summarizes how often each type of external representation was used for each type of 
problem. Because there were two problems of each type, each entry in this table is 
calculated across a total of 52 problem solutions.  
 

Table 3. Frequency and percentage of problems of each type for which a given type of 
external representation was used (out of N=52 problem solutions), with 2χ goodness-of 
fit tests evaluating differences in the frequencies of use of each representation across the 

four problem types 

*p < .05 
 
For each row of the table, we used a chi-square goodness-of-fit test to test if each 

visual representation was used with unequal frequencies across problem types (i.e. 
columns). The chi-square goodness-of-fit test revealed that the frequency of use of 
reorganization of given information differed significantly across problem types (χ2(3)= 
47.6, p < .05). This representation was used most often for the Conditional Probability 
problems (73.1% of the time) and the Combinations problems (50%). Usage was also 
distributed unequally across problem type for outcome listings (χ2(3) = 9.2, p < .05), with 
the most frequent use being for Combinations (17.3%) and Sequential (13.5%) problems. 
Use of Novel schematic representations was also distributed unequally across problem 
type (χ2(3) = 72.0, p < .05), because these representations were used only for the 
Permutations problems (46.2% of the time). Novel schematic devices may be tried 
especially often for the specific permutations problems used here because these problems 

 By participant (N=26) By problem solution (N=208) 
Representation Frequency % Frequency % 
Reorganize 25 96.2 72 34.6 
Outcome Listings 10 38.5 20 9.6 
Contingency Tables 2 7.7 6 2.9 
Venn Diagrams 1 3.8 1 0.5 
Trees 14 53.8 27 13.0 
Novel Schematic 17 65.4 24 11.5 
Pictures 22 84.6 64 30.8 

Representation Combinations Sequential Permutations Conditional χ2(3) 
 Freq % Freq % Freq % Freq %  
Reorganize 26 50.0 4 7.7 4 7.7 38 73.1 47.6* 
Outcome Listings 9 17.3 7 13.5 4 7.7 0 0.0 9.2* 
Contingency Tables 0 0.0 0 0.0 4 7.7 2 3.8 --- 
Venn Diagrams 0 0.0 0 0.0 0 0.0 1 1.9 --- 
Trees 5 9.6 6 11.5 5 9.6 11 21.2 3.7 
Novel Schematic 0 0.0 0 0.0 24 46.2 0 0.0 72.0* 
Pictures 16 30.8 31 59.6 15 28.8 2 3.8 26.4* 
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are difficult for novices to recognize as permutation problems. That is because the cover 
stories for these particular permutation problems involve matching two sets of entities 
(e.g., tutors with students) rather than simply ordering one set of objects. This situation 
does not plug neatly into any formula or solution schema that students had been taught. 
This situation apparently spurred participants to try to understand these relatively unusual 
problems by inventing or adapting “novel” graphical representations.  

Also, the use of pictures was distributed unequally across problem type (χ2(3) = 26.4, 
p < .05), due to very frequent use of pictures for the Sequential problems (in 59.6% of 
problem solutions), Combinations (30.8%), and Permutations (28.8%) and infrequent use 
(3.8%) for the Conditional Probability problems. The use of trees did not vary 
significantly across problem type (χ2(3) = 3.7, p < .05). Inspection of Table 3 reveals that 
trees were used about 10% of the time or more for all four problem types. This result 
seems to show that at least for these types of probability problems, trees were perceived 
by study participants as widely applicable. The use of Contingency tables and Venn 
diagrams was too infrequent to be tested in the manner. 

Sometimes problem solvers used more than one form of external visual representation 
in a single problem solution. Figure 5 shows the percentage of use of single and multiple 
representations across all problem solutions, separately by problem and problem type. 
Across the eight problems, multiple external visual representations were used in 23.6% of 
the problem solutions. The most common combinations of multiple representations were 
pictures with reorganization (used in 13% of the problem solutions), and pictures with 
trees (used in 6%; see Figure 2 for an example). All other instances of multiple external 
representations occurred less than 2% of the time. Multiple representations were used 
most often for Combinations and Sequential problems. This may simply reflect the fact 
that pictures were used quite often for these problem types, as shown in Table 3. 
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Figure 5. Percentage of use of single and multiple external representations in the 
problem solutions (N=208), by problem and problem type  

 
The above results showing differences in frequency of use of specific representations 

across the four problem types demonstrate that participants are selecting representations 
based on the type of problem they are trying to solve, presumably reacting to differences 
in the problem schema for the four problem types. This suggests that participants’ 
solution methods (at least, their use of external visual representations) vary depending on 



 36 

 

 

the problem’s underlying schema or “deep structure.” We return to this issue in the 
Discussion section. 
 

Is solution success associated with use of external representations? If external 
visual devices do indeed serve some purpose for problem solvers, then we might expect 
an association between solution success and the specific external representation used (if 
any). We explored this idea by estimating the conditional probability of solution success 
given use of each type of external visual representation. The results, shown in Table 4, 
show that use of particular external visual representations was associated with higher 
rates of solution correctness for some problem types (compared to baseline performance 
for that problem type), and with lower rates of success for others. For example, the use of 
reorganization is associated with a higher rate of solution success for Combinations 
problems (.32 versus .29), but with a lower rate of success for Sequential (.50 versus .73), 
Permutations (.00 versus .48), and Conditional (.15 versus .25) problems.  

 
Table 4. Proportion of correct solutions, given the use of a particular representation, 

separately by problem type. Dashed lines indicate a cell with fewer than four uses of that 
representation (i.e., n ≤ 3). 

 
Representation Combinations Sequential Permutations Conditional 
Reorganize .32 .50 .00 .15 
Outcome Listings .43 .42 -- -- 
Contingency Tables -- -- .00 -- 
Venn Diagrams -- -- -- -- 
Trees .60 .67 .25 .25 
Novel Schematic -- -- .44 -- 
Pictures .23 .63 .59 -- 
Mean P(correct) .29 .73 .48 .25 

 
Table 4 shows that for the Combinations problems, use of reorganization, outcome 

listings, or trees were all associated with higher rates of solution success, whereas use of 
pictures was associated with a lower rate of success. Presumably, the first three types of 
representations are useful here because the essence of such combinatorics problems is to 
identify the number of outcomes in the outcome space. However, trees are not usually 
useful for problems involving simultaneous sampling of multiple objects (where order is 
not important). We therefore reexamined participants’ solutions to try to understand this 
association. We found that trees were used in only five solutions for the Combinations 
problems, and all of these were cases where the problem solver was treating the problem 
as a sequential problem rather than using the combinations formula.  

For the Sequential problems, use of any external visual representation was associated 
with a lower rate of solution success. Sequential problems were the easiest type of 
problem overall, with P(correct) = .73, so it may be that participants did not feel any need 
to call upon visual representations unless they were among the few who experienced 
difficulty with these problems.  

For the Permutations problems, use of reorganization, contingency tables, and trees 
was associated with lower rates of solution success. Contingency tables in particular do 
not seem appropriate for permutation problems, which involve ordering a single set of 
objects. Trees are rarely used to represent sequential sampling without replacement, 
though in principle they could be applied. However, use of pictures was associated with a 
higher rate of solution success for these Permutations problems. Pictures may be 
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especially useful for these particular (unusual) permutations problems, which are unusual 
in that they describe matching two sets of objects rather than ordering a single set. It may 
be that pictures facilitated the realization that the ordering of one of these sets is arbitrary.  

Finally, for the Conditional probability problem, external visual representations were 
not often used. Use of reorganization was associated with slightly lower rates of solution 
success. It is surprising that trees were not often used for these problems because their 
use for such problems was explicitly described in the course. 

Thus, this table seems to offer mixed evidence concerning the usefulness of external 
visual representations in probability problem solving. The positive associations found 
seem easily explainable. We argue that the few observed negative associations between 
external visual representations and solution success do not prove that use of external 
representations is harmful in probability problem solving. Rather, the negative 
associations may arise because external visual representations are more often called upon 
when the problem is especially difficult for the problem solver (cf. Hegarty & 
Kozhevnikov, 1999; Lowrie & Kay, 2001). 

In addition to the analysis of solution correctness given the use of a particular external 
visual representation, we correlated the number of times a participant used any external 
visual representation (which ranged from 2 to 18 for participants) and the participant’s 
overall solution success (defined as number of problems correct out of 8 for a 
participant). Results from this analysis show that there is a significant negative overall 
correlation between the use of an external visual representation and solution success (r = 
-.40, p < .05). We also found marginally significant negative correlations between use of 
certain specific representations and solution success. Specifically, the use of 
reorganization of the given information was negatively correlated with solution success (r 
= -.37, p = .06), as was the use of outcome listings (r = -.37, p = .06).  

 
What computation methods are used in PPS? Are external visual devices used in 

computing problem solutions? We calculated how often each of the three computational 
methods (formula, procedural, graphical) was used for each problem. Results showed that 
students used the procedural computational method most often (on average in 5.5 out of 8 
problems) followed by formula-based computational methods (1.19 out of 8 problems) 
and finally, graphical solutions (0.42 problems out of 8.) Thus, external visual 
representations were rarely used to compute solution. For 13.5% of problems overall, 
subjects did not complete the problem to the point of computing a solution. Multiple 
computation methods (coded only when the participant made multiple solution attempts) 
were observed only 2.4% of the time. 

 
Are different computation methods used with different problem types? We 

calculated frequency and percentage of use of each of the three types of computation 
method across problem types. Note that more than one type of solution method could be 
coded for a given solution, and that if the problem solver did not attempt to compute a 
numeric solution no computation method was coded. Results showed that formulas were 
used most often for the Conditional problems (21.2% of the time) and Combinations 
(21.2%). A procedural computation method was used most often for Sequential problems 
(84.6%), Combinations (75.0%), and Permutations (75.0%). Finally, a graphical 
computational method was used most often with the Conditional Probability problems 
(9.6%). Note that for the Conditional Probability problems the observed student solutions 
were not purely graphical; rather the tree graphs were typically used in conjunction with 
procedural calculations. We also performed a chi-square goodness-of-fit test to determine 
if each computational method was used equally often across all four problem types. The 
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results (Table 5) show differential use of the procedural computation method across 
problem types (χ2(3) = 8.57, p < .05). Frequency of use did not differ significantly across 
problem types for the procedural computation method (χ2(3) = 6.05, p > .05), nor for the 
graphical computation method (χ2(3) = 5.21, p > .05). The pattern of results in Table 5 
suggests that a procedural solution method is used relatively less often for the 
Conditional Probability problems.  
 
Table 5. Frequency and percentage of problem solutions (n = 52) of each type for which 
a given computational method was used, with 2χ goodness-of-fit tests of differences in 

frequency of use of each method across the four problem types 
 
Computational method Combinations Sequential Permutations Conditional χ2(3)  
 Freq % Freq % Freq % Freq %  
 Formulas 11 21.2 3 5.8 6 11.5 11 21.2 6.05  
 Procedural 39 75.0 44 84.6 39 75.0 21 40.4 8.57*  
 Graphical 3 5.8 3 3.8 0 0.0 5 9.6 5.21  
*p < .05 

 
Is solution success associated with computational method? We also checked for 

associations between solution success and computational method, separately by problem 
type (Table 6). Use of a formula-based computation method was associated with a higher 
rate of solution success only for Combinations problems. This makes sense, because the 
combinations problems are arguably best solved via formulas. Use of a procedural 
method was associated with the highest rates of solution success for the other three 
problem types. This is probably because if it is intuitively clear to a student how to solve 
a problem, only the computations need be written down (and the solution would be coded 
as a procedural one). Using a graphical method to aid in computing the solution was 
observed infrequently, except for the Conditional probability problems. For these 
problems, the tree can be used to organize the procedural calculations. 
 

Table 6. Proportions of correct solutions given the use of a particular computation 
method, separately by problem type. Dashed lines indicate a cell with fewer than four 

uses of that representation (i.e., n ≤ 3). 
 

Computational method Combinations Sequential Permutations Conditional 
Formula .38 -- -- .11 
Procedural .30 .77 .57 .46 
Graphical -- -- -- .30 
Mean .29 .73 .48 .25 

 
Are there differences between typical and atypical problems in the use of external 

visual representations or computational method? We investigated whether there is a 
difference in the rates of use of visual representations for the typical and atypical 
problems. To test this, for each type of representation we compared the summed 
frequency of its use for the four problems presented in their typical versions to the 
summed frequency of its use for the four problems presented in their atypical versions. 
The results show that the only significant difference in use of an external representation 
between typical and atypical problems was for pictures (paired-sample t(25) = -3.86, p < 
.05). Specifically, pictures were used more often for atypical problems (for 38.5% of 
problems) than for typical problems (23.0%), as shown in Table 7. This result is not at all 
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surprising – pictures may be used especially often to try to better understand or structure 
a difficult problem, especially one that does not plug in easily to a familiar solution 
schema. On the other hand, if the solution method is obvious, nothing is gained (and time 
and effort are expended) in drawing a picture. The only other representation used more 
often for atypical problems (though the difference is not significant) is reorganization. As 
for pictures, it can be argued that this is a general-purpose method that is often useful 
when the problem text itself is difficult to understand. 

 
Table 7. Frequency and percentage use of each type of external representation, 
separately for the four typical and four atypical problems experienced by each 

participant. (* = significant difference between the total number of uses for typical and 
atypical using a dependent samples t test, df = 25) 

 
Representation Typical Atypical 
 Freq % Freq % 
Reorganize 34 32.8 38 36.5 
Outcome Listings 12 11.5 8 7.8 
Contingency Tables 4 3.8 2 2.0 
Venn Diagrams 1 1.0 0 0.0 
 Trees 15 14.5 12 11.5 
Novel Schematic 13 12.5 11 10.5 
Pictures* 24 23.0 40 38.5 

*p < .05 
 
Table 8 reports the rates of use of different computation methods for typical versus 

atypical problems. There were no significant differences in the use of different 
computation methods for typical and atypical problems.  

 
Table 8. Percentage use of each type of computational method, summed across problems, 

separately for the four typical and four atypical problems experienced by each 
participant 

 
Computational Method Typical Atypical 
 Freq % Freq % 
Formula 15 14.5 16 15.5 
Procedural 73 70.3 70 67.3 
Graphical 6 5.8 10 10.0 

 
  
2.5.  ANALYSIS OF AUDIO PROTOCOLS 

 
As described in the Methods section, each utterance in the audio track of the session 

videotapes was coded as relevant to either the problem solvers’ problem-representation 
phase or as part of the solution execution phase (cf. Novick & Hmelo, 1994). We also 
matched any use of an external visual representation in a solution (as captured in the 
video track) to any utterances made simultaneously. This enabled us to classify uses of 
external visual representations as being associated with either or both of these broad 
temporal stages of problem solving. 

Of the 2,756 utterances in the audio transcripts, approximately 63% of them were 
coded as part of the Problem Representation phase (1,734 utterances) and approximately 
32% of the utterances were coded as Solution Execution (881 utterances). The remaining 
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utterances were not coded as part of either phase. This occurred if the utterance was a 
meta-comment or irrelevant, for example concerning how difficult the problem was or the 
temperature of the room in which the study was being conducted.  

Of the 1,734 utterances that were coded as part of the Problem Representation phase, 
417 (24.08%) of them were matched with the use of an external visual representation. Of 
the 881 utterances that were coded as involving the Solution Execution phase, 31 
utterances (3.68%) were matched with the use of an external visual representation. 
Although participants did use external visual representations during both phases of 
problem solving, they tended to use them more often during the Problem Representation 
phase than during the Solution Execution phase.  

These associations were broken down by type of representation used (Table 9). 
Results indicated that participants more often tended to use the external visual 
representations to help understand and organize the problem text (i.e., in problem 
understanding) than to select or execute solutions. This trend was especially strong for 
pictures, reorganization of the given information, and novel schematic representations. 
For example, pictures were used significantly more often during the problem 
representation phase because participants claimed that they helped them visualize the 
problem more clearly. One subject explained, “I drew the ten cookies because I needed 
literally to visualize it, and then based on what the information is in this problem, there’s 
obviously….there’s ten different types of cookies.” (Subject #16)  
 
Table 9. Total frequency of use of particular representations, by problem solving phase 
 

Representation Problem Representation Strategy & Execution 
Reorganize 169 9 
Outcome Listings 17 3 
Contingency Tables 11 3 
Venn Diagrams 4 0 
Trees 50 13 
Novel Schematic 45 1 
Pictures* 120 4 
Total 417 32 

 *p < .05 
 

3. DISCUSSION 
 

Our results show that students sometimes choose to use self-generated external visual 
representations while solving probability word problems. Presumably, this is because 
problem solvers believe that these representations are useful in solving the problems, 
because in this study they were requested merely to “show their work,” and not explicitly 
requested to produce any diagrams or other visual devices. A skeptical observer might 
worry that the verbal prompts occasionally issued by the experimenter here could have 
served as a general prompt to try alternative representations. However, Russell (2000) 
found similar levels and patterns of use of these types of representations in students’ 
actual answers to course assignments, lending confidence to the conclusions that problem 
solvers choose to use such representations because they are thought to be useful. 

The results also document what types of spatial and graphical devices are used in 
probability problem solving. Using a very broad definition of external visual 
representations, the types we identified included (in decreasing order of frequency of 
use): reorganization of the given information, pictures, novel schematic representations, 
trees, outcome listings, contingency tables, and Venn diagrams (cf. Russell, 2000). Of 
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course, our reported relative frequencies of use for these representations may not 
generalize to other curricula, other specific sets of problems, and other problem solvers. 

We found evidence that the frequency of use of each of these different external visual 
representations depends on the type of probability problem being solved. Type of 
problem refers to the basic problem schema, and not to surface characteristics of the 
problem. The types of probability problems studied here were Conditional Probability, 
Combinations, Permutations, and Sequential problems. Our results showed that pictures 
were used most often for Sequential, Combinations, and Permutations problems; outcome 
listings were used more often for Combinations and Sequential problems; trees were used 
most often for Conditional problems; novel schematic representations were used mainly 
with Permutation problems; and reorganization of given information was used more 
often with Conditional and Combinations problems. One way to interpret these findings 
is that problem solvers attempt to select representations appropriate to the problem’s 
structure, and that the appropriateness of the representation is determined by the 
problem’s solution schema, not by surface characteristics.  

However, any conclusions as to specific associations between the type of visual 
device and the problem type must be tempered by consideration of the particular set of 
problems used here to represent these general types. First, the Permutation problems 
studied here were unusual in that they described situations in which two sets of entities 
(e.g., tutors and students) were to be matched in a one-to-one fashion, but the ordering of 
one set was arbitrary, making the problem isomorphic to an ordering problem. This 
“schema mismatch” may have made these problems particularly difficult for our problem 
solvers, spurring more attempts to use novel schematic representations and pictures. 
Second, problems were experienced with our manipulation of typical and atypical 
problems for the Combinations problems. The atypical Combinations problems were 
most often solved by an alternative method, using a sequential-events approach, that 
resulted in a higher rate of success than for the typical variant of this problem type. Thus, 
although it was our intention to manipulate problem typicality in such a way that the 
atypical problems were at least as difficult as the typical ones, this did not happen for this 
problem type. In future studies, we hope to more fully refine and explore the notions of 
problem typicality and difficulty, and to try to disentangle their effects experimentally by 
careful development and piloting of materials.  

 In future research, we also hope to more fully investigate aspects of the schematic 
devices that play a part in determining the appropriateness of a representation for a given 
problem. We believe that the seven types of external visual representations studied here 
differ in some important ways. Three of the visual representations (reorganization, 
outcome listings, and contingency tables) can be considered forms of tabulation. Another 
three (Venn diagrams, trees, and novel schematic representations) could be classified as 
schematic devices, and the final type (pictures) refers to iconic representations of concrete 
aspects of the problems. We term the second group of representations (Venn diagrams, 
trees, and novel schematic representations) schematic because structural aspects of the 
graphs symbolically represent meaningful aspects of the problem.  

Novick and Hurley (2001) propose that different types of schematic devices (or 
“diagrams”) have structural aspects or properties that determine their range of 
applicability. The associations we have found between use of the different types of 
representations and specific problem types suggest that properties of the diagrams and 
properties of the problem schema are being matched (though not always successfully) by 
participants. For example, trees seem naturally appropriate for sequential problems such 
as the results of multiple coin flips or successive spins of a spinner, whereas contingency 
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tables and Venn diagrams are particularly appropriate for representing joint or compound 
events.  

These seven identified types of external representations also differ in terms of their 
degree of structure. This has implications for how broadly or how narrowly the visual 
representation may apply. Specifically, we argue that reorganization of the given 
information, pictures, and outcome listings are relatively general representations that can 
be applied to a wide variety of problems, whereas trees, contingency tables, and Venn 
diagrams have more inherent structure, thus may be applicable to a more limited set of 
problems. Finally, the category of novel schematic representations is by definition not 
limited to any specific type of structure, thus this category of representation is also widely 
applicable (although any specific novel graph may have limited applicability). However, 
novel schematic representations seem to be used only when the problem solver 
encounters a very atypical or unusual problem that does not seem to plug into any 
familiar schema. 

If we are right that reorganization of the given information, pictures, and outcome 
listings are very general tools, whereas the schematic devices (trees and Venn diagrams) 
and contingency tables are more limited in scope of application because they have more 
constrained structures, then those variations in scope of application ought to show up in 
our data. Calculating the average percentage of problems for which each type of 
representation was used (Table 2), provides some supporting results for this idea. The 
three types of representation argued here to be general ones (reorganization, pictures, and 
outcome listings) were used in 25% of problem solutions on average, whereas the three 
specific types were used in only 6% of problem solutions on average. However, the 
picture given by Table 3 is a bit less clear. Here it can be seen that uses of reorganization 
of the given information and pictures are spread across all four problem types, and 
outcome listings are used for three out of four types, whereas the more constrained types 
of representation Venn diagrams and contingency tables are used for only one or two 
types of problem. However, trees are used across all four problem types. Thus, except for 
trees, the predicted pattern does hold. 

 
3.1.  DO SPONTANEOUSLY SELF-GENERATED VISUAL REPRESENTATIONS 

HELP PROBABILITY PROBLEM SOLVERS? 
 
The present study provides mixed evidence for the idea that external visual devices 

are used by probability problem solvers because they are helpful (i.e., they aid in solving 
the problem). For example, we found higher rates of solution success given use of 
reorganization, outcome listings, and trees for the Combinations problems. The finding 
regarding outcome listings makes sense intuitively because the essence of the 
combinations problems involves determining the number of outcomes in the outcomes 
space. Furthermore, use of trees is associated with a higher success rate (60%) for those 
solving the Combinations problems via a sequential approach, and use of trees is a 
relatively successful strategy (67% success rate) for the “true” Sequential problems. This 
finding seems easily interpretable, because these sequential events problems have 
structures that map directly onto tree diagrams. Specifically, the Sequential problems 
used here described a sequence of trials or events, each of which had several possible 
outcomes. Thus the process determining the outcome space can be described by a 
branching set of possibilities. In the corresponding tree, each node of the tree graph 
corresponds to one of the sequential events (e.g., one spin of the spinner), and the 
branches that ensue from that node represent the several possible outcomes of that 
uncertain event.  
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For the Permutations problems, the use of pictures led to a higher success rate. Our 
explanation for this finding is based on the point we have already made, that these 
particular permutation problems were atypical in that their semantic content (i.e., the real-
world situation they described) describes a matching process between two sets of objects 
(e.g., tutors and students). Typical permutation problems the students had seen in their 
course consisted of problems in which a single set of objects is randomly ordered. Thus, 
it is only through a relatively sophisticated symmetry argument (requiring what is 
perhaps a rare or difficult insight) that the student was likely to see that one set of objects 
could be arbitrarily ordered, hence ignored, reducing the problem to one about ordering a 
single set of objects. For this reason we suspect that the increased solution success 
associated with use of pictures for this problem type may indicate a facilitative effect of 
pictures for problem restructuring. Such restructuring seems a necessary insight to deal 
with this relatively novel type of problem.  

Although problem solvers showed relatively frequent use of novel schematic 
representations for the Permutations problems, these novel or invented types of external 
graphical representations were apparently not always useful, because their use did not 
lead to increased solution success.  

Why are positive correlations between specific types of visual representations and 
specific problem types relatively rare in our data? As Novick and Hmelo (1994) observe, 
having an appropriate problem representation does not guarantee that the problem can be 
solved, because computational or other issues may intrude, lowering correlations between 
initial problem representations and solution success. Furthermore, even if graphics could 
be helpful, prior research shows that students are not always successful in finding correct 
representations for problems (Novick, 1990). Our data provide additional evidence that 
this is true. Additionally, some evidence from our study suggests that choosing an 
inappropriate representation might be harmful to a student’s chance of successfully 
solving a problem. For example, for the Permutations problems solution success was 
negatively associated with use of contingency tables and with use of reorganization of the 
given information. The former finding can be explained because contingency tables are 
not appropriate for representing problems involving the ordered selection of a single set 
of objects. The latter finding can be explained by viewing the reorganization strategy as a 
response commonly chosen when the problem solver is confused. Thus, the negative 
association may indicate that when a student is stymied by a problem, rewriting the given 
information might be seen as a general-purpose strategy, to be tried if the student is 
merely casting about for any approach that might help.  

We also found lower rates of success associated with use of outcome listings for the 
Sequential problems. Here, we suspect that the choice of representation could be based on 
a wrong understanding of the problem situation, or might just be an unfortunate (being 
potentially misleading) choice. For the Sequential problems used here, the listings seem 
to be appropriate, but they may cue (incorrect) approaches based on treating the outcome 
space as consisting of equally-likely outcomes. 

In addition to lower rates of solution success associated with particular external visual 
representations, we also found a significant negative correlation (r = -.4, p < .05) between 
solution success and the overall use of external visual representation, suggesting that our 
participants were often using the external visual representations in futile solution 
attempts. Looking more closely at the correlations, we found that reorganization of the 
given information and outcome listings were marginally significantly correlated with 
solution failure. These two types of representations are very general tools for problem 
solving and participants may use these types of representations mainly when they are 
having trouble solving the problems. This tendency could produce such correlation with 
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solution failure. A related possibility is that participants who are adept at solving 
probability problems may not need to use or report the use of a visual representation; 
whereas weaker problem solvers may choose very general external visual representations 
in the absence of insights that might allow them to select a more specific representation, 
leading to a lower rate of success overall for these lower-ability participants who needed 
to resort to external representations.  

Prior research by Hegarty and Kozhevnikov (1999) suggests that there are two main 
types of external visual representations, schematic and pictorial. They found that the use 
of schematic representations was positively correlated with solution success and the use 
of pictorial representations was negatively correlated with success. In our data, solution 
success was negatively (but non-significantly) correlated with use of all types of external 
visuals, but the correlations were more negative with the use of pictures, reorganization, 
and outcome listings than with contingency tables and with the schematic representations 
(Venn diagrams, trees, and novel schematic representations), lending tentative support to 
the importance of this distinction. 

In summary, appropriate use of a correct external visual representation may generally 
be helpful in problem solving, but this effect is difficult to measure in the present type of 
study, in which the student only generates an external representation if he or she so 
chooses. First, there is evidence (Lowrie & Kay, 2001; Table 7) that self-generated 
external visuals may be tried more often for difficult or novel problems, which have a 
lower solution rate in general. It should be easier to demonstrate facilitative effects of 
external visuals in less naturalistic studies in which the visual representations are 
provided to the student, or the student is explicitly asked to generate an appropriate 
representation before attempting to compute the answer. That type of study has been 
common in the literature on uses of visual representations in (non-mathematical) problem 
solving. However, the present data showing which types of graphical representations are 
spontaneously used for which types of problems may aid in designing such experimental 
studies and educational interventions. 

Finally, facilitative effects of using visual representations may not be easy to detect in 
the present type of experiment because choosing the correct representation is a non-trivial 
task, and may require a certain level of problem understanding to accomplish (Novick, 
1990; 2001; Novick & Hmelo, 1994; Novick & Hurley, 2001). With novice problem 
solvers, knowledge of why one representation is more appropriate than another may still 
be incomplete, because they have not yet mastered the appropriate schemas. Riley, 
Greeno and Heller (1983) found that failure to solve word problems might be caused 
more often by a lack of appropriate schemas than by poor arithmetic skills. They 
observed that problem solvers often carried out correct arithmetic procedures on incorrect 
representations of the problems. The negative associations we found between certain 
types of (presumably inappropriate) representations and solution success seem consistent 
with their conclusions. Interestingly, De Bock, Verschaffel, Janssens, Van Dooren, and 
Claes (2003) also found negative effects on solution success of asking students to 
generate specified diagrams for geometry problems, showing that not all experimenter-
selected representations are useful as well (cf. Tversky, 2001; Mayer & Gallini, 1990; 
Scaife & Rogers, 1996), or perhaps merely indicating that not all student-generated visual 
representations are produced correctly, even when appropriately cued. 

 
3.2.  SOME FINAL ISSUES 

 
One potential limitation of the present study is the question of how well the results 

will generalize to other populations of students. Participants in the present study were 
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graduate students in social sciences and education, who were finishing or had recently 
finished an introductory course in probability and statistics. However, the participants 
were actually quite diverse in terms of mathematics background, including people who 
had not taken any mathematics in college and those who had taken a number of 
undergraduate or graduate mathematics and statistics courses. Thus, we believe that our 
results would generalize to other populations, such as high school students who had 
completed a similar probability course. But this question, and the question of how well 
the results would generalize to a wider set of probability problems, should be addressed 
by future research.  

Another factor possibly affecting the generalizability of these results is that 
participants were taught probability problem solving using external visual 
representations, and associations between specific problem types and specific types of 
external graphical devices may have been implicitly or explicitly taught. Thus, the results 
of our study may just be a reflection of the instruction. However, the use of “novel” 
graphical representations by some participants indicates that although the participants 
were taught to use visual devices when solving probability problems, they do not always 
use the specific representations they were taught to use in class. This finding suggests that 
students believe that visual representations are useful, and try to use even representations 
that they have not been explicitly taught. 

Studying how students solve probability problems (or any type of mathematics word 
problem) is a complex endeavor. One reason is that students can use any of several 
solution methods or strategies for many problems. Even worse, an individual student may 
switch approaches across similar problems, or even during the solution of a single 
problem. As an example of how multiple solution strategies can complicate the research 
process, we designed each of our probability problems with a particular formula or 
problem-solving schema in mind. However, in producing atypical problems for a given 
method, in at least one case (the atypical Combinations problem) we produced a problem 
that could easily be solved by another method entirely (treating the problem as involving 
sequential events), with a different appropriate external representation.  

Thus, another limitation to the present study is that our manipulation of problem 
“typicality” was not fully successful, due to the use of alternative solution strategies by 
many participants. In a well-controlled experimental study with novice probability 
problem solvers, this problem could be avoided by introducing only one solution method 
or probability principle at a time. However, in a naturalistic study like the present one, 
where participants have been taught an array of probability problem-solving techniques, 
the problem of alternate strategy choice is difficult to avoid. Certainly such effects could 
be minimized by more careful piloting of materials in future studies. 

Another issue deserving of future study is to more closely investigate the temporal 
process of probability problem solving. In the present study we have used a coding 
scheme that separates uses of external visuals for problem understanding and 
representation from the type of method used to compute the problem solution, but we still 
do not have a clear picture of the temporal stages of probability problem solving. We plan 
future studies that will use think-aloud protocols and structured interviews to try to 
distinguish sequential stages of probability problem solving, and that will examine 
specifically when and how external visual representations are used in the temporal 
process of PPS. We also plan to investigate the coordination of external visual 
representations with internal visualizations (cf. Scaife & Rogers, 1996). Results of these 
studies may bring us to a more complete understanding of the role played by visual 
representations and visualization skills in probability problem solving.  
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Results from the present study might be useful in improving instruction in the domain 
of probability problem solving. The very general types of external representations 
considered here (pictures, reorganization, and outcome listing) might be taught to 
students as general methods that can help them restructure particularly difficult problems. 
In contrast, the schematic representations studied here (Venn diagrams and outcome 
trees) and contingency tables could be taught as applicable to particular problem types. In 
line with the work of Novick and colleagues (e.g., Novick, 1990; Novick & Hmelo, 
1994), abstract aspects or “features” of problems and of specific graphical representations 
could be taught to students, and it could be emphasized that a given representation will 
most likely be useful when these structural aspects of the problem and the visual device 
match. To some extent such principles may already be employed by instructors of 
probability courses, but future research should explore and better document the success of 
such practices. 
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APPENDIX: PROBABILITY PROBLEMS 
 

The eight probability problems (test form A) classified by topic (problem type) and level 
of typicality, with observed proportion correct for each item. Test form B 
counterbalanced surface content of the text and level of typicality for each problem. 
 
Topic Typicality Problem Text Proportion 

of correct 
responses 

Typical 

There are 10 books on Mary’s bookcase. She randomly grabs 2 
books to read on the bus. What is the probability that the 2 books 
are Little Women and War & Peace? (Both these books are on her 
bookshelf.) 

 0.115 

Combinations 

Atypical 

There are 10 cookies in a cookie jar. Three of the cookies are 
chocolate chip, seven are sugar. A child blindly picks 2 cookies 
from the cookie jar. What is the probability that both cookies are 
chocolate chip?  

0.731 

Typical 

There are three balls in an urn. One is red, one is white, and one is 
blue. Jane randomly draws a ball from the urn, then replaces it, 
three times in all. What is the probability that she draws a red ball 
on all three turns?  

0.462 

Sequential 

Atypical 

Three spinners are constructed. The first spinner has 2 equal areas 
(colored red and blue), the second has three equal areas (red, blue, 
and white), and the third again has two equal areas (red and white). 
All three spinners are spun and the result of each spin is recorded. 
What is the probability of getting ‘red’ on all three spins?  

0.423 

Typical 

An apartment building has four parking spaces in front (call them 
A, B, C, and D). There are four apartments in the building (#1, #2, 
#3, and #4), and each apartment has a single occupant with a single 
car. Every evening, all four occupants come home and park in a 
randomly chosen space. What is the probability that this evening 
they park so that the occupant of Apt #1 is in space A, the occupant 
of #2 is in space B, the occupant of #3 in space C, and the occupant 
of #4 in space D?  

0.462 

Permutations 

Atypical 

There are four math students (Ed, Fred, Mary, Pia) waiting to be 
randomly matched with four math tutors (#1, #2, #3, and #4). Each 
tutor works one-on-one with a student. What is the probability that 
Ed will be matched with tutor #1, and Fred will be matched with 
tutor #2?  

 0.731 

Typical 

Joe applies for a state-subsidized mixed-income housing project 
being built in his neighborhood. If he is classified as a low-income 
applicant, he has a 70% chance of getting an apartment. Applicants 
not classified as low-income have only a 10% chance of getting an 
apartment. Joe believes that on the basis of the records he is 
submitting that he has a 40% chance of being classified as low 
income. What is the probability that he gets an apartment? 

 0.500 

Conditional 
Probability 

Atypical 

Assume that in the city of Metropolis, if a criminal defendant in 
fact committed the crime, he has a 70% chance of being found 
guilty by the jury. A defendant who is in fact innocent has a 10% 
chance of being found guilty by the jury. Assume that 40% of 
defendants who are tried in Metropolis in fact committed the crime. 
We meet a Metropolis defendant in prison. What is the probability 
that he is fact committed the crime, given that we know he was 
found guilty by the jury?  

 0.077 

 


