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ABSTRACT 
 
Informal inferential reasoning is a relatively recent concept in the research literature. 
Several research studies have defined this type of cognitive process in slightly 
different ways. In this paper, a working definition of informal inferential reasoning 
based on an analysis of the key aspects of statistical inference, and on research from 
educational psychology, science education, and mathematics education is presented. 
Based on the literature reviewed and the working definition, suggestions are made for 
the types of tasks that can be used to study the nature and development of informal 
inferential reasoning. Suggestions for future research are offered along with 
implications for teaching. 
 
Keywords: Statistics education research; Inference; Informal reasoning; Introductory 

statistics course; Topic sequencing 
 

1. INTRODUCTION 
 
Statistics is concerned with the gathering, organization, and analysis of data and with 
inferences from data to the underlying reality. (Moore, 1990, p. 127) 
 
Drawing inferences from data is part of everyday life and critically reviewing results 

of statistical inferences from research studies is an important goal for most students who 
enroll in an introductory statistics course. Formal methods of statistical inference lead to 
drawing conclusions about populations or processes based on sample data. David Moore 
(2004) describes statistical inference as moving beyond the data in hand to draw 
conclusions about some wider universe, taking into account that variation is everywhere 
and the conclusions are therefore uncertain. Garfield and Ben-Zvi (2008) define statistical 
inference further by differentiating two important themes in statistical inference, 
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parameter estimation and hypothesis testing, and two kinds of inference questions, 
generalization (from samples) and comparison and determination of cause (from 
randomized comparative experiments). In general terms, the first theme is concerned with 
generalizing from a small sample to a larger population, whereas the second involves 
determining whether a pattern in the data can be attributed to a real effect.  

For several decades, psychologists and education researchers have studied and 
documented the difficulties people have making inferences about uncertain outcomes (see 
Kahneman, Slovic, & Tversky, 1982). Falk and Greenbaum (1995) and others (e.g., 
Sotos, Vanhoof, Van den Noortgate, & Onghena, 2007) have described and classified 
difficulties students have in understanding and interpreting tests of significance and p-
values and related concepts in statistical inference. Researchers have pointed to various 
reasons for these difficulties including: the logic of statistical inference (e.g., Cohen, 
1994; Nickerson, 2000; Thompson, Saldanha, & Liu, 2007), students’ intolerance for 
ambiguity (Carver, 2006), and students’ inability to recognize the underlying structure of 
a problem (e.g., Quilici & Mayer, 2002). Other research has suggested that students’ 
incomplete understanding of foundational concepts such as distribution (e.g., Bakker & 
Gravemeijer, 2004), variation (e.g., Cobb, McClain, & Gravemeijer, 2003), sampling 
(e.g., Saldanha & Thompson, 2002, 2006; Watson, 2004), and sampling distributions 
(e.g., delMas, Garfield, & Chance, 1999; Lipson, 2003) may also play a role in these 
difficulties. 

Given the importance of understanding and reasoning about statistical inference, and 
the consistent difficulties students have with this type of reasoning, there have been 
attempts to expose students to situations that allow them to use informal methods of 
making statistical inferences (e.g., comparing two groups based on boxplots of sample 
data). Several papers have been presented and published in the past few years that 
describe ‘informal statistical inference’ and ‘informal inferential reasoning’ (e.g., 
Pfannkuch, 2005). However, it is not yet clear exactly what these two terms mean. 
Therefore, it is the intent of this paper to analyze the meaning of Informal Inferential 
Reasoning (IIR) by reviewing the literature related to this topic, and to provide both a 
working definition as well as a framework for designing tasks that can be used to study 
students’ reasoning about statistical inference.  

Cognitive frameworks have been useful in studying and describing students’ 
statistical reasoning (see Jones, Langrall, Mooney, & Thornton, 2005). These models 
offer benchmarks for assessing students’ reasoning and are useful for informing the 
development of assessment tasks, guiding teachers’ instructional decision-making, and 
developing tasks to use in research programs. The main focus of this paper is to propose a 
preliminary framework that, although not a developmental model, can be used to identify 
and develop tasks that can be used to study IIR. The two main questions addressed in the 
paper are 

1. What are the components of a framework needed to support research on informal 
inferential reasoning? 

2. What types of tasks are suggested by this framework for the study of informal 
inferential reasoning and its development? 

 
2. WHAT ARE THE COMPONENTS OF A FRAMEWORK NEEDED TO 

SUPPORT RESEARCH ON INFORMAL INFERENTIAL REASONING? 
 

The previous section described the nature of statistical inference and the way concepts 
and procedures involved in statistical inference are often introduced in introductory 
statistics courses. In an attempt to understand the component parts of informal inferential 
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reasoning (IIR), we look to the literature to identify some foundational areas of research. 
Because IIR uses the word “informal” it seemed useful to explore research in two 
possibly related areas of research in psychology and education: studies of informal 
knowledge and studies of informal reasoning. The research in both of these areas provides 
a foundation for understanding and defining IIR. This section begins with a brief review 
of the research in the areas of informal knowledge and then informal reasoning. This is 
followed by a review of the use of the terms “informal inference” and “informal 
inferential reasoning” by statistics educators and statistics education researchers in recent 
papers. The section concludes with a working definition of IIR based on the literature 
reviewed in these three areas. 

 
2.1. INFORMAL KNOWLEDGE 
 

There is much research on the nature of informal knowledge, particularly in the field 
of mathematics education. Informal knowledge is viewed as either a type of everyday real 
world knowledge that students bring to their classes based on out-of-school experiences, 
or a less formalized knowledge of topics resulting from prior formal instruction. Informal 
knowledge can be viewed as the integration of both of these and it is in this sense that the 
term is used in this paper. This view suggests that it is important to study and consider the 
role of informal knowledge in the formal study of a particular topic and is in line with 
constructivist views of learning, namely that informal knowledge is a starting point for 
the development of formal understanding.  

Informal knowledge is also discussed in the literature on how experts use their 
informal knowledge in reasoning while solving problems, and in studies that compare the 
reasoning of experts and novices. Smith, diSessa and Rochelle (1993/1994) found that 
experts appear to differ from novices primarily in the extent of their experience with 
problems in a particular context. Although experts seemed to see a coherent picture of a 
problem they were solving, novices were more likely to approach each problem in a 
similar group from a different starting point, rather than seeing how the problems were 
related. Experts also tended to draw on their more extensive experiences and knowledge 
to use problem-solving strategies that related to the underlying structures of the problems 
more often than novices. For a more detailed synthesis of the research on experts versus 
novices see Bransford, Brown, and Cocking (2000). 

When informal knowledge is incorrect, it is often regarded as a misconception (see 
Confrey, 1990). Smith et al. (1993/1994) argued that it is not beneficial to view students’ 
“misconceptions” as wrong, because there are aspects of students’ informal knowledge 
that are similar to experts’ knowledge, but have been used incorrectly. Novice reasoning 
tends to have the same basic structure as expert reasoning, but novice reasoning often 
appears more concrete and less abstract due to novices’ more limited experience. Instead 
of focusing only on the development of formal knowledge, Smith et al. suggest that 
instructors carefully design lessons that build and develop students’ informal knowledge 
in order to lead them toward formal understanding of a particular topic. 

Along the same lines, Gravemeijer and Doorman (1999) argue that it is important to 
have students build on their informal knowledge to reinvent formal concepts and 
representations and at the same time expand their common sense understanding of real 
world phenomena. This approach acknowledges, rather than discounts (e.g., by labeling 
erroneous use of knowledge as misconceptions), the informal knowledge that students 
bring to the classroom.  

An important question emerges: How can students’ informal knowledge best be 
utilized in formal instruction? Some researchers point to the role of interactive activities 
where students work and discuss together what they are learning. It has been suggested 



43 
 

 

and demonstrated that social interaction that requires negotiation of meaning, under the 
direction of shared social norms for communication helps support the transformation of 
informal knowledge to culturally shared formal understanding (Cobb & McClain, 2004; 
Cobb, Yackel, & Wood, 1992; Mack, 1995). 

Another way of developing students’ informal knowledge is to specifically evolve 
this type of knowledge through activities that motivate and “set the stage” for formal 
instruction at a later time (see for example, Papert & Harel, 1991). Schwarz, Sears, and 
Chang (2007) have found positive results in their attempts to explicitly develop and 
utilize students’ prior knowledge as they learn specific statistical concepts. Garfield, 
delMas, and Chance (2007) have also found some success in developing college students’ 
formal ideas of variability from informal ideas. 

In summary, the literature reviewed suggests that 
1. Informal knowledge can consist of different types of understanding that students 

bring to a new learning task, and may combine knowledge based on real world 
experience with knowledge gained from previous instruction (Gravemeijer & 
Doorman, 1999; Smith et al., 1993/1994). 

2. Informal knowledge may be an important starting point on which to build formal 
knowledge, and should be considered in designing curricula (Gravemeijer & 
Doorman, 1999; Smith et al., 1993/1994). 

3. Instruction may be designed to help students construct specific types of informal 
knowledge that is needed for eventual instruction involving formal knowledge of 
a particular concept (Garfield, delMas, & Chance, 2007; Schwarz, Sears, & 
Chang, 2007). 

4. Activity-based learning that requires social interaction and the negotiation of 
meaning can facilitate the development of informal knowledge (Cobb & 
McClain, 2004; Cobb, Yackel, & Wood, 1992; Mack, 1995). 

This review of the nature of informal knowledge suggests that developing students’ 
informal knowledge related to statistical inference may ease their transition to 
understanding formal ideas of inference.  
 
2.2. INFORMAL REASONING 

 
Informal reasoning (sometimes referred to as informal logic) has been defined by 

cognitive psychologists as the type of reasoning that occurs in non-deductive situations, 
such as decision making, that is employed in everyday life (Voss, Perkins, & Segal, 
1991). Perkins, Farady, and Bushey (1991) characterize informal reasoning as “a process 
of situation modeling” in which a person builds a model of the situation in question by 
“articulating the dimensions and factors involved … and invok[ing] a variety of common 
sense, causal, and intentional principles both to construct and to weigh the plausibility of 
alternative scenarios” (p. 85). 

Formally, there is very little agreement in the literature as to what is meant by 
‘informal reasoning’. This may be due to the reliance of informal reasoning on context or 
subject matter (Perkins, 1985b; Walton, 1989). There are, however, two commonalities 
across a majority of the papers reviewed. First, informal reasoning is most often viewed 
through the lens of argumentation theory (e.g., Kuhn, 1991; Means & Voss, 1996; Sadler, 
2004; Sadler & Zeidler, 2004). Secondly, informal reasoning is often contrasted to formal 
reasoning or logic (e.g., Evans, Newstead, & Byrne, 1993; Miller-Jones, 1991; 
Pfannkuch, 2006; Schoenfeld, 1991).  

Researchers tend to study informal reasoning through dialogical argumentation–the 
expression or means by which researchers gain access to informal reasoning (e.g., Driver, 
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Newton, & Osborne, 2000; van Eemeren et al., 1996). The assessment of informal 
reasoning through argumentation, which draws heavily from Toulmin’s (1958) model of 
argumentation, has led to many findings. For example, Perkins et al. (1991) have found 
through a series of studies that informal reasoning, despite claims to the contrary, “is 
marred by incompleteness and bias is the norm rather than the exception” (p. 90). Sadler 
and Zeidler (2004) caution that “while it is valid to assert that strong argumentation 
reveals strong informal reasoning, the opposite claim, weak argumentation denotes weak 
informal reasoning, is not necessarily the case … naïve arguments might be the result of 
either insufficient informal reasoning or poorly articulated, but proficient informal 
reasoning” (p. 73).  

In summary, the literature reviewed suggests that 
1. The quality of informal reasoning does not necessarily improve with increased 

content knowledge (e.g., Kuhn, 1991; Means & Voss, 1996; Perkins, 1985b; 
Perkins et al., 1991); 

2. Informal reasoning is unlikely to improve with maturation, education, or life 
experience (e.g., Klahr, Fay, & Dunbar, 1993; Kuhn, Garcia-Mila, Zohar, & 
Andersen, 1995; Perkins, 1985b; Perkins et al., 1991; Schauble, 1990, 1996; 
Schauble & Glaser, 1990; Voss, Blais, Means, Greene, & Ahwesh, 1986); 

3. Motivation, or interest in the problem context, has little impact on informal 
reasoning quality (e.g., Perkins, 1989; Perkins et al., 1991); 

4. General intelligence influences people’s informal reasoning, but people 
selectively use that intelligence to build their own case rather than to explore an 
issue more fully (e.g., Perkins, 1985a; Perkins, 1989; Perkins et al., 1991); 

5. Informal reasoning is a matter of “know-how” and can be improved through 
instruction (e.g., Nickerson, Perkins, & Smith, 1985; Perkins, Bushey, & Farady, 
1986; Perkins et al., 1991; Schoenfeld, 1982; Schoenfeld & Herrmann, 1982). 

Informal reasoning seems to be an important part of IIR because of the role of 
evidence and argumentation in making statistical predictions and decisions. 
 
2.3. DEFINING INFORMAL INFERENTIAL REASONING  

 
As mentioned earlier, IIR is a relatively recent concept in the research literature and 

various definitions have been presented. Rubin, Hammerman, and Konold (2006) define 
IIR as reasoning that involves the related ideas of properties of aggregates (e.g., signal 
and noise, and types of variability), sample size, and control for bias. Pfannkuch (2006) 
defines IIR as the ability to interconnect ideas of distribution, sampling, and center, 
within an empirical reasoning cycle (Wild & Pfannkuch, 1999). Bakker, Derry, and 
Konold (2006) suggest a theoretical framework of inference that broadens the meaning of 
statistical inference to allow more informal ways of reasoning and to include human 
judgment based on contextual knowledge. One statistician has described informal 
inference as “going beyond the data at hand” and “seeking to eliminate or quantify chance 
as an explanation for the observed data” through a reasoned argument that employs no 
formal method, technique, or calculation (Rossman, 2007). Ben-Zvi (2006) compares 
inferential reasoning to argumentation, and emphasizes the need for this type of reasoning 
to include data-based evidence.  

These different definitions of IIR share many things in common. In an attempt to 
combine these perspectives, we present a working definition of informal inferential 
reasoning as the way in which students use their informal statistical knowledge to make 
arguments to support inferences about unknown populations based on observed samples. 
In addition, building on their own experiences and understanding from teaching formal 
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ideas and methods of statistical inference to college students, the authors see informal 
inferential reasoning as a process that includes 

• Reasoning about possible characteristics of a population (e.g., shape, center) 
based on a sample of data; 

• Reasoning about possible differences between two populations based on observed 
differences between two samples of data (i.e., are differences due to an effect as 
opposed to just due to chance?); and 

• Reasoning about whether or not a particular sample of data (and summary 
statistic) is likely (or surprising) given a particular expectation or claim. 

This is in contrast to formal statistical inferential reasoning, which may include 
significance tests and/or confidence intervals. For example, the type of formal reasoning 
about a one-sample test of significance that we hope to help students eventually develop 
requires an understanding of the interconnections between 

• An underlying theory or hypothesis that is to be tested; 
• A sample of data that can be examined; and 
• A distribution of a statistic for all possible samples under the assumption that the 

theory or hypothesis is true. 
This integration involves comparing the observed sample statistic to the distribution 

of statistics for all possible samples to see how unlikely the occurrence is (i.e., how far 
out in either of the tails it falls). The farther out in one of the tails, the less plausible it is 
that the observed results are due to chance and, therefore, the more convincing that there 
is a true difference or effect. This formal reasoning also includes the understanding of a p-
value as an indicator of how likely or surprising a sample result, or a result more extreme, 
is under a certain hypothesis, and the action of rejecting this hypothesis if the p-value is 
small enough.  

In summary, the IIR Framework has the following three components:  
1. Making judgments, claims, or predictions about populations based on samples, 

but not using formal statistical procedures and methods (e.g., p-value, t tests); 
2. Drawing on, utilizing, and integrating prior knowledge (e.g., formal knowledge 

about foundational concepts, such as distribution or average; informal knowledge 
about inference such as recognition that a sample may be surprising given a 
particular claim; use of statistical language), to the extent that this knowledge is 
available; and 

3. Articulating evidence-based arguments for judgments, claims, or predictions 
about populations based on samples. 

Note that this definition refers to IIR as a process for making inferences that does not 
utilize the formal methods of statistical inference described earlier and that may or may 
not include use of formal statistical concepts or language. 
 
2.4. WHY STUDY INFORMAL INFERENTIAL REASONING? 

 
Given the importance of statistical inferential reasoning, and given the difficulties 

most people have with this type of reasoning, a better pedagogical approach to this topic 
is needed. One possible cause for students’ difficulty with formal statistical inferential 
reasoning is that they lack both experience with stochastic events that form the 
underpinnings of statistical inference (Pfannkuch, 2005), and experience of reasoning 
about these events. Statistics educators and statistics education researchers have recently 
been exploring the idea that if students begin to develop the informal ideas of inference 
(as defined above) early in a course or curriculum, they may be better able to learn and 
reason about formal methods of statistical inference. For example, early on in a course, 
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students could engage in discussions of when, compared to some agreed upon 
expectation, a sample is surprising. This discussion could be revisited during different 
activities that introduce different samples and distributions. Over time, this may develop 
the prior statistical knowledge needed to understand the idea of a p-value when it is 
introduced later in a course. 

There is also a belief that, if students become familiar with reasoning about inference 
in an informal manner, such as making speculations about what might be true in a 
population or populations, based on samples of data, that the method of doing this 
formally may be more accessible. Finally, because statistical inference integrates many 
important ideas in statistics—such as data representation, measures of center and 
variation, the normal distribution, and sampling—introducing informal inference early 
and revisiting the topic throughout a single course or curriculum across grades could 
provide students with multiple opportunities to build the conceptual framework needed to 
support inferential reasoning. These suggestions for ways in which students reason 
informally about statistical inference, as well as possible methods for developing that 
reasoning, are currently untested conjectures that need to be studied.  

Now that a working definition of IIR and a rationale for studying IIR have been 
provided, many questions emerge. For example, how can researchers investigate and 
describe the nature of IIR in students? Or, what are ways to challenge students to reveal 
their informal inferential reasoning? The three components of the IIR framework can be 
used to help answer these questions because they support the development of tasks to 
examine students’ intuitive IIR as well as their developing reasoning. 

 
3. WHAT TYPES OF TASKS CAN BE USED TO STUDY INFORMAL 

INFERENTIAL REASONING AND ITS DEVELOPMENT? 
 

The research literature contains examples of two different approaches that researchers 
have used to study IIR. One approach focuses on the nature of this reasoning or naïve 
methods of reasoning about inference given problems and statistical information. An 
objective of this type of study is often to examine how students reason about or make 
inferences given a particular problem without having encountered formal methods of 
statistical inference via instruction. A second approach is the examination of the 
development of IIR as students experience curricula (e.g., a course or unit of instruction) 
designed to build reasoning. The objective of this type of study is often to see how the 
nature of students’ inferential reasoning changes as they are provided with resources, 
tools, and curriculum. Both of these approaches need well-designed tasks that allow 
researchers to capture and evaluate students’ IIR. 

Reading (2007) suggested that tasks used in a study of students’ informal inferential 
reasoning would not only need to examine how students integrate the components of the 
IIR framework listed in Section 2.3, but also capture ideas of statistical inference such as 
generalizing to an appropriate population beyond a collected sample, basing inferences on 
evidence, choosing between competing models (i.e., hypotheses), expressing a degree of 
uncertainty in making an inference, and making connections between the results and 
problem context. Furthermore, the research literature on informal reasoning and informal 
knowledge would suggest that tasks should be designed to elicit multiple arguments from 
students, as well as separate novice reasoning from expert reasoning.  

The framework provided in the working definition in this paper suggests the design of 
tasks that challenge students to 

1. Make judgments, claims, or predictions about a population based on samples, but 
not using formal statistical procedures and methods (e.g., p-value, t tests); 
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2. Draw on, utilize, and integrate prior knowledge (formal and informal) to the 
extent that this knowledge is available; and 

3. Articulate evidence-based arguments for judgments, claims, and predictions about 
populations based on samples. 

Three general types of task have been used in research studies that meet these criteria. 
They may be categorized as tasks that ask students to 

1. Estimate and draw a graph of a population based on a sample; 
2. Compare two or more samples of data to infer whether there is a real difference 

between the populations from which they were sampled, and 
3. Judge which of two competing models or statements is more likely to be true. 

Examples of tasks for each of three categories are provided in the following sections. 
 

3.1. ESTIMATE AND DRAW A GRAPH OF A POPULATION BASED ON A 
SAMPLE 

 
Very few examples appear in the literature where students have been asked to 

speculate about graphical characteristics of a population based on a sample of data. 
Bakker (2004) referred to this type of prediction as “growing a sample” and used the 
following task in a teaching experiment with eighth grade students in the Netherlands. 
Students were asked to predict a graph of weights for a class of 27 eighth grade students 
and then graphs for three classes together, which had a total of 67 students, based on 
small random samples of student weights. After being shown the computer-simulated data 
sets for one class of 27 students and all three classes together, they were asked to describe 
the differences between their two graphs and then to compare these to the real graphs of 
weight data. In the last part of the activity, students were asked to create graphs for the 
population of all students in their city that were no longer sets of points but were 
continuous distributions of data. This multistage activity ended in an IIR activity that had 
students make a conjecture about an unknown population. Based on Bakker’s activity, the 
following task (see Figure 1) was created and used by Zieffler, delMas, Garfield, and 
Gould (2007) to reveal students’ IIR in an introductory college statistics course.  
 

Imagine the test scores for a group of college students in a very large lecture class on 
psychology (n=1000 students). The test scores for a random sample of ten students from this 
class are shown in the dot plot [below]. 

• Now, consider a random sample of 25 students drawn from the same class. Try to 
imagine what THAT graph might look like. Use the graphing area to sketch a dot plot of 
the 25 scores that you might expect to see for a random sample of 25 students. Explain 
your reasoning. 

• Next, think about the entire class of 1000 students that these students are sampled from. 
What would you expect the distribution for the entire population of all 1000 students test 
scores to look like? Draw an outline of the distribution and explain your reasoning. 

 
Figure 1. Predicting characteristics of a population from a sample task  

(Zieffler et al., 2007) 
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3.2. COMPARE TWO OR MORE SAMPLES OF DATA TO INFER WHETHER 
THERE IS A REAL DIFFERENCE BETWEEN THE POPULATIONS  

 
There are many examples in the literature of tasks that ask students to compare two or 

more groups of data, although not all of them ask the students to reason beyond the 
samples to the populations from which they have been selected. For example, Watson and 
Moritz (1999) used tasks in which students in grades 3 through to 9 had to compare two 
data sets to help them begin to make inferences about group differences. Although these 
tasks did not look beyond the data sets to larger populations, they set the stage for such 
inferences, providing a foundation for statistical inference. One such task is in Figure 2. 

 
Two schools are comparing some classes to see which is better at quick recall of 9 maths 
facts. In each part of this question you will be asked to compare different classes. First 
consider two classes, the Blue class and the Red class. The scores for the two classes are 
shown on the two charts below. Each box is one person’s test, and the number inside is their 
score. In the Blue class, 4 people scored 2 correct and 2 people scored 3. In the Red class, 3 
people scored 6 correct and 3 people scored 7. 
 

 
 

Figure 2. Comparing groups task (Watson & Moritz, 1999) 
 

In contrast, Pfannkuch (2005, 2006) used a task that asked students to compare sets of 
data for daily temperatures for two different cities in New Zealand, and challenged the 
students to make some informal inferences beyond the sample data. According to 
Pfannkuch (2005), “students were required to pose a question (e.g., Which city has the 
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higher maximum temperatures in summer?), analyze the data, draw a conclusion, justify 
the conclusion with three supporting statements, and evaluate the statistical process” (p. 
272). All students constructed a pair of boxplots to make the comparison (see Figure 3). 

 

 
 

Figure 3. Boxplots of temperature data from comparing groups task (Pfannkuch, 2005) 
 

Suppose that there is a special summer camp for track athletes. There is one group of 100 
athletes that run a particular race, and they are all pretty similar in their height, weight, and 
strength. They are randomly assigned to one of two groups. One group gets an additional 
weight-training program. The other group gets the regular training program without weights. 
All the students from both groups run the race and their times are recorded, so that the data 
could be used to compare the effectiveness of the two training programs. 
• Describe what you would expect to see in a comparison of two graphs if the difference 
between the two groups of athletes is really not due to the training program. 
• Describe what you would expect to see in a comparison of two graphs if the difference 
between the two groups of athletes is really due to the training program. 
Presented below are some possible graphs that show boxplots for different scenarios, where 
the running times are compared for the students in the two different training programs (one 
with weight training and one with no weight training). Examine each pair of graphs and think 
about whether or not the sample data would lead you to believe that the difference in running 
times is caused by these two different training programs. (Assume that everything else was the 
same for the students and this was a true, well-designed experiment.) 

  
• Which set of boxplots show the MOST convincing evidence that the weight-training 
program was more effective in DECREASING athlete’s running times? Explain. 
• Which set of boxplots shows the LEAST convincing evidence that the weight-training 
program was more effective? Explain. 
• Rank the four pairs of graphs on how convincing they are in making an argument that the 
weight-training program was more effective in decreasing athletes’ times (from the least 
convincing to the most convincing evidence). Explain your reasoning. 
• For the pair of graphs that provide the most convincing evidence, would you be willing to 
generalize the effects of the training programs to all similar athletes on track teams, based on 
these samples? Why or why not? 

 
Figure 4. Comparing groups task (Zieffler et al., 2007) 
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A third type of task has students compare multiple pairs of sample data and has the 
students judge which pair provides the most compelling evidence to support a true 
difference in population means. For example, Zieffler et al. (2007) used a task (Figure 4) 
to have students make conjectures about whether or not a special athletic training program 
was effective, based on two samples of data. This task required students to look beyond 
the samples of data to compare two populations, and to choose which pair of samples 
gave the most compelling evidence to support a claim that there was a real difference. 
 
3.3. JUDGE WHICH OF TWO COMPETING MODELS OR STATEMENTS IS 

MORE LIKELY TO BE TRUE 
 
A review of the literature found three different styles of task that have been used to 

challenge students to choose between two competing models or claims, based on sample 
data. One style uses data generated by a probability device, and uses proportions or 
percentages to summarize the sample data. For example, Stohl and Tarr (2002) and Tarr, 
Stohl Lee, and Rider (2006) used the Schoolopoly problem (Figure 5) that asked sixth-
grade students to judge whether a die is fair or not based on observed tosses via a 
computer simulation. Students were asked to provide what they “consider ‘compelling 
evidence’ in formulating and evaluating arguments based on data” (Tarr, Stohl Lee, & 
Rider, 2006, p. 1).  

 
Schoolopoly: Is the die fair or biased? 

 
Background 
Suppose your school is planning to create a board game modeled on the classic game of 
Monopoly. The game is to be called Schoolopoly and, like Monopoly, will be played with dice. 
Because many copies of the game expect to be sold, companies are competing for the contract 
to supply dice for Schoolopoly. Some companies have been accused of making poor quality 
dice and these are to be avoided since players must believe the dice they are using are actually 
“fair.” Each company has provided dice for analysis and you will be assigned one company to 
investigate:  
 Luckytown Dice Company  Dice, Dice, Baby!  
 Dice R’ Us    Pips and Dots  
 High Rollers, Inc.   Slice ‘n’ Dice  
  
Your Assignment  
Working with a partner, investigate whether the dice sent to you by the company are fair or 
biased. That is, collect data to infer whether all six outcomes are equally likely and answer the 
following questions:  
1. Do you believe the dice you tested are fair or biased? Would you recommend that dice be 

purchased from the company you investigated? 
2. What compelling evidence do you have that the dice you tested are fair or unfair? 
3. Use your data to estimate the probability of each outcome, 1-6, of the dice you tested.  
  
Collect data about the dice supplied to you. Note that each single trial represents the outcome 
of one roll of a “new” virtual die provided by the company. 
 
Copy any graphs and screen shots you want to use as evidence and print them for your poster. 
Give a presentation pointing out the highlights of your group’s poster.  

 
Figure 5. Competing models task: Schoolopoly (Stohl & Tarr, 2002) 
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A second style of competing models task was used by Rubin, Hammerman, and 
Konold (2006). They had teachers determine whether a particular change in process either 
occurred or did not occur during a specified interval of time. This task is described in 
Figure 6. 
 
The Mus-Brush Company produces mushroom brushes, using a large machine whose output is 
on average 215 brushes every two minutes if it is working normally. If the electricity to the 
machine is interrupted, even for a brief time, it will slow down such that the output of the 
machine will be 10% lower on average. The Mus-Brush Company was robbed last night; in 
forcing the door open, the thief disrupted the electricity and the machine became less productive 
from that time on. There is a prime suspect who has an alibi between midnight and 3AM (he was 
seen at a bar), so the police have a special interest in determining if the break-in occurred before 
midnight or after 3, since the suspect has no alibi for that time interval. We have data on Mus-
Brush production every two minutes from 8PM until 5AM. Our job is to decide whether there is 
enough evidence to argue that the break-in occurred between 12 and 3, thus getting the suspect 
off the hook. 

 
Figure 6. Competing models task: Mus-Brush Company (Rubin et al., 2006) 

 
In contrast to these first two styles of tasks, Zieffler et al. (2007) used a population of 

quantitative data as a basis for the null model (see Figure 7) and asked students to make 
decisions about whether a certain educational outcome observed in a sample of data 
(change in mean test score) was due to chance or not. This was part of a multipart task 
that asked students to first imagine different possible samples for the population and 
sketch a hypothetical graph of the distribution of these samples. 

 
Shown below is a graph of scores from many sections of students who have taken this course 
and exam. For this population, the average score is 74. 

 
A random sample of 50 students in the class this year, given the exact same exam, had a mean 
exam score for of 78. 
1. Do you think that the teacher can say that this year’s students did better on average than 

what would be expected? Explain. 
2. Do you think this higher sample average score could just be due to chance? 

 
Figure 7. Competing models task modified from Zieffler et al. (2007) 

 
3.4. ANALYSIS OF THE THREE TYPES OF TASKS 

 
Table 1 illustrates how each of the three types of tasks shown incorporates the 

essential components of IIR that have been described in the research literature (see 
Section 2.3). 

These tasks can be used in an interview, or on a written assessment to capture 
students’ informal inferential reasoning, or can be embedded in classroom activities 
designed to promote the development of IIR. Each task may be used to reveal the extent 
to which students have integrated their prior knowledge about foundational concepts. 
They challenge students to make judgments and predictions about a population without 
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the use of formal statistical methodology. Lastly, by having students explain their 
reasoning, usually more than once during the task, they elicit the articulation of students’ 
arguments and justifications for their predictions and judgments. 

 
Table 1. Specification of how each type of task incorporates the three components of IIR 

 

TYPE OF TASK 
IIR COMPONENT 

Make judgments or 
predictions 

Use or integrate prior 
knowledge 

Articulate evidence-
based arguments 

Estimate and draw 
a population graph 

Predict characteristics 
of a population (shape, 
center, spread) that are 
represented in a 
student-constructed 
graph 

Bring in intuitive or 
previously learned 
knowledge and 
language to predict the 
characteristics of a 
population (e.g., idea of 
shape, words like 
skewed) 

Requires an 
explanation of how 
the characteristics 
of the population 
graph were chosen 

Compare two 
samples of data 

Judge whether there is 
a difference between 
two populations; based 
on similarities or 
differences in samples 
of data. 

Bring in intuitive or 
previously learned 
knowledge and 
language to compare 
two samples of data 
(e.g., between- and 
within-groups 
variation) 

Requires an 
explanation of why 
students determined 
whether or not there 
is a difference in the 
two populations 

Judge between 
two competing 
models 

Judge whether sample 
data provide more 
support for one model 
than another 

Bring in intuitive or 
previously learned 
knowledge and 
language to judge 
between two competing 
models (e.g., sampling 
variability, chance 
variation) 

Requires an 
explanation of why 
students chose one 
model over the 
competing model 

 
These tasks (or parallel versions of the tasks) could be given to students at multiple 

times throughout a course or unit of instruction to examine how students’ reasoning 
develops. This would allow instructors to examine how students use their informal 
knowledge and informal reasoning to draw conclusions and make inferences as they 
experience instruction related to informal or formal methods of statistical inference. This 
assessment could be done formatively which would allow for more opportunity for 
feedback to students, which in turn, would create more learning and research 
opportunities. 

 
4. SUMMARY AND IMPLICATIONS FOR RESEARCH AND TEACHING 

 
In this paper, we set out to answer two main questions regarding informal inferential 

reasoning. First, what are the components of a framework needed to support research on 
informal inferential reasoning? Drawing on the research literature, we proposed a 
working definition of IIR that comprises three components: (1) making judgments, 
claims, or predictions about populations based on samples, but not using formal statistical 
procedures and methods (e.g., p-value, t tests); (2) drawing on, utilizing, and integrating 
prior knowledge to the extent that this knowledge is available; and (3) articulating 
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evidence-based arguments for the judgments, claims, and predictions about populations 
based on samples.  

The second aim of this paper was to identify the types of tasks suggested by this 
framework for the study of informal inferential reasoning and its development? We have 
proposed two approaches that might be taken by researchers in studying IIR. We have 
also suggested the types of tasks that might be helpful in these types of studies, as well as 
provided concrete examples of such tasks. 

 The IIR framework (see Section 2.3) and suggested tasks (see Section 3) can be 
useful in further research studies in various ways. First, by referring to a common 
working definition in future studies, researchers may better be able to build on and 
connect their work to previous and subsequent studies. Second, using common tasks 
allows for comparisons across different instructional settings and groups of students. 
Third, these tasks have value in both teaching and research settings as they may be used 
in class activities to promote student reasoning and to challenge students to explain and 
articulate their understanding and rationale for making inferences, which could be studied 
to see how students’ reasoning changes during the activity. 

Researchers could also draw on the proposed IIR framework to help analyze students’ 
responses to tasks designed to elicit IIR. Drawing on the first component of the 
framework, a researcher might ask whether the student made reasonable inferences about 
one or more populations based on one or more samples. For example, for the task in 
Figure 1 (predicting characteristics of a population from a sample), a reasonable inference 
might be that the center (mean) of the population is near the value that appears to be at the 
center of the sample, and the variability in the population is likely to be greater than the 
variation displayed in the sample.  

Drawing on the second component of the framework, a researcher might ask how the 
student used and integrated informal knowledge (e.g., everyday knowledge of the 
problem context, prior knowledge about statistical concepts, real world knowledge and 
experience, and statistical language) in making inferences. Another question might be 
whether the use of problem context has impeded, or over-ridden, the use of data in 
making inferences. For example, using the same task, an integrated response might 
incorporate ideas of random sample as being representative of the population; ideas of 
distribution (e.g., shape, center, variation); and real world knowledge of the problem-
context (e.g., test scores, college students’ study habits). Another question of interest 
might be how heavily the student depends on prior knowledge of statistics (previously 
learned concepts) and how much the student depends on his or her knowledge of the 
world (or experience), a balance that may change over the course of instruction. 

Drawing on the third component of the framework, a researcher might ask how the 
student has used evidence to support his/her arguments in making inferences, and also, 
how well the evidence used supported the inferences made. For example, using the same 
task, the response should include data-based explanation for why the student chose a 
particular population distribution (e.g., the population will likely have a mean near 71 
because the sample had a mean of 71.3 and this sample was drawn randomly from the 
population so it should be representative).  

Although the IIR framework proposed may be useful in studying the development of 
IIR (e.g., during an activity, or over a unit of instruction, an entire course, or even a 
curriculum) there is not yet a developmental model of how IIR develops from the earliest 
and most informal stage to transitioning to formal statistical reasoning. A variety of 
theories of developmental growth exist that could be used to underpin a “developmental” 
framework for IIR. One such cognitive model of learning is the Structure of Observed 
Learning Outcome (SOLO) based developmental framework (see Pegg, 2003). Based on 
the research presented at the Fifth International Research Forum on Statistical Reasoning, 
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Thinking and Literacy (SRTL-5), Reading (2007) suggested that a two-cycle SOLO-
based framework be considered for describing the cognitive growth students experience 
when reasoning about statistical inference. The first cycle would involve reasoning about 
underlying concepts, including naïve inference that is not chance related. The second 
cycle would involve using these underlying concepts in a more “formal” way that 
incorporates reasoning about chance events. 

The authors note that a working definition for IIR is a definition in progress. They 
hope that over time others will contribute to refining and updating this definition as more 
information is gained about the nature and development of students’ informal inferential 
reasoning. There is a need for more research to explore the role of foundational concepts, 
data sets and problem contexts, and technology tools in helping students to reason 
informally, and then formally, about statistical inference. There are many unanswered 
questions about the best sequence of ideas and activities and the role of these in making 
the transition from informal to formal methods of statistical inference. 
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