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ABSTRACT 

 
We examined how middle school students reason about results from a computer-simulated 
die-tossing experiment, including various representations of data, to support or refute an 
assumption that the outcomes on a die are equiprobable. We used students’ actions with the 
software and their social interactions to infer their expectations and whether or not they 
believed their empirical data could be used to refute an assumption of equiprobable 
outcomes. Comparisons across students illuminate intricacies in their reasoning as they 
collect and analyze data from the die tosses. Overall, our research contributes to 
understanding how students can engage in informal hypothesis testing and use data from 
simulations to make inferences about a probability distribution.  

 
Keywords: Statistics education research; Middle school; Technology; Informal inference; 

Data distribution; Variation 
 

1. INTRODUCTION 
 

Imagine playing your favorite board game where the number of moves is determined by 
rolling a standard six-sided die. Experienced game players often accept equally likely 
probabilities for each outcome. Moreover, observations of outcomes of repeated die rolls from 
years of game-playing experiences often support this assumption. Beginning game players may 
initially develop notions regarding the observed frequencies of any given number that lead to 
particular generalizations (e.g., “I don’t get six a lot so six must be hard to get,” “Each number 
came up about the same amount, so this die seems fair”). Researchers (e.g., Green, 1983; 
Kerslake, 1974; Watson & Moritz, 2003) have found these types of generalizations evident in 
students’ belief about dice. Furthermore, this type of reasoning about dice can continue to 
develop as beginners gain more experiences with rolling dice and observing frequencies. At these 
moments, they may mentally coordinate their observations with their expectations, and a 
mismatch between the two may yield a perturbation. A person’s expectations of outcomes from 
repeated rolls of a die may be based on initial ideas formulated from earlier experiences or on 
assumptions made from examining the physical appearance of the die. In either case, students 
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may be making decisions naturally either to keep their current hypothesis about the likelihood of 
an event on a die or to alter this hypothesis in light of sufficient contrary evidence.  

One cannot precisely determine whether a four will appear when rolling a regular six-sided 
die. In the presence of this uncertainty, a probability can be estimated based on theoretical 
analysis or based on empirical data from rolling a die repeatedly. A frequentist (or empirical) 
approach to probability, grounded in the law of large numbers, has only recently made its way 
into curricular aims in schools (Jones, 2005; Jones, Langrall, & Mooney, 2007). Teachers are 
encouraged to use an empirical introduction to probability by allowing students to experience 
repeated trials of the same event, with concrete materials and/or through computer simulations 
(e.g., Batanero, Henry, & Parzysz, 2005; National Council of Teachers of Mathematics [NCTM], 
2000; Parzysz, 2003). There is general agreement that research on probabilistic reasoning has 
lacked sufficient study of students’ ability to connect observations from empirical data 
(probability in reality) and expected results based on a theoretical model of probability to inform 
their judgments and inferences (e.g., Jones; Jones et al.; Parzysz). In addition, many researchers 
have begun to tackle a difficult question of how students develop notions of informal inference 
that include examining data sampled (randomly) from finite populations, and data generated from 
random phenomena that have an underlying probability distribution which may be unknown (e.g., 
Makar & Rubin, 2009; Pratt, Johnston-Wilder, Ainley, & Mason, 2008; Zieffler, Garfield, 
delMas, & Reading, 2008). Analyzing an empirical distribution and interpreting data within a 
larger context are critical components of being able to make judgments, generalizations, or 
inferences beyond the data (Makar & Rubin) about either a theoretical probability distribution or 
a finite population. The usefulness of engaging students in informal inference tasks that are based 
on underlying probability distributions, rather than only finite populations, has been encouraged 
by Pratt et al. and Zieffler et al. 

Our research aims to contribute to the literature on understanding informal inference in 
probability contexts. We examine how middle school students reason about results from a 
computer-simulated die-tossing experiment to decide between one of two possible hypotheses: 
(1) the die is fair (i.e., the die has equiprobable outcomes), or (2) die is not fair or biased (i.e., the 
outcomes on the die are not equiprobable). Thus, we are explicitly interested in how students 
compare observed empirical data with expected outcomes from a fair die when using technology 
tools, including various representations of data. Because we are emphasizing data-based 
reasoning, we designed an instructional task in which students are not given a physical die to 
examine, but are asked to use data to make a decision, either to support a hypothesis of 
equiprobable outcomes or to refute this hypothesis and develop an alternative model of the 
probability distribution. Supporting or refuting a hypothesis involves some level of convincing, 
whether it is using evidence to convince oneself, a partner, or a third-party (e.g., teacher, 
researcher, other students). When working with data, the process of convincing requires 
representation of data, reasoning about data, and communication to others, all of which are 
encouraged processes in many curriculum documents (e.g., NCTM, 2000). Within this context, 
we are specifically investigating the following questions: 

1. How do students investigate the fairness of a die in a computer-based simulation and use 
empirical distributions to support or refute a model of a die that assumes equiprobable 
outcomes?  

2. How do students reason about the sample size and variability within and across samples 
of data to make sense of distributions of empirical data and a model of equiprobable 
outcomes?  
 



70 
 

2. RELATED LITERATURE 
 

2.1 BELIEFS ABOUT DICE 
 

Several researchers have analyzed students’ understanding and beliefs about standard six-
sided die. Watson and Moritz (2003) found that elementary and middle school students hold 
strong beliefs regarding the fairness of dice and, in fact, many students doubted that each 
outcome is equally probable. However, most of the students who held a belief that die were fair 
(59% of 108 students), and almost all students who believed die were unfair, did not use a 
strategy to collect data to confirm or refute their belief. In Green’s (1983) study of more than 
3000 early adolescents, he found that as age increases, the belief that six is “hard to get” declines 
(23% for 11-year-olds down to 9% for 15-year-olds) and belief that all numbers on the die have 
the same chance increases (67% for 11-year-olds to 86% for 15-year-olds). In another study, 
Lidster, Pereira-Mendoza, Watson, and Collis (1995) found that some students believed a die 
could be fair: (1) for some outcomes, (2) for some trials, or (3) compared to another die. The 
notion that a die could be fair for some outcomes or trials is aligned with an “outcome approach” 
as described by Konold (1987, 1995). Pratt (2000) also describes students’ reasoning about the 
trial-by-trial variation they notice with dice (and other devices). He found that students 
characterize randomness such that the next outcome is unpredictable and that no patterns in prior 
sequences are noticeable (irregular).  

Such pervasive beliefs and reasoning about dice are likely to be a product of students’ game-
playing experiences and represent genuine challenges to mathematics teachers, particularly given 
the common use of dice (or number cubes) in mathematics curricular materials. Our research is 
interested in ways in which students’ reason from observed empirical data to decide whether they 
have enough evidence to support a hypothesis that a die has equiprobable outcomes. Thus, 
students’ experiences and beliefs about dice contribute to, but are not a focal point of, our 
analysis. 
 
2.2 REASONING ABOUT VARIATION IN EMPIRICAL RESULTS 

 
Shaughnessy (1997, 2007) called for more attention to the concept of variability in students’ 

learning of probability and statistics, and several studies (e.g., Canada, 2006; Green, 1983; 
Watson & Kelly, 2004) have shown that students tend to expect little or no variation in samples 
from an equiprobable distribution, even with a small sample size (e.g., predict 5 ones, 5 twos, 5 
threes, 5 fours, 5 fives, 5 sixes for results of 30 fair die tosses). However, Lidster et al. (1995) and 
Shaughnessy and Ciancetta (2002) found that many students were willing to accept wide 
variation across several samples and maintain a belief that events are equally likely even with 
contrary visual and numerical evidence.  

Recent research on students’ understanding of distributions points to variation as a key 
concept and suggests that students often struggle with coordinating variation within and across 
distributions when reasoning about center of a distribution (e.g., Reading & Reid, 2006). 
Shaughnessy (2007) delineated eight aspects of variation that arise in various contexts, including 
variation over time, variation over an entire range, and variation between or among a set of 
distributions. Mooney (2002) also described ways of reasoning about variation that include (1) 
comparing frequencies of outcomes within a data set to each other, (2) comparison to an expected 
theoretical distribution, (3) comparison to an expected distribution based on intuition of the 
context, and (4) comparing empirical distributions across independent data sets to examine 
differences in variation (especially with small numbers of trials). Watson (2009) examined 
students’ developing understandings of variation and expectation for grade 3 through 9 students. 
Her results suggest that students may be able to appreciate and anticipate variation in data well 
before they develop a natural tendency to anticipate expected distributions or predicted values 
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based on a theoretical distribution. However, many students in grades 7 and 9 were able to 
integrate ideas of expectation and variation.  

There has been little consideration in prior studies of students’ attention to invariance across 
distributions when comparing the variation present in each distribution. This type of reasoning 
across data sets is important if students are trying to use data from repeated samples to make 
inferences about an unknown theoretical probability distribution from a frequentist perspective. 
This type of reasoning is also valuable when trying to reject a hypothesis of a particular 
probability distribution (e.g., whether or not a coin or a die has equiprobable outcomes). Pratt and 
colleagues (2008) posed tasks to 10–11 year-olds similar to the one used in our study. Students 
used a simulation tool to collect data about a weighted die and were asked to describe the die 
based on examining data, where they did not have access to the hidden probability distribution. 
Pratt and his colleagues found that students seemed to be looking for invariance across samples of 
data but were often frustrated because they tended to focus more on what was changing and did 
not appear to instinctively know or come to realize the role of sample size. 

 
2.3 USE OF SIMULATIONS AND REPRESENTATIONS  

 
Although many organizations such as NCTM (2000) encourage the use of technology-based 

simulations, research on the role of simulation software in teaching and learning probability is a 
relatively recent endeavor (Jones et al., 2007). Using simulation software affords students an 
opportunity to observe the dynamic accumulation of data in numerical and graphical forms while 
data are being generated. This visualization of data can be a powerful motivator for students 
noticing variability in short and long term behavior of random events.  

Representations available in computing environments can afford or hinder students’ work in 
examining empirical data from simulations. For many years, researchers and teachers have 
examined how students’ use of multiple representations can help them understand mathematical 
concepts. In particular, Ainsworth (1999) suggests that representations can be used in 
complementary ways to provide the same information in a different form and to provide different 
information about the same concept. Many researchers studying the use of simulation tools in 
probability learning have incorporated different representational forms in the software and have 
examined how students used these representations. For example, in early research by the authors 
(Drier, 2000a, 2000b; Stohl & Tarr, 2002), students used representations (e.g., bar graph, pie 
graph, data table) in a computer simulation software as both objects to display and interpret data, 
and as dynamic objects of analysis during experimentation to develop a notion of an “evening-
out” phenomenon (law of large numbers). Students often recognized that larger numbers of trials 
resulted in distributions that more closely resembled their expectation from theoretical 
probabilities used to design an experiment. Others have documented how students are able to 
make connections between distributions of data from a simulation and a theoretical distribution, 
with many students, though not all, attending to the effect of the number of trials (e.g., 
Abrahamson & Wilensky, 2007; Ireland & Watson, 2009; Konold & Kazak, 2008; Pratt, 2000, 
2005; Pratt et al., 2008; Prodromou, 2007; Prodromou & Pratt, 2006). Collectively, these studies 
suggest that these tools give students control over designing experiments, conducting as many 
trials as they desire, viewing and coordinating various representations, and helping students 
develop understandings between expectations of outcomes based on a theoretical model and 
observations of empirical data, and how observations of empirical data may inform development 
of a theoretical model.  
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3. ANALYTICAL FRAMEWORK 
 

The focus of our research is on how students collect and analyze empirical data and compare 
their results with expectations based on a model of the probability distribution of a die that 
assumes equiprobable outcomes. In essence, the task is designed to engage students in the process 
of a statistical investigation to informally test a hypothesis of equiprobable outcomes and make an 
informal inference about an underlying probability distribution. The students are not engaging in 
formal hypothesis testing techniques, however, the task is aligned with those suggested by 
Zieffler and colleagues (2008) that can engage students in informal inference by eliciting a 
judgment about which of two competing models or statements is more likely to be true.  

There are several well-developed frameworks describing the process of statistical 
investigation; for example, the PPDAC model used by Pfannkuch and Wild (2004) or the PCAI 
model used by Friel, O’Conner, and Mamer (2006). These authors pay attention to the ideas of 
collecting data through samples (particularly random samples) and the importance of distribution 
and variation in the analysis of data. The components of a statistical investigation may emerge 
linearly, though not necessarily, and may include revisiting and making connections among the 
components. The first component includes Posing a question. Such questions should be about 
particular contexts and should be motivated by describing summarizing, comparing, and 
generalizing data within a context. Most questions are in the form of a conjecture or hypothesis 
about a context. Collecting the data, the second component, includes a broad range of collection 
opportunities from populations and samples, including those generated from a probability 
experiment or simulation. The third component of the model, Analyzing data, should encompass 
perceiving a set of data as a distribution when a probability experiment or simulation is 
conducted. This component also includes describing and analyzing variation, as well as 
organizing and displaying data in charts, tables, graphs, and other representations. Interpreting 
the results, the fourth component, involves making decisions about the question posed within the 
context of the problem based on empirical results in relation to sample size. This includes making 
judgments and inferences about a probability distribution.  

To answer our research questions, our analysis is focused on the students’ work while 
engaged in informal hypothesis testing through the collecting, analyzing, and interpreting 
components of their investigation that occur in a cyclic manner. Thus, we need to explicate a 
framework that will focus our analysis (see Figure 1).  

In an informal hypothesis testing context, an initial hypothesis of a distribution (HO) is 
generated from the problem context (e.g., the die is fair—the distribution is uniform) in the Pose 
Question phase. In the next phase, Formulate Expectations, the initial assumptions of a 
probability distribution provide an image of what students expect to observe in empirical data 
under the hypothesis (e.g., if the die is fair, each outcome should occur about the same number of 
times). Students then Collect Data to test the hypothesis. Depending on the context of the task, 
students may be guided in how to collect the data, or students may be asked to make all the data 
collection decisions. In the two phases labeled Analyze (Figure 1), students would ideally be 
analyzing the data collected and then comparing the results against their expectations and initial 
hypothesis about the probability distribution (Watson & Kelly, 2004). Noticing patterns in the 
data may prompt them to make Interpretive Decisions such that they may question the prior 
assumptions, or they may not believe the data vary enough from their expectations to contradict 
their initial assumption. Their reasoning may then lead them to decide to keep HO or to form an 
alternative hypothesis (HA). In either case, they could complete the investigative cycle and make 
a final Interpretation or continue in the cycle to Formulate Expectations, Collect Data, and 
Analyze to again test the reasonableness of the match between their expected results based on a 
hypothesized probability distribution and an observed distribution from repeated empirical trials. 
Of course students may also decide to collect more data because it is pleasurable or playful (as 
has been observed in Drier, 2000a; Lee, 2005). However, even these playful excursions provide 
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opportunities for students to observe additional data distributions. Whether their cycles of data 
collection are purposeful or playful, at some point students need to make a final claim about 
either supporting or refuting the original hypothesized distribution, and possibly to make 
inferences about an alternative distribution. In a dynamic simulation environment where data are 
displayed in various representations while being generated, students may engage in analyzing and 
interpreting while data are collected (Drier, 2000b; Stohl & Tarr, 2002; Pratt 2000, 2005; Pratt et 
al., 2008). Thus, the components of a statistical investigation can become integrated through 
several iterations of data collection, as shown in Figure 1. 

 

 
 

Figure 1. Informal hypothesis testing cycle in a statistical investigation that focuses on 
comparing expectations and observations 

 
The robustness of students’ analysis of observed empirical data with respect to their 

expectations based on initial assumptions of a probability distribution may be influenced by their 
understanding of the independence of trials, variability of their data, and sample size. Students 
need to consider that different trials and different sets of trials (samples) are independent of one 
another and variability among individual trials and samples is to be expected. They also need to 
coordinate conceptions of independence and variability with the role of sample size in the design 
of data collection and interpretation of results. Relative frequencies from larger samples are likely 
to be more representative of a probability distribution whereas smaller samples may offer more 
variability and be less representative. For example, ten rolls may yield no 3’s and such data may 
support a child’s notion that rolling a 3 is an improbable (or even impossible) event, although 
such a claim would likely not be made by someone who had made a more robust connection 
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between observed data and expectations based on a theoretical probability distribution, and the 
importance of sample size.  

Pratt et al. (2008) called for a need to “conjecture about what the children might be expecting 
to see” (p. 124, italics in original). Students’ hypothesis about a probability model and their 
subsequent expectations from experimentation may or may not be stated explicitly. To help 
account for this in our analysis, we employ the constructs of external and internal resources used 
in Pratt’s (2000) study on students’ probabilistic reasoning. Internal resources consist of an 
individual’s understandings, including intuitions and beliefs. External resources are those “that 
reside outside of the individual but within a setting” (p. 605), and would include the social 
interactions, available tools (including various representations available in a software tool), and 
the context of the mathematical task. Goldin (2003) also distinguishes between a learner’s 
internal system of representation and systems that are external to the learner. This distinction 
allows for the recognition that one cannot directly observe a learner’s internal resource. However, 
by analyzing the interactions with external resources, we as observers can make inferences about 
a learner’s internal system. Specific to our research, we are using students’ actions with the 
software and their social interactions to infer their expectations of results based on a hypothesis of 
likelihood of events (e.g., equiprobable outcomes) and whether or not they are formulating a new 
hypothesis. 

 
4. METHODOLOGY 

 
4.1 CONTEXT OF STUDY 
  

The study took place during the first month of sixth grade (age 11-12) in an average-level 
mathematics class (n = 23) in an urban, public middle school in the southern United States. The 
class was engaged in a 12-day probability unit designed and taught by Lee and Tarr. During class, 
students worked in groups of 2-3, and used real objects (coins, dice, and spinners) and Probability 
Explorer (Stohl, 2002) on laptops.  

The software enables users to specify the number of trials, update displays of results after 
each trial, and view simulation data in iconic images on the screen which can be stacked in a 
pictograph or lined up in the order in which they occur. Additionally, data can be viewed in a pie 
graph (relative frequency), bar graph (frequency), and data table (frequency and relative 
frequency). The multiple representations serve complementary functions (Ainsworth, 1999) in 
which some representations differ in the information that is expressed (e.g., frequencies in a bar 
graph versus the relative frequency table) or show the same information in different ways (e.g., 
frequencies in iconic pictogram, bar graph, and frequency table).  

 
4.2 INSTRUCTIONAL SEQUENCE 
 

The six tasks used in the 12-lesson unit required students to carry out computer-based 
simulations, and to collect, display, and analyze data in order to draw inferences and formulate 
convincing arguments based on data. Each lesson was about 60 minutes in length. Whole class 
discussions were designed to elicit students’ reasoning about observed data collected through 
empirical trials and expectations based on a model of the probability distributions. Throughout 
the 12 days we encouraged dispositions towards using an investigative cycle and norms about 
making data-based arguments, mainly to their peers, but also to the teachers/researchers when 
occasionally prompted during small group work or during whole group discussions.  
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The first two tasks (Fair Coin Tosses and Fair Die Tosses) were designed to help students 
make connections between random events with familiar objects to the random events generated in 
the software. These tasks purposely posed questions to elicit students’ primary intuitions 
(Fischbein, 1975) about equally-likely outcomes, randomness, and theoretical probability so we 
could build upon those intuitions throughout the unit. In both tasks, students had extensive 
experience in using the software to simulate fair coin tosses and die rolls, examining many 
samples of small and large trials with the various representations (table, stacking columns, bar 
graph, pie graph), and discussing variability within and across samples as a whole class. The third 
task provided students with a situation where some elements of the sample space were known to 
students (Mystery Marble Bag with N marbles) and asked students to collect data and draw 
inferences about the theoretical distribution. 

The fourth task (Mystery Fish in a Lake) was designed to induce a perturbation about how to 
determine the number of trials to run when the population of fish was unknown. The task also 
served the purpose of encouraging students’ social negotiations about whether they were 
confident that enough data had been collected to estimate the probability distribution. In the fifth 
task, students used the Weight Tool to enter estimates for the probability of each event on a 
physical spinner and used empirical data to test the “goodness” of their estimates. These last two 
tasks aimed to draw students’ attention to the role of sample size in comparing empirical data 
with a theoretical model of probability.  

The Schoolopoly task (Figure 2) — the focus of our analysis in this paper — spanned the last 
three days of instruction. The Schoolopoly task was included in the framework offered by Zieffler 
et al. (2008) as an exemplar of a task that can elicit students’ thinking about informal inference. 
In this task, students collected evidence to infer whether or not a dice company produces dice 
with equiprobable outcomes. For each dice company the teachers designed the computer 
simulation by assigning probabilities to each of the six outcomes in the Weight Tool (see Table 
1). The Weight Tool was then hidden from students during the activity, thus creating a context in 
which there exists an unknown probability distribution, similar to the task used in Pratt et al.’s 
2008 study. In this task, students were asked to consider a rumor that some of the dice may be 
biased, to justify whether they found enough evidence to retain an equiprobable hypothesis or to 
claim that the dice had non-equiprobable outcomes, and to propose an estimate for the probability 
distribution (see Questions 2 and 3 in Figure 2). The students had to decide how much data to 
collect, how to arrange the iconic form of the outcomes on the screen, how to display data 
numerically and graphically during analysis, and what data sets and representations to use to 
make and support claims about the whether the dice were fair with equiprobable outcomes. 
Because of students’ prior experiences with fair dice and the challenge posed in the Schoolopoly 
task, we assumed students had a reasonable understanding of equiprobable outcomes and could 
form reasonable expectations of an empirical distribution. 

In order to promote students’ perception of the authenticity of the Schoolopoly task, we 
purposely had six different dice companies vying for the “bid” with each company producing dice 
with different biases and only one having equiprobable outcomes. The task was designed to elicit 
classroom conversations about which of the six dice companies to recommend for use in the 
game and encouraged whole-class consensus building after each group had prepared the poster 
report to the school board. We discuss some of the beneficial aspects of the Schoolopoly task and 
a broader perspective on classroom results in a different paper (Tarr, Lee, & Rider, 2006).  
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Schoolopoly 
 
Your school is planning to create a board game modeled on the classic game of 
MonopolyTM. The game is to be called Schoolopoly and, like MonopolyTM, will be 
played with dice. Because many copies of the game expect to be sold, companies 
are competing for the contract to supply dice for Schoolopoly. Some companies 
have been accused of making poor quality dice and these are to be avoided since 
players must believe the dice they are using are actually “fair.” Each company 
has provided a sample die for analysis and you will be assigned one company to 
investigate: 
      Luckytown Dice Company Dice, Dice, Baby! 
      Dice R’ Us  Pips and Dots 
      High Rollers, Inc. Slice n’ Dice 

Your Assignment 
Working with your partner, investigate whether the die sent to you by the 
company is, in fact, fair. That is, are all six outcomes equally likely to occur? 
You will need to create a poster to present to the School Board. The following 
three questions should be answered on your poster: 
1. Would you recommend that dice be purchased from the company you 

investigated?  
2. What evidence do you have that the die you tested is fair or unfair?  
3. Use your experimental results to estimate the theoretical probability of each 

outcome, 1-6, of the die you tested. 
Use Probability Explorer to collect data from simulated rolls of the die. Copy 
any graphs and screen shots you want to use as evidence and paste them in a 
Word document. Later, you will be able to print these. 

 
Figure 2. Schoolopoly task as given to students 

 
Table 1. Weights and theoretical probabilities (unknown to students) 

 for events 1-6 in each company 
 

Company Name Weight Weight Weight Weight Weight Weight 
[P(1)] [P(2)] [P(3)] [P(4)] [P(5)] [P(6)] 

Dice R’ Us 2 3 3 3 3 2 
[0.125] [0.1875] [0.1875] [0.1875] [0.1875] [0.125] 

High Rollers, Inc. 2 3 2 3 2 3 
[0.133] [0.2] [0.133] [0.2] [0.133] [0.2] 

Slice n’ Dice 4 5 5 5 1 5 
[0.16] [0.2] [0.2] [0.2] [0.04] [0.2] 

 
4.3 THREE FOCUS PAIRS 
 

Prior to instruction, three focus pairs of students were selected based on scores on a 
standardized mathematics achievement test as well as a pretest on probability concepts developed 
by the researchers (e.g., determining a priori probabilities, comparing probabilities of two events, 
using data to make statements regarding probability). With both pretests, we grouped the scores 
in thirds (high, middle, low). Candidate focus students were chosen by their relatively consistent 
ranking on both pretests. Six students were chosen to be collectively representative of gender and 
ethnicity of the class. 
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Dannie and Lara (Caucasian girls) represented the high-scoring group who investigated the 
Dice R’ Us company. Brandon (Caucasian boy) and Manuel (Hispanic boy) represented an 
average-scoring group who investigated High Rollers, Inc. Greg (Caucasian boy) and Jasyn 
(African-American boy) comprised the low-scoring pair who investigated the Slice n’ Dice 
company. See Table 1 to examine the difficulty levels of the theoretical probability distributions 
for each company. The slightly biased die from the Dice R’ Us company was given to Dannie and 
Lara in anticipation that they had developed an appreciation for sample size [based on their work 
on previous tasks] and would develop the realization of the need to collect a large number of 
trials to detect bias in the die.  

For the purposes of our analysis with three pairs of students, each testing a different virtual 
die, we recognized that the overall instructional decision for using differently-biased dice with 
each pair added a layer of complexity to our analysis for comparing across groups. Thus, our 
comparisons were not about the quality of the “correctness” of the students’ decision to confirm 
or refute that the die has equiprobable outcomes or their ability to estimate the probabilities for 
each outcome based on their data collected. Rather, we focused on how students used the 
software to conduct their investigation, how they compared observed empirical data with 
expected results, and the reasoning they communicated with each other to support their claims.   

 
4.4 SOURCES OF DATA  

 
All students in the class were seated in pairs or groups of three at tables with a PC laptop, 

calculators, and manipulative materials (e.g., dice, spinners) readily available. The three focus 
pairs worked at tables where their laptop computers were connected to a PC-to-TV converter to 
video-record their computer interactions while microphones captured their conversations. 
Detailed video and audio recordings were only made of these three pairs. In addition, there was a 
wide-angled video camera focused on the three tables to capture students’ social interactions with 
each other and the teachers-researchers and two additional cameras capturing the whole class. For 
each pair, the videos were directly transcribed and annotated with screenshots and researcher 
notes to describe the actions of the students. For the Schoolopoly task, students were routinely 
saving data and making notes during data collection in a word processing document. Each pair 
also constructed a poster with answers to questions in Figure 2 and appropriate data displays as 
evidence to support their claims. Thus, data considered for analysis included video with annotated 
transcripts, students’ word processing documents, and students’ posters. 

 
4.5 ENACTING OUR FRAMEWORK FOR ANALYSIS 

 
Using our understanding of results from related studies, Pratt’s (2000) notion of internal and 

external resources, and our guiding framework in Figure 1, we analyzed how pairs of students 
coordinated the empirical data with a hypothesized probability distribution while conducting their 
investigation. An initial analysis of the videos and annotated transcriptions identified critical 
events (Powell, Francisco, & Maher, 2003) in the students’ work. Our initial analysis was 
generative in nature and brought students’ key decisions and actions in data collection and 
analysis to the fore (Strauss & Corbin, 1990). Five major decisions/actions emerged as salient 
across the three pairs’ work. Thus, in order to analyze students’ work more closely, we broke 
each pair’s work into investigation “cycles” similar to those depicted in Figure 1 that included 
their decisions and actions to: 1) Carry out a number of trials, 2) view representations (pie, bar 
graph, data table, etc) during and after the simulation, 3) save the data (or not) as evidence for 
further analysis and justification, 4) make a conjecture based on data to reject (or not) the initial 
hypothesis of equiprobable outcomes, and 5) proceed to collect more data. In addition, we noted 
that when comparing the empirical distributions to their expectations, the students reasoned about 
variability in the empirical distributions in two major ways, within a data set, and across data sets. 
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When reasoning within a data set, they seemed to either accept that the variability was not 
different enough from their expectations, or that it was different enough. When reasoning across 
several empirical distributions, they were either attending to variance (differences) or invariance 
(similarities).  

Each of the transcription documents was segmented into distinct cycles and coded (Miles & 
Huberman, 1994) for students’ actions/decisions in the five major categories and their reasoning 
about variability. For example, for each cycle we coded which representations (S=Stacked 
pictograph, B=Bar Graph, P=Pie Graph, FT=Frequency Table, RFT=Relative Frequency Table) 
students utilized to view the data, either during (D) or after (A) data collection. We coded 
whether they made an explicit interpretive decision about whether to refute (R) or confirm (C) the 
equiprobable assumption, or if they were unsure (U). In developing meaningful codes for sample 
size, we considered the theoretical probability distributions for the three companies and chose 
sample sizes that reflected reasonable margins of error and would allow increased confidence in 
predictions as the sample size levels increased. The five sample size levels used for all pairs were 
1) 1-40, 2) 41-100, 3) 101-500, 4) 501-1000, 5) 1000+. The lowest sample size level has a 
maximum of 40 to account for even the most biased dice company’s (Slice n’ Dice) distribution. 
See the Appendix for detailed codes. 

The coding process resulted in a condensed description of each pair’s work that could enable 
us to quickly summarize each cycle (see Appendix). This summary allowed us to focus more 
clearly on critical events, that is, those events that were relevant for understanding how students 
were comparing the empirical data to their expectations based on a hypothesized theoretical 
model of probability (Figure 1). We then tallied the occurrences of each code (Table 2) to 
examine patterns within and across pairs.  

 
5. RESULTS 

 
Recall our research questions: “How do students investigate the fairness of a die in a 

computer-based simulation and use empirical distributions to support or refute a model of a die 
that assumes equiprobable outcomes?” and “How do students reason about the sample size and 
variability within and across samples of data to make sense of distributions of empirical data and 
a model of equiprobable outcomes?” We discuss our findings in two parts. First, we provide an 
overall picture of the pairs’ investigation based on their use of representations, use of sample size, 
reasoning about variability, and the conjectures that they made during their investigation. 
Secondly, we provide a closer analysis in which we present how students working together 
compared empirical data and expected results as they went through the cycles (see Figure 1) in 
their investigation, focusing on those events that seemed most critical from our coding of cycles. 
It is within this closer analysis of the pairs’ work that we are considering the individuals’ 
reasoning and their mental images of expected results as inferred by the researchers from their 
use of the external resources and social interactions with each other.  

 
5.1 SUMMARY OF CASES  
 

Students’ work on this task spanned three instructional days. The first day consisted of posing 
the task and pairs working on collecting data, recording results and thoughts in a word processing 
document, including copying and pasting selected representations from the software. The second 
day included some additional data collection as well as the creation of posters. The third day 
included finishing posters and presentations by each group. Our analysis in this paper does not 
include the presentations. 

Table 2 contains a summary of the type of decisions and actions from each pair’s work 
including their reasoning about variability within and across samples, and conjectures they made.  
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Table 2. Summary of Focus Pairs’ Work on Schoolopoly Task 
 
 Dannie & 

Lara 
Dice R Us 

Brandon & 
Manuel 

High Rollers 

Greg & Jasyn 
Slice n’ Dice 

Number of Cycles Completed       20        8        11 
Cumulative 
Sample Size in 
Each Cycle 

L1: 1-40 11 (55%) 0 (0%) 6 (54.5%) 
L2: 41-100 3 (15%) 4 (50%) 4 (36.4%) 
L3: 101-500 3 (15%) 2 (25%) 0 (0%) 
L4: 501-1000 2 (10%) 0 (0%) 1 (9.1%) 
L5: 1001+ 0 (0%) 2 (25%) 0 (0%) 

Representations 
Used During 
Data Collection 

0 Representations 3 (15%) 0 (0%) 0 (0%) 
1 Representations 9 (45%) 1 (12.5%) 2 (18.2%) 
2 Representations 8 (40%) 1 (12.5%) 1 (9.1%) 
3 Representations 0 (0%) 2 (25%) 8 (72.7%) 
4 Representations 0 (0%) 4 (50%) 0 (0%) 

Representations 
Used After Data 
Collection 

0 Representations 0 (0%) 0 (0%) 2 (18.2%) 
1 Representations 8 (40%) 1 (12.5%) 5 (45.4%) 
2 Representations 12 (60%) 2 (25%) 2 (18.2%) 
3 Representations 0 (0%) 2 (25%) 2 (18.2%) 
4 Representations 0 (0%) 3 (37.5%) 0 (0%) 

Conjecture Made 
of Whether the 
Die is “Fair” a 

No conjecture 6 (30%)a 0 (0%)a 3 (27.3%) 
Confirming hypothesis (i.e., Fair) 4 (20%)a    4 (50%)a  0 (0%) 
Unsure 9 (45%)a 2 (25%)a 0 (0%) 
Refuting hypothesis (i.e., unfair) 3 (15%)a  3 (37.5%)a 8 (72.7%) 

Reasoning About 
Variability a 

Not Explicitly Stated 9 (45%)a 1 (12.5%)a  6 (54.5%)a 

Within Samples 
(Comparing 
frequencies) 

Tolerant of 
differences  

7 (35%)a 4 (50%)a  0 (0%) 

Not tolerant of 
differences  

4 (20%)a 6 (75%)a 5 (45.4%)a 

Across Samples 
(Comparing 
distributions) 

Attention to 
variation 

1 (5%)a 2 (25%)a  0 (0%) 

Attention to 
invariance  

0 (0%) 0 (0%) 2 (18.2%)a 

Final 
Interpretation 
and Claim on 
Poster 

Refute or Confirm Initial 
Hypothesis (Is die fair?) 

Confirm  Refute  Refute  

Approximate Distribution 
matches Claim? 

No–gave 
non-uniform 
distribution 

from 36 
trials 

Yes Yes-but gave 
frequency 

distribution 
from 100 trials 

aThese numbers do not sum to the total (or 100%) for each pair because more than one conjecture or 
statement regarding variability was sometimes made by one or both students during a single cycle. 

 
Although each pair worked the same amount of time, there were differences in the number of 
cycles of data collection each group employed, ranging from 8 to 20 cycles. Aspects that
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contributed to the number of cycles were students’ choice of sample size (smaller samples can be 
collected faster), use of basic technology of cutting and pasting to save data as evidence to 
support their conjectures, and amount of time students spent discussing collected samples. 
Overall, two of the three pairs’ cycles of work resulted in cumulative sample sizes that were 100 
or below (Levels 1 and 2). However, as elaborated in the pair analysis, the instances where 
students employed a large sample size had substantial impact on their reasoning about the task. 
Further, Brandon and Manuel and Greg and Jasyn had a relatively high percentage of cycles in 
which they utilized three or more representations either during or after data collection.  

Due to the description of the Schoolopoly task and work done prior in the instructional unit 
with fair dice, we inferred that the students all had an image that the probability distribution for 
the outcomes of an unbiased die should be equiprobable (i.e., uniform). Thus they were able to 
initially approach the problem with an image of equiprobable outcomes and were asked to collect 
and analyze empirical data to confirm or refute that the die had equiprobable outcomes (hereafter 
EPO).  

Dannie and Lara and Brandon and Manuel (the pairs with the less obviously biased dice) each 
had at least one cycle when more than one conjecture code (C, U, R; see Table 2 and Appendix) 
was recorded. This occurred when students disagreed and expressed conflicting conjectures, or 
when the students made conjectures at more than one point during a cycle (e.g., claiming “sort of 
fair” after 40 trials but by 200 trials claiming the die was “fair”). There were also nine cycles 
when no student made any verbal conjecture about whether or not to refute the EPO assumption. 
 
5.2 PAIR ANALYSIS 

 
In this section, we delve deeper into the ways in which the pairs worked through the 

Schoolopoly task. Using the framework in Figure 1, we are able to describe better some of the 
details of their work and make conjectures about ways they are reasoning about the external 
resources that may allow us to hypothesize their internal resources or images. 

 
Pair 1: Dannie and Lara (Dice R’ Us) Most of Dannie and Lara’s 20 cycles of data 

collection and analysis were similar, using Level 1 sample sizes (see Table 2), making the same 
conclusion of “sort of fair,” utilizing the pie graph both during and after data collection, and 
reasoning about variability occurring within a cycle. Twenty-five percent of their cycles 
contained cumulative sample sizes greater than 100 trials. Aside from the pie graph, the other 
representations used were the stacked columns (35% of cycles), the frequency table (20% of 
cycles), with the relative frequency table only being utilized on the last cycle. Even though they 
used four different representations, they never used more than two representations during a cycle, 
thus limiting their view of complementary representations of a data set (Ainsworth, 1999).     

During the first few cycles, Dannie expressed interest in only saving data sets that were 
relatively “even.” From that, we can infer that she had an initial image of the equally distributed 
outcomes of the die and that she was anticipating the resulting data to support this image. Lara, 
on the other hand, thought they should make decisions to save data “if it looks kind of even or if 
it looks really not even.” Thus, early on, Dannie appeared to have a goal to confirm the EPO 
assumption whereas Lara had a goal to examine data for evidence of whether or not to refute this 
assumption.   

In the first four cycles, they collected 10 trials in each cycle, adding on to the previous cycle, 
resulting in a cumulative sample size of 40 in Cycle 4. They both made tentative conjectures that 
they were unsure (“sort of fair” and “about even”) whether the data represented an equiprobable 
distribution. In the first 20 trials there was a low number of fives and this appeared to make the 
students hesitant to make a definitive judgment. They were reasoning within each cycle of data 
and making comments related to the variability between frequencies of each outcome particularly 
focusing on the low number of fives. 
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Dannie expressed an initial image of expected results based on EPO that seemed to influence 
her tolerance of the variation visible in the representations, often resulting in her arguing that the 
data appeared “even.” Although Lara also initially had an expectation based on EPO, she was 
more willing to compare the data against her expectations to question the feasibility of 
equiprobable outcomes. Thus, she was not wholly convinced by Dannie’s argument to accept the 
label of “even” to describe the data distribution in the first six cycles. However, in Cycle 7 (100 
trials), with data displayed in a pie graph which visually appeared to have equal slices, the 
partners agreed that the data appeared “really even.” Cycle 7 was the only instance of Lara 
comparing across distributions, between this data set and the earlier one that had a low number of 
fives. This instance seemed to reinforce Dannie’s image of equiprobable outcomes and allowed 
Lara to accept that these empirical data did not provide evidence for refuting the EPO hypothesis. 
The students did not make any explicit reference to the influence of sample size (100 trials) on 
their reasoning.   

Lara was the first to explicitly refer to sample size when she disagreed with Dannie’s 
conjecture of refuting the EPO assumption (“it isn’t fair”) in Cycle 13. Lara contended that the 
conjecture could not be made because the sample size was only 12 (“we don’t know if it’s fair, 
because that was 12 [trials]”). Interestingly, this was the first instance of Dannie’s willingness to 
consider that her image of the EPO did not match the empirical data. However, she seemed 
perturbed that this mismatch could exist and in subsequent cycles she began a quest “to see how 
long it takes before the die is fair,” perhaps because of a strong belief that die should be fair 
(Green, 1983; Watson & Moritz, 2003). Dannie was now evoking the significance of sample size 
to support her contention that the distribution of empirical data would approach the theoretical 
distribution which she expected to be equally likely. Similar to results of previous studies (e.g., 
Lidster et al., 1995; Shaughnessy & Ciancetta, 2002), this student did not seem to consider that a 
distribution of data could provide evidence to refute the EPO hypothesis.  

The partners continued to collect more evidence and coordinate their images with the 
empirical data. Dannie, being quite tolerant of any variability and continuing to conduct more 
trials, only saved the results that support her EPO image. A disagreement between the partners 
occurred when the sample size exceeded 500 (Level 4). Dannie explained to the 
teacher/researcher that their strategy was to see “how long it takes until it gets fair” and admitted 
that, after 834 trials, she did not “yet” consider it to be fair. This further confirmed her 
expectation that the distribution of the empirical data would eventually match her EPO image. 
However, after the sample reached 906 trials with data shown in the pie graph and the frequency 
table, they decided to save both representations and make a conjecture. Lara conjectured to refute 
the assumption of EPO (“after 906 trials it wasn’t fair”) whereas Dannie still negotiated for 
“pretty fair” or “sort of fair.” Dannie pointed out the distinct variations among the frequency of 
each outcome in the table (“these three, the three, four, and five, they have more rolls than the 
one, two, and six”) but this variation was not great enough for her to acknowledge that the pattern 
in the data contradicted an assumption of EPO. Her willingness to tolerate this variation was 
again similar to findings from Lidster et al. (1995) and Shaughnessy and Ciancetta (2002). 

The external resources of the pie graph and frequency table, along with the large sample size 
(906 trials), seemed to support Lara’s reasoning towards a conjecture about refuting the EPO 
hypothesis. Lara was coordinating sample size and the stabilization of certain outcomes occurring 
less than others (variation within sample); however, her social interactions with Dannie resulted 
in Lara’s conjecture of refuting the EPO assumption being overshadowed by Dannie’s decision to 
report the die was “fair” on their poster.  

While creating their poster (Figure 3), Dannie and Lara indicated they had not estimated the 
probabilities of the outcomes of the die (see Question 3 in Figure 2). Instead of reasoning from 
the data already collected, Lara returned to the software and conducted an additional cycle with a 
cumulative Level 1 sample size. She used the relative frequency table for the outcomes of 36 rolls 
of the die as estimates shown on the right side of the poster (see Figure 3) for the “probability 
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after 36 trials.” This suggested that she had partitioned the problem and may have considered the 
task of estimating probabilities as separate from the task of conjecturing whether or not to refute 
the EPO hypothesis. Thus, their estimate of unequal theoretical probabilities did not correspond 
with a conclusion that all outcomes were equiprobable. Another interpretation was that they 
interpreted Question 3 (see Figure 2) as a request to provide relative frequencies of empirical 
data.  

 

  
 

Figure 3. Dannie and Lara’s poster 
 
Pair 2: Brandon and Manuel (High Rollers, Inc.) Brandon and Manuel conducted eight 

cycles, 50% of which had sample sizes of 100 or below (see Table 2). For all but two cycles, they 
had at least three representations visible both during and after data collection: bar graph, pie 
chart, frequency table, or relative frequency table. Thus, they often had two representations of the 
same information available to them (e.g., the pie graph and relative frequently frequency table) as 
well as representations showing different information (e.g., pie graph and bar graph). They 
predominantly reasoned about variability within a cycle, with two notable exceptions of 
reasoning across data sets. 

Brandon and Manuel initially began by using the Run Until tool to test the number of trials 
before the first occurrence of a one. However they quickly abandoned this approach and 
conducted small trials which were added to the data previously collected. After 45 cumulative 
trials, they made an initial conjecture refuting the EPO hypothesis (“this is not fair”). To support 
this conjecture they both referred to the small number of fives that occurred. They explicitly 
reasoned about the variability within these data to support their development of a new hypothesis 
of the probabilities for the die outcomes, in particular that the five outcome seemed to have a 
smaller probability. However, they also were aware of the need to gather more data (“We need 
more evidence to conclude the company may be not fair.”).   

In the next cycle, the students explicitly enacted their search for more evidence by conducting 
a Level 3 sample (500 trials). Although their first conjecture was refuting the EPO assumption, 
Brandon began comparing the new empirical data from the data collection process against his 
expectations. He appeared to use both an expectation formed in the last cycle (low probability of 
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five) and the initial expectation based on EPO to interpret the data in Cycle 2 (low number of 
fives and ones).  

 
Brandon:  Interesting I have discovered that it is all fair but … [after about 50 trials with all 

outcomes having frequencies of 6-11, and the “five” only occurring once] 
Manuel:   Nuhuh! If you say that’s fair, you’re crazy. [points to the five column to support 

his argument] 
Brandon:   I said it’s all fair except for five, that’s what I was going to say [now 110 trials 

and only 10 fives]… But anyway it’s doing pretty well. [Manuel scrolls to look at 
percents column with about 170 trials]  

Brandon:  Dang 12 percent. [sings several times] [five is about 12%, but so is 1]  
 
This coordination of two expectations illustrated his ability to attend to the dynamic 

simulation of trials and how that attention can begin to alter his hypothesis of the probabilities. 
After the trials were complete, he made a more explicit statement about how these data could be 
used to infer a new expectation and the implications of a non-uniform probability distribution 
(“So if you don’t want to get ones or fives, we are the company to be”). However, Brandon’s 
attention to variability within the data set did not seem to convince him of this new image (“Still, 
it’s pretty close to being fair, but it isn’t”). 

Brandon’s tentativeness was apparent in the next cycle when, with a lower sample size (50), 
he returned to accepting that the data matched his initial hypothesis of EPO by comparing the 
variability between this set of data and their first set of 45 trials. In the current sample the 
frequency of fives was higher. To him, the differences in the variability across sets of data 
indicated there was no pattern and he made a conjecture of “fair,” and placed a “bet” against 
Manuel who was still unsure. However, in the next two cycles of Level 2 sample size, they 
appeared to be in agreement that the data represented equally likely outcomes and they made a 
written conjecture that “we have concluded from the info we have collected so far that the dice is 
fair.” Their statement indicated that up to this point in data collection, with a variety of small and 
large number of trials, they believed that the evidence was supporting a conjecture to confirm an 
EPO hypothesis. 

While conducting 300 trials (Cycle 6), they continually tried to “cheer” the data into matching 
their mental image of EPO (e.g., “Come on! Get even, five!” and “Well, [five] just got off to a 
bad start”). Brandon noticed the variation within the data — ones, threes, fives, are a “bit behind” 
— but was still unwilling to reject the notion of EPO. When asked by the teacher/researcher to 
support their conjecture of “fair,” Manuel reasoned about the variability between this data set and 
the previous one (“The last time three and two were high.”). Manual’s image of EPO was 
strengthened by his attention to random variation across data sets, while exhibiting a high 
tolerance for variability within the data (“they all [outcomes] didn’t have to be the same…it was 
just the luck”). Manuel’s high tolerance for variability was similar to that found in other studies 
(Lidster et al, 1995; Shaughnessy & Ciancetta, 2002) and his notion of “luck” was aligned with 
prior work that showed that students account for randomness of a die with references to luck 
(e.g., Lecoutre, 1992; Pratt 2000; Watson & Moritz, 2003). Brandon continued to question his 
image of EPO by his attention to variability within a data set and noticing a stabilization of 
certain outcomes occurring less often (Drier, 2000a; Parzysz, 2003). Interestingly, Brandon did 
not try to convince Manuel until the sample size reached above 1000.  

  
Brandon:  I bet we aren’t fair. 
Manuel:  Well I don’t care. We are fair. Just because it’s not all even doesn't mean we’re 

not fair. [Clicks on RUN again to add an additional 500 trials.] Dude, we’re 
already up to a thousand [trials]. 

Brandon:  It’s not. I really don't think…   
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Manuel:  Well, I do. So … 
Brandon:  It’s only beating it by about a hundred [referring to frequencies in bar graph]. 
Manuel:  It’s not that unfair. See, three and five and one are practically the same. 
Brandon:  So they [three, five, and one] must have the same probability but that [points to 

relative frequencies for two and four] might have been more because look these 
[points to two, four, six] are always a bit higher than these [points to one, three, 
five].  

Manuel:  [interrupting] Wait a second. Wait a second. We are unfair. These two, all these 
[points to one, three, five] are one and these [points to two, four, six] are two 
[referring to hypothesized weights in Weight Tool as he points to frequencies]. 
So, two, four, six [pause]… We’re unfair. 

 
Their social interactions helped facilitate both of them making connections between the 

empirical data and the theoretical probability as they coordinated the role of sample size, the 
distinct pattern in the variability within the data set, and the rearranging of their mental images to 
incorporate this new information. This was evidenced by Manuel’s revelation that the die was 
“unfair” by Brandon’s reference to the empirical distribution implying equal probabilities for 
outcomes one, three, and five and that these are less than the probabilities for two, four, and six.  

During their last cycle with a Level 5 sample size, the teacher/researcher asked them to 
explain how the data could help them estimate the probabilities for each outcome (see Question 3 
in Figure 2). Manuel responded “these percentages help us in, like, determining what the 
probability is moving to” and further explained how he was mapping each of the relative 
frequencies from the empirical data onto a model for the theoretical probability. His explanation 
was similar to the reasoning described by Prodromou (2007) of how students can use a data-
centric distribution to inform a model-centric distribution. Manuel was having this conversation 
while data were continuing to be collected and the values in the table and graphical displays were 
being updated. In this regard, he seemed to appreciate the stabilization of the relative frequencies 
as an indicator of the theoretical probabilities. He further commented that he could not make a 
definitive conjecture about the probabilities as “we aren’t sure which [probability to assign] 
depending on the outcome of this humunga [sic] big trial.” His comment indicated an 
appreciation that, although there is a stabilization of the results, there will be slight changes in 
those results in future trials. Thus, he was demonstrating a strong conceptual understanding of the 
role of the law of large numbers in using relative frequencies in empirical data to make an 
estimate for a probability distribution. 

Brandon and Manual’s poster (Figure 4) further highlighted the refinements they made to 
their initial mental image of EPO while reasoning from empirical data. On their poster (Figure 4), 
they documented how they once asserted that the die was fair with a small sample and then how 
larger samples gave them more confidence to make a claim of unfair and to estimate the 
probabilities (“We have changed our minds, the dice are so unfair”). This “mind changing” is 
aligned with findings from Pratt (2000) and Pratt and Noss (2002) where students developed an 
understanding that an increase in number of trials resulted in a more stable empirical distribution. 
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Figure 4. Brandon and Manuel’s poster 
 

Pair 3: Greg and Jasyn (Slice n’ Dice) Greg and Jasyn employed 11 cycles with sample 
sizes ranging from six Level 1 samples (40 or less) to a single Level 4 sample (501 to 1000). For 
the majority of their cycles, they had three representations, either during or after data collection, 
most commonly the bar graph, pie graph, and frequency table. Thus, they simultaneously utilized 
representations with complementary functions (Ainsworth, 1999). Greg and Jasyn never utilized 
the relative frequency table. In approximately 45% of their cycles, they explicitly reasoned about 
variation among outcomes within a distribution.  

Based on their work in the first cycle, they used the Run Until tool to conduct trials until each 
outcome appeared at least once. They suggested this may indicate that the EPO hypothesis was 
valid (Jasyn: “We know there are all the colors [in the pie graph],” Greg: “What? It’s even.”). We 
inferred that their strategy and comments reflected their mental image of the theoretical 
distribution of EPO and the resulting implication for empirical data, that is, that each outcome 
should be able to occur.  

Because of the large variation in the theoretical distribution (see Table 2), the Level 4 sample 
size (n = 561) in Cycle 2 allowed Greg and Jasyn to notice the drastic variation within the 
empirical distribution (see Figure 5). As Greg noted, “It’s five and it’s only 20 [referring to the 
frequency of fives] the rest [other frequencies] are like way above.” They in turn confidently 
refuted the EPO hypothesis (“Five is way too low to be a fair dice”) and formed a new hypothesis 
of a probability distribution with a low number of fives. In essence, with this set of trials, they 
were able to observe a distinct pattern (stabilization) in their results (Drier, 2000b; Parzysz, 
2003). They did not, however, make an explicit inference about how the low number of fives was 
linked to the probability of five occurring, as opposed to Brandon and Manuel who hypothesized 
the weights (probability) needed in the Weight Tool.  
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Figure 5. Greg and Jasyn’s screen display after 561 trials 
 
Their new hypothesis that the die tended to produce few fives seemed to influence their 

subsequent strategy for collecting empirical data in Cycles 3-11. Thus, it appeared they were 
attempting to further substantiate their conjecture to refute the EPO assumption (“Okay this dice 
isn’t fair, we know that.”). One way they did this was their use of the Run Until tool to test 
whether it would take a substantial number of trials until the first occurrence of a five. With this 
tool, a sample size is not predetermined. They found that “it took 42 tries to get a five!” and 
conjectured that the die was “unfair,” supporting their previous conjecture. Their surprise with 
this result and the decision they made was consistent with the small probability (0.000567) that 
fives would not occur until at least the 42nd roll of an equiprobable die.  

Following this cycle, the remaining cycles had relatively small sample sizes. Their results 
supported their previous finding of too few fives and they concluded that the die was biased. In 
essence, their one large sample seemed to help them form a new hypothesis for a probability 
distribution that was consistent with their remaining trials. Although they did not discuss their 
reasoning for using lower sample sizes in subsequent cycles, the supporting data for their new 
distribution may not have compelled them to use larger samples. In fact, they may have been 
engaging in a more playful exploration after they felt convinced of the claim about an unequal 
distribution. However, as can been seen in the Appendix, in most cycles, they continue to 
comment on their results and make a claim of “refute.” This provides evidence that they were 
staying engaged in the task. 

The teacher/researcher directly asked them to use the evidence from the empirical data to 
conjecture probabilities for each outcome. Although they explicitly used the bar and pie graphs to 
estimate the relative frequency (“it’s sixes, well that’s about one-quarter right there” [Gesturing to 
the pie graph]), their lack of use of the relative frequency table seemed to hinder their ability to 
estimate a probability distribution and to instead provide a frequency distribution based on a set 
of 100 trials (Figure 6).  
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Figure 6. Greg and Jasyn’s poster 
 

The external resource of the task design for this pair (i.e., skewed bias in Slice n’ Dice 
probabilities), combined with their use of a large sample size in Cycle 2 prompted a coordination 
of their initial (equally likely) and new (biased) images with the empirical data. This coordination 
was fostered by their attention to variability within data sets and invariance (low fives) across 
data distributions, and their explicit reference to various representations of data.  
 

6. DISCUSSION 
 

6.1 ENHANCING THE FRAMEWORK FOR INFORMAL HYPOTHESIS TESTING 
 

Our main research question focused on how students were using the software to conduct their 
investigation, and specifically how they used the empirical distributions to confirm or refute a 
hypothesis. In each of the three pairs, students were coordinating their mental image of expected 
outcomes based on an imagined theoretical distribution (initially with the EPO hypothesis) with 
empirical data that either confirmed or conflicted with their image of the expected distribution. 
The initial categories that emerged from our data analysis included five types of decisions and 
actions the students engaged in during a cycle of investigation: 1) how to collect data (e.g., 
number of trials, adding data to previous trials), 2) whether to view representations (pie, bar 
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graph, data table, etc.) during or after the simulation, 3) whether to save the data (or not) as 
evidence for further analysis and justification, 4) whether to make a conjecture based on data to 
reject (or not) the initial hypothesis, and 5) whether more data were needed. The fourth and fifth 
decisions are already integrated in the framework at the point of an Interpretative Decision (see 
Figure 7). However, Figure 7 now includes the other decisions in the investigative cycle and a 
specific note of where students attend to variability. This enhanced framework may be useful for 
others in closely examining the tasks students engage in when using simulation tools in a 
statistical investigation, particularly with informal hypothesis testing. 

 

 
 

Figure 7: Investigative cycle for informal hypothesis testing with key decisions and reasoning 
 
What also became apparent to us in the detailed analysis of the pairs’ work in the sequence of 

cycles, was that students’ images of a hypothesized probability distribution made in the 
Formulating Expectations phase (Figure 7) were consistently informing their:  

1)  decision of how to run trials (e.g., increase/decrease sample size, use of Run Until to test 
number of trials to get five, increase trials until data look even); 

2)  attention to results during data collection (e.g., cheering for five to catch up, noticing 
stabilization of relative frequencies with larger trials); 



89 
 

3)  attention to results after data collection (e.g., one, three, and five are less than the others, 
comparing results to prior data sets); and 

4)  decision of whether the current data set should alter their hypothesis of the probability 
distribution (e.g., noting that they are unsure and need more data, accepting that data 
match their current hypothesis and expectations well enough, altering their current 
hypothesis of a distribution to account for new data).   

Even though all pairs demonstrated this back and forth movement between their expectations and 
the process of collecting and analyzing empirical data to compare to this expectation, the 
robustness of the connections they were making was different. The way in which students 
decided to collect and display data (e.g., representations used) varied across the pairs, and thus 
the overall success of providing compelling evidence of whether or not to refute the EPO 
hypothesis and proposing a theoretical probability distribution was different.  

Brandon and Manuel eventually made robust connections between empirical data and 
expected distribution both to refute the initial EPO hypothesis and to make an estimate for their 
new hypothesized distribution of probabilities. To accomplish this, they attended to several 
complementary representations of the data (Ainsworth, 1999), including the use of the frequency 
table after data collection much earlier than the other two pairs. They were also the only group to 
attend to the relative frequency table both during and after a simulation, with the exception of 
Lara who used it on the final run to estimate probabilities for inclusion on their poster. Brandon 
and Manuel referred to the relative frequencies often to justify their reasoning with each other and 
the teacher-researcher. The importance of the use of relative frequency displays of data was also 
noted by Ireland and Watson (2009) in helping students make a connection between empirical 
distributions and theoretical probabilities.  

Thus, in considering the cycles portrayed in Figure 7 where one is continually having a 
mental “conversation” between observed data and expectations from an hypothesized 
distribution, the number of cycles is not what matters most (Brandon and Manuel utilized the 
least number of cycles), but well-connected and tight links that students develop between data 
and a model of a distribution. It is the careful analysis that students do that coordinates the two 
and includes attention to the role of sample size and variability.  
 
6.2 REASONING ABOUT SAMPLE SIZE AND VARIABILITY 
 

Our second research question focused on how students attend to sample size and variability 
during their investigation. Because students had autonomy in selecting their sample size, it is 
interesting to note that all pairs chose varied sample sizes rather than systematically increasing 
the number of trials. Although the students had participated in several other probability 
experiments in the instructional unit and had engaged in class discussions where classmates 
shared their observations of an “evening out” (stabilization) effect with large numbers of trials, 
their inconsistent use of large samples indicates that they did not necessarily expect the “evening 
out” phenomenon to be immediately helpful in the task of testing whether or not the dice are fair. 
Pratt and Noss (2002) observed that newly developed internal resources (noticing “evening out”) 
often have lower cueing priority in contexts other than that in which the internal resource was 
developed. Our findings support this observation and also agree with the results from Pratt and 
colleagues’ (2008) recent study where students did not seem to attend to the effect of sample size 
in the variations observed in empirical distributions. 

Greg and Jasyn quickly used a large number of trials when they suspected that one of their 
outcomes might have been more difficult to obtain. However, their reasoning about the large 
sample included more of a focus on how few fives occurred rather than on a stabilization of 
relative frequencies. In the language of Pratt and colleagues (2008), they were more focused on a 
local perspective (one outcome occurring significantly less often than the other five outcomes) 
rather than on a global perspective (stability of entire distribution after a large number of trials). 
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Dannie and Lara as well as Brandon and Manuel did not attend to the importance of a large 
sample size until near the end of their data collection. Dannie had a goal to see when the results 
would appear even that likely took away from her ability to notice the stabilization effect as Lara 
did. However, with substantial argumentation and interactions, Brandon and Manuel were able to 
come to recognize the stabilization after a large number of trials as a way to connect the empirical 
data to a theoretical distribution.  

Regarding variability, students’ reasoning within or across data sets yielded different 
inferences. It is interesting to note that all case study pairs generally reasoned about the variability 
within a data set (e.g., “Five is beating one”) rather than consistently reasoning across samples 
(e.g., We got a lot more fives this time”). The availability of the table and bar graph seemed to 
facilitate these within-sample comparisons. Brandon, Manuel, Greg, and Jasyn’s reasoning about 
variability within a sample seemed to emerge as they viewed the simulation as a “race” between 
the outcomes of the die (e.g., “Come on five, catch up!”, “Five is a bit behind”). The dynamic 
nature of the technology may have contributed to this phenomenon and suggests that when using 
dynamic technologies students’ data collection, analysis, and interpretive decision making (see 
Figure 7) may occur in an integrated manner rather than in distinct phases. The “cheering” 
phenomenon can also encourage “students to notice and interpret representations that provide 
new insight about the phenomena” (Enyedy, 2003, p. 378). Cheering may also focus students’ 
attention on variability by “observing the fluctuation of samples … and observing the 
stabilization of the frequency distribution of the possible outcomes” (Parzysz, 2003, p. 1) within a 
run of trials. 

We observed incidences when students reasoned across data sets to refute the EPO 
assumption and at other times, to support their image of EPO. Because these incidences occurred 
with widely varying sample sizes, it appeared students were not always coordinating their 
attention to variability with the notion of sample size. We agree with Pratt et al. (2008) that what 
seems to be important in fostering students’ reasoning across data sets is a coordination of 
noticing invariance (similarities) and variance (differences) with the role of sample size. That is, 
students should come to expect different amounts of variability across data sets with small and 
large samples.  

Dannie never explicitly reasoned about comparisons across samples. Lara did so once when 
she noted that fives were not low in a current data set of 100 trials as compared to a prior one of 
40, and that helped support her agreement with Dannie during that cycle that the die may be fair. 
Brandon used comparison of two low-sample-size data sets to justify that he saw no consistent 
pattern indicating which outcome appeared the least. Likewise, Manuel also used this reasoning 
to notice no consistent patterns; however, he was comparing a sample size of 300 with a prior one 
of 50. By the time Brandon and Manuel agreed to refute the EPO hypothesis, they seemed to 
focus on the current very large set of trials and the stabilization effect. Thus, they likely had no 
need at this point to compare across samples. Greg and Jasyn were the only students to explicitly 
use reasoning across data sets about invariance between distributions (five is always low). 
Perhaps their obviously biased die made it much easier for them to notice these consistent 
patterns and may suggest that if we want to promote attention to invariance across empirical 
distributions, then perhaps it can be productive to use contexts in which theoretical distributions 
are significantly different from a uniform distribution. This is aligned with reasons given by 
Konold and Kazak (2008) for not using uniform distributions in the contexts of their tasks posed 
to students. 
 
6.3 SOCIAL AND TASK CONTEXT 
 

Consistent with the findings of Lidster et al. (1995), some students believed that dice could be 
fair for “some numbers” and for “some trials.” Some students also demonstrated a strong desire 
for their die to be fair, possibly because of an underlying belief about all dice having equally 
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likely outcomes (Green, 1983; Watson & Moritz, 2003), or the social context of hoping the 
company they were examining would be the “winner” and chosen to supply dice for the 
Schoolopoly game. In contrast to the findings of Lidster et al., many students in this study tended 
to overcome these beliefs as they obtained larger sample sizes and engaged in discourse with their 
partners.  

Discourse played a key role in our students’ reasoning. At times we found evidence that the 
individuals had different images of a probability distribution while at other times, their 
interactions provided no evidence that their images were significantly different. Differences were 
evident when substantial disagreements between students occurred, often within cycles of larger 
sample sizes. These conflicts generally arose when one student was willing to accept a large 
amount of variation between outcomes for a fair die while the other was unwilling to tolerate such 
a large degree of variation and therefore claimed the die was unfair. Of the two pairs who 
experienced conflicting opinions, Brandon and Manuel were able to reach consensus to refute the 
EPO hypothesis after their sample size became large, by using the empirical data and multiple 
representations to make arguments and justify their claim of “unfair.”  

By way of contrast, Dannie and Lara agreed upon language (e.g., “pretty fair”) that reflected 
the relative non-commitment by Lara to agree with Dannie’s support of the initial EPO 
hypothesis. However, neither student made strong data-based arguments to support their claim. 
Greg and Jasyn, analyzing the most blatantly-biased die, never conflicted on the issue of refuting 
the EPO hypothesis. Instead, their social interactions seemed to center more on control of the 
mouse and which representations to view and save. We suspect that this lack of negotiation was 
largely due to their early Level 4 sample that showed a bias in the die. Thus, we suggest not 
having such obvious bias in tasks in future teaching and research contexts.  

 
7. CONCLUDING REMARKS 

  
Our research has helped to answer the call (Jones, 2005; Jones et al., 2007) for more research 

on students’ understanding about the connection between relative frequency of empirical data and 
theoretically-derived probability, and the use of technology tools in learning probability. Given an 
engaging task and open-ended software tools, students in this study were able to reason from the 
empirical data and make meaningful connections back to a model of the probability distribution. 
Artifacts such as the task context and data representations seemed to encourage students to make 
data-based arguments to support their claims to peers and teachers; and thus played a critical role 
in fostering students’ understanding of the relationship between observed data and a probability 
distribution. Although we used social interactions as an external resource in our analysis, we did 
not focus on the intricacies of these interactions and the collaboration process. A follow-up 
analysis with a focus on argumentation and social interaction would further illuminate how 
students’ interactions affected their individual understandings. An example of such an analysis of 
a different group of students’ work on the Schoolopoly task can be found in Weber, Maher, 
Powell, and Lee (2008). 

We would like to offer a final word about the value of a frequentist perspective to probability 
in instruction. In most cases, everyday probabilistic situations in our world do not allow for a 
classical approach to computing probability. The medical field is a prime example of the use of 
data to estimate the likelihood of various phenomena (e.g., contracting a disease or developing 
complications during surgery). These probabilities are not theoretically-derived constructs based 
on a known sample space and are not subjective opinions based on experiences or intuitions, but 
instead are calculated from large samples of available data. There is a need for students to 
experience how such probabilities are derived, and to understand that they represent an estimate 
of underlying probabilities and conditions that are unknown to us as external observers. In 
addition, we believe the teaching of probability and statistics should foster an understanding of 
how one can notice a phenomenon, make an initial conjecture or hypothesis, design an 
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experiment to collect sufficient and appropriate data, and use data-based reasoning to justify 
whether or not to refute the initial hypothesis. Such experiences can provide fundamental 
reasoning and skills that will be useful in students’ data-rich lives.    

Although the Schoolopoly task does not have the same real-world importance as medicine, 
we nevertheless found the problem context to be engaging to students and one that yielded rich 
classroom discourse. We ponder whether the context of dice as familiar objects in students’ 
game-playing experiences added too much complexity in students’ ability to reason about relative 
frequency and a theoretical probability distribution. It would be beneficial to study students’ work 
on a parallel task set within a different context that is not so laden with preconceived notions and 
game-playing experiences. Coupled with the use of simulation technology, problem tasks similar 
to Schoolopoly and others also promoted by Zieffler et al. (2008) may offer students 
opportunities to grapple with numerous issues central to the study and understanding of informal 
inference. In doing so, students can learn the value of formulating data-based arguments and 
recognize the importance of larger samples in drawing inferences. Thus, we believe that giving 
students access to appropriate tasks and simulation tools (technological and hands-on) in a 
context in which social interactions are fostered can help them make sense of the independent 
nature of random phenomenon, the importance of sample size, and the need to attend to 
variability. A robust understanding of these three concepts—randomness, sample size, and 
variation—seems to play a critical role in students’ understanding of a bi-directional relationship 
between empirical data and expectations based on a theoretical probability distribution.  
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APPENDIX: CONDENSED CODES DESCRIBING CYCLES  
OF DATA COLLECTION FOR CASE STUDY PAIRS 

 
Dannie & Lara (Dice R’ Us) Brandon & Manuel (High Rollers) Greg & Jasyn (Slice n’ Dice) 

Cyc S RP C V Cyc S RP C V Cyc S RP C V 
1 1 D: S, P 

A: S, P 
U WA2 1 2 D: S 

A: S 
R WU2 1 1 D: S, P 

A: S, P 
  

2 1 D: S, P 
A: S, P 

U WA2 2 3 D: S, FT, RFT, P 
A: P, FT 

U WU1 
WA1 

2 4 D: B, P, FT 
A: NONE 

R WU2 

3 1 D: S, P 
A: S, P 

U WU2 3 2 D: S, FT 
A: S, FT 

U 
C 

AAD 
WU1 

3 1 D: B, P, FT 
A: B, P 

R AAS 

4 1 D: S, P 
A: S, P 

U WU2 4 2 D: S, B, RFT  
A: S, B, RFT 

C  4 2 D: B, P, FT 
A: B 

R AAS  
WU2 

5 2 D: S, P 
A: S, P 

  5 2 D: P, FT, B 
A: P, FT, B 

C WA2 5 2 D: B, P, FT 
A: P 

R  

6 2 D: S, P 
A: S, P 

  6 3 D: P, FT, B, RFT 
A: P, FT, B, RFT 

C WA2 
AAD 

6 1 D: B, P, FT 
A: NONE 

  

7  D: NONE 
A: P 

C AAD 7 5 D: P, FT, B, RFT 
A: P, FT, B, RFT 

R WU1 
WA1 
WU2 

7 1 D: B, P, FT 
A: FT 

  

8 1 D: S 
A: S, P 

U WA2 8 5 D: P, FT, B, RFT 
A: P, FT, B, RFT 

R WU2 8 1 D: B, P, FT 
A: FT 

R WU2 

9 2 D: P  
A: P 

U WA2      9 2 D: B, P, FT 
A: FT 

R  

10 3 D: P  
A: P 

C WA1      10 1 D: S 
A: FT, P, S 

R WU2 

11 1 D: P 
A: P, FT 

C WA2      11 2 D: FT 
A: P, B, FT 

R WU2 

12 1 D: P,FT 
A: P,FT 

   Cyc = cycle 
S = Sample Size:  Level 1 (1-40), Level 2 (41-100), Level 3 (101-500), 

Level 4 (501-1000), Level 5 (1001+) 
RP = Representation Used  

D= During data collection A=After data collection  
S=Stacked Icons, B=Bar Graph, P=Pie Graph, FT=Frequency 
Table, RFT=Relative Frequency Table 

C = Conjecture 
 C= Confirm assumption of Equally likely outcomes (e.g. 

“that’s fair, etc) 
 U = Unsure (e.g. “sort of fair”, “not sure yet”) 
 R = Refute assumption of Equally likely outcomes (e.g. “no 

way”, “we are so unfair” 
V= Variability 

WA1, WA2 = Reasoning within data set, accepting of 
variability, # of students agreeing 
WU1, WU2 = Reasoning within data set, unaccepting of 
variability, # of students agreeing 
AAD= Reasoning across data sets, attending to deviations 
AAS= Reasoning across data sets, attending to similarities 

*Disagreement between students that never reached consensus 

13 1 D: P,FT 
A: P,FT 

U   

14 1 D: P  
A: P 

   

15 3 D: P  
A: P 

R   

16 3 D: P  
A: P 

R   

17 4 D: P 
A: P, FT 

UR
* 

WU1  

18 4 D: P 
A: P, FT 

CU
* 

WU1 
WA1 

 

19 1 D: NONE 
A: P 

   

20 1 D: NONE 
A: RFT 

   

     

 
 


