
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Statistics 120
More R

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Subsetting

• One of the strong features of R, is the ability to extract
data subsets in a flexible way.

• The subsetting in R applies to vectors and also to more
general objects.

• The subsetting methods are designed to support
statistical data analysis. They are different from the
mechanisms found in database systems.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Explicit Subsetting

> x = 10 * (1:10)

> x

[1] 10 20 30 40 50 60 70 80 90 100

> x[2]

[1] 20

> x[1:4]

[1] 10 20 30 40

> x[c(1, 3, 5)]

[1] 10 30 50

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Exclusion

> x[-2]

[1] 10 30 40 50 60 70 80 90 100

> x[-(1:4)]

[1] 50 60 70 80 90 100

> x[c(1, -2)]

Error: only 0’s may mix with negative subscripts

> x[0]

numeric(0)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Logical Vectors

So far we have only seen vectors containing numbers. It is
also possible for vectors to contain logical (true/false) values.
These are usually generated by comparisons using the
operators.

< less > greater
<= less or equal >= greater or equal
== equal != not equal
& and | or

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Logical Values

> x = 10 * (1:10)

> y = c(rep(1, 5), rep(2, 5))

> x
[1] 10 20 30 40 50 60 70 80 90 100

> y
[1] 1 1 1 1 1 2 2 2 2 2

> x[y == 1]
[1] 10 20 30 40 50

> x[y == 2]
[1] 60 70 80 90 100

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A More Complex Example

Subsetting is often used as follows in data analysis:

mean(weight[sex == "male" & age < 30])

This can be read naturally as:

“Obtain the mean weight for males under 30.”

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Character Strings

• In addition to vectors of numbers and logical values,
R also supports vectors of character strings.

• Strings are enclosed between (single or double) quotes.

"A string"

’Another string’

• Strings are most commonly used as plot labels.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Character Strings

> x = "abc"

> y = rep(x, 3)

> y

[1] "abc" "abc" "abc"

> length(y)

[1] 3

> y[2] = "z"

> y

[1] "abc" "z" "abc"

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Mixing Data Types

• The elements stored in a vector must all be of the same
type (numbers/logicals/strings).

• If items of different types are combined into a vector
they are coerced to be of the same type.

• The direction of conversion is:

logical → numeric → character

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Type Coercion Examples

> c(TRUE, FALSE, 10, 20)

[1] 1 0 10 20

> c(TRUE, FALSE, "string")

[1] "TRUE" "FALSE" "string"

> c(TRUE, FALSE, 10, "string")

[1] "TRUE" "FALSE" "10" "string"

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A Common Idiom

Suppose that the variables sex and age contain the gender
and age of members of a sample of individuals.

The fraction of males under 30 can be computed as follows:

pm30 = sum(sex == "male" & age < 30) /

sum(sex == "male")

This fraction can be converted to a percentage as follows:

round(100 * pm30, 2)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Lists

Vectors are by far the most common objects encountered in R,
but sometimes the requirement that all elements must have the
same type is too restrictive. There is another structure called a
list which can be

> L = list(a = 1:3, b = "hello")

> L

$a

[1] 1 2 3

$b

[1] "hello"

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Manipulating Lists

The only important operation which can be performed on a
list is the extraction of a sublist, or element.

> L = list(a = 1:3, b = "hello")

> L$a
[1] 1 2 3

> L[1]

$a

[1] 1 2 3

> L[[1]]

[1] 1 2 3

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Matrices and Arrays

In addition to vectors, R has a wide range of data structures.
Some of the most commonly used data structures in statistics
are matrices. A matrix is a set of values laid out in a regular
row×column arrangement. The R function matrix takes a
vector of values and turns them into a matrix.

> A = matrix(1:6, nrow = 3, ncol = 2)

> A

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Matrices and Arrays

By default, matrices are created with their values running
down successive columns. It is also possible to specify that
the matrix be filled by rows.

> B = matrix(1:6, nrow = 3, ncol = 2, byrow = TRUE)

> B

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Matrix Extents

The number of rows and columns in a matrix can be obtained
with the functions nrow and ncol. Both values can be
obtained simultaneously with the function dim

> A = matrix(1:6, nrow = 3, ncol = 2)

> nrow(A)
[1] 3

> ncol(A)

[1] 2

> dim(A)

[1] 3 2

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Row and Column Labels

Matrices can be made rather more useful by using row and
column labels. A matrix can be labelled as follows:

> A = matrix(1:6, nrow = 3)

> dimnames(A) = list(c("sex", "drugs", "rock&roll"),

c("this", "that"))

> A

this that

sex 1 4

drugs 2 5

rock&roll 3 6

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Control Flow

• Virtually all computer languages support some from of
control-flow statements.

• Control statements usually are of two types:

– Iteration – repeatedly carrying out the same task.

– Alternation – carrying out one of two (or more)
alternatives.

• R provides control flow statements in the form of “for”
and “if” statements.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

For Statements

Here is an example showing how to use a “for” statement to
add up the elements of a vector.

total = 0

for(i in 1:length(x))

total = total + x[i]

The effect of this is to successively set the value of the
variable i to each of 1,2, . . . ,length(x) and to carry out the
computation total = total + x[i].

At the end of the computation the variable total will contain
the sum of all the elements in x

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

General For Statements

The general form of a for statement is:

for(variable in vector)

expression

The effect of this is to successively set the value of the
variable to each element of the vector and compute the
expression.

We could thus compute the sum of elements of a vector as
follows:

total = 0

for(elt in x)

total = total + elt

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

If-Then-Else and If-Then Statements

A simple example of an if statement.

if (any(x < 0))

stop("There were negative values in x")

A Simple example of an if-then-else statement.

if (x >) y = sqrt(x) else y = sqrt(-x)

This could be written more simply as:

y = if (x > 0) sqrt(x) else sqrt(-x)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Functions

One feature which makes R more useful than many statistical
programs is that is extensible – it is possible to create new
capabilities by defining new functions.

A simple example:

> square = function(x) x * x

> square(10)

[1] 100

Here we have defined a new function which takes a single
argument and returns the product of that value with itself as
its value. The function is stored with the name square.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

More On Functions

The function square works just as well on vectors as it does
on scalar values.

> square(1:10)

[1] 1 4 9 16 25 36 49 64 81 100

The function square is just like any other R function. We can
define new functions in terms of it.

> sumsq = function(x) sum(square(x))

> sumsq(1:10)

[1] 385

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

General Functions

R functions can have multiple arguments. The following
function has two arguments.

> hypot = function(a, b) sqrt(a^2 + b^2)

> hypot(3, 4)

[1] 5

There is no (theoretical) limit to the number of arguments a
function can have.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Optional Arguments

It is possible to define default values for function arguments.
If those arguments are not given values when the functions are
called, the default values are used.

> sumsq = function(x, a = 0) sum((x - a)^2)

> sumsq(1:10)

[1] 385

> sumsq(1:10, mean(1:10))

[1] 82.5

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Argument Naming

Because function arguments are optional it is important to
have a way of specifying which argument is which. This can
be be done by specifying (partial) names for the arguments.

> sumsq(1:10, a = mean(1:10))

[1] 82.5

> sumsq(a = mean(1:10), 1:10)

[1] 82.5

Arguments are matched first by name and then by position.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Recursion

Like most modern programming languages, R functions are
able to be defined in a recursive fashion. Here is a recursively
defined factorial function.

> factorial = function(n) if (n <= 1) 1 else n *

factorial(n - 1)

> factorial(10)

[1] 3628800

Beware that there is a (quite low) limit on the depth of
recursion which is permitted in R.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Object Orientation

• R has an object system similar to that of Common Lisp
or Dylan (and quite different from that of C++ and
Java).

• The object system and other system features make it
possible to use R for large-scale software projects.

• In this course we will not be making any use of the
object system but, if you are interested, you can can find
out about it in the system manuals.

